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1. Introduction  

Since its introduction by Aigner et al. (1977) and Meeusen and van den Broeck 

(1977), the stochastic frontier model has been widely used in the analysis of productivity 

and firm efficiency, and has been extended in numerous directions. Extensions include 

alternative assumptions for the distribution of the inefficiency error, the use of panel as 

well as cross-section data, the specification of time-varying inefficiencies that are related 

to firm characteristics, the introduction of heteroskedasticity, the use of dual cost and profit 

frontiers as well as production frontiers, and multiple output models. Applications have 

used both firm level and country level datasets, and have evaluated the performance of 

production units for both traditional and service industries. Estimation has been carried out 

from both the sampling theory and Bayesian standpoints. Surveys of different aspects of 

the literature can be found in Bauer (1990), Kim and Schmidt (2000), and Greene (2005). 

Of particular relevance to this study is Bayesian estimation of the stochastic frontier model, 

introduced by van den Broeck et al. (1994) and surveyed by Koop and Steel (2001). Books 

with substantial reviews of the literature are Kumbhakar and Lovell (2000) and Coelli et al. 

(2005). 

 An assumption common to all past studies is that the dependent variable (logarithm 

of output or cost) is a continuous random variable that is fully observed. In this paper we 

extend modelling and estimation of the stochastic frontier model to the case where the 

dependent variable is latent and is observed only as an ordered categorical variable. 

Conditional on the inefficiency error, an ordered probit model is used to model data of this 

form. The context in which our model is specified is that of an individual’s health 

production function.  

Health economists have considered both the production of health care and the 

production of health itself. Stochastic production frontier models, together with data 
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envelopment analysis (DEA, see for example Coelli, et al. 2005) have been used to 

examine the production of health care and to benchmark hospital performance and 

efficiency. Some examples are Gerdtham, et al. (1999), Rosko (2001), Brown (2003), 

Street (2003), and Puig-Junoy and Ortun (2004). Studies on the production of health itself 

can be further divided into macro studies which use aggregate statistics to investigate the 

health production of a country or region, or a particular group of people in a country, and 

micro studies which focus on the health of individuals using data at the individual level. 

For macro-level studies, the output of health production is often measured by continuous 

variables which are aggregated health indicators of a country such as mortality rate or 

disability-adjusted life expectancy. Population health expenditure, and aggregated 

measures of education, lifestyle and environmental factors, are used as health production 

inputs. Both parametric stochastic frontier and nonparametric DEA approaches are used in 

these macro studies, and efficiency measures of health production are estimated and 

compared across countries. See for example Puig-Junoy (1998), Evan et al. (2000a, 2000b), 

Thornton (2002), Hollingsworth and Wildman (2003) and Fayissa and Gutema (2005).  

Empirical research on population health using individual level data has become 

increasingly important in recent times for both developed and developing countries. 

Population ageing, labour shortages, epidemic trends for many chronic diseases, and 

obesity in the context of changing modern lifestyle have all intensified the urgency for 

government intervention in population health. The relationship between risk factors 

created via lifestyle behaviour with health outcomes at the individual level is crucial for 

informing public-funded health campaigns. Correlation between socioeconomic 

characteristics and health status is also an important measure, particularly in studies of 

health inequality. In the human capital theory of economics, health is an important 

endowment of human capital, like education, and is a product of household production 
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(Muth 1966; Grossman 1972). The level of health is produced with market goods, such as 

medical care, and an individual’s own time and effort via lifestyle behaviour. Empirical 

studies using individual level survey data include Desai (1987), Atkinson and Crocker 

(1992), Akin (1992), Contoyannis and Jones (2004), Jacobs et. al (2004) and Hakinen et al. 

(2006).  

A commonly used measure for an individual’s health status is the self-assessed 

overall health grade measured as ordered multiple discrete choices. Information is 

collected from survey questions, such as: “Would you say your health in general is 

excellent, very good, good, fair or poor?” Although the self-assessed grade is subject to 

measurement errors as are all other self-reported variables, empirical evidence suggests 

that it is a reliable measure of overall health status. For example, it is shown that it is a 

good summary of health conditions in various dimensions of physical, mental, social or 

functional health (Liang 1986; Jylha 1994; Baron-Epel, et al. 2005) and a valid predictor 

for mortality (Mossey and Shapiro 1982; Benjamins, et al. 2004; van den Brink, et al. 

2005). Although linear regression models have been used to study the self-reported health 

grade (Desai 1987), econometric models specifically designed for ordered discrete 

dependent variables, such as the ordered probit model, are more suitable for analysing 

health production functions of this type (Contoyannis and Jones 2004). However, unlike 

studies of health production using macro data, the issue of production efficiency has not 

been examined for individual health production, and has not appeared in the production 

frontier literature. In empirical research of individual health, it is common to find that 

persons with similar demographic and socioeconomic characteristics report completely 

different statements about their personal health status, because of different lifestyle 

behaviour. It is thus a natural step to extend the stochastic production frontier model to a 
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discrete ordered dependent variable so that the techniques in that literature can be used to 

study the efficiency of individual level health production. 

In this paper, we extend the stochastic production frontier model to ordered discrete 

dependent variables, and apply the model to study the production and production 

efficiency of individual level health using panel data from an Australian longitudinal 

survey. We study the effects of socioeconomic and demographic characteristics on health 

production and parameterise the model to allow the efficiency of health production to vary 

by lifestyle factors. We use a Bayesian approach with a Markov chain Monte Carlo 

(MCMC) algorithm for estimation and inference, adopting and modifying previous 

Bayesian algorithms for stochastic frontier models with continuous outputs (van den 

Broeck, et al. 1994) and for ordered probit models (Albert and Chib 1993; Nandram and 

Chen 1996; Li and Tobias 2006).  

The structure of this paper is as follows. In Section 2 the econometric framework 

for modelling a stochastic frontier with discrete ordinal output with cross-sectional data is 

introduced. The model for panel data is introduced in Section 3. Quantities of interest, 

including estimated probabilities, marginal effects and efficiency measures are discussed 

in Section 4. In Section 5 the model for panel data is applied to health production. Section 

6 contains a short conclusion. 

2. Modelling with cross-sectional data  

2.1 Model specification  

 We first consider a production frontier model for cross-sectional data with sample 

size N where iy  is a discrete observable random variable that takes one of 1J   ordered 

values from 0 to J. As in the standard ordered probit model, an unobserved continuous 
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latent variable iy  can be mapped to the observed discrete outcome iy  via some boundary 

parameters. The latent production output variable iy  is assumed positive and is related to a 

1 ( 1)k   vector of input variables ix , whose first element is unity. Following the typical 

stochastic frontier model setup, we write the natural logarithm of latent variable iy  as 

ln ( , ) ,  1, 2, , .i i i iy f x v u i N                                              (1) 

The ( 1) 1k    vector   contains unknown parameters. The siv   are independent 

identically distributed symmetric errors that follow a standard normal distribution, i.e., 

~ i.i.d. (0,1)iv N . They reflect measurement and specification errors. The assumption of 

unit variance is in line with that needed for identification in the traditional ordered probit 

model. The siu   are independent identically distributed non-negative error terms, with a 

given iu  measuring the inefficiency level of firm i. The value 0iu  indicates technical 

efficiency, while 0iu  is an indication of technical inefficiency where production of the 

i-th firm lies below the production frontier. Technical efficiency is defined as uer  , with 

0 1r  . The errors iv  and iu  are assumed independent. Several one-sided distributions 

of iu  have been considered in the literature. Early work on the stochastic frontier model 

presented by Meeusen and van den Broeck (1977) adopts an exponential distribution. 

Aigner et al. (1997) assume iu  follows a half normal distribution. Other suggestions 

include truncated normal (Stevenson 1980) and gamma (Greene 1990) distributions. In this 

paper, we assume iu  follows an exponential distribution, i.e.,  1~ i.i.d. 1,iu   , with 

mean   and variance 2 .  
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 Assuming that actual unobserved output is positive, and specifying the boundaries 

or thresholds as 1 2 11, , , , J    , the mapping between iy  and iy  can be written as  
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Since the dependent variable in (1) is ln iy  rather than iy , it is convenient to rewrite the 

mapping in (2) in terms of the logarithms of iy  and its thresholds sj . Specifically, let 

ln( )i ig y  , ln( ), 1, 2, , 1j j j J    , and set 1 , 00   and J . Then 

(1) can be written as  

( , ) ,i i i ig f x v u                                                          (3) 

and (2) becomes 

1,  if and only if ,  0,1, ,i j i jy j g j J
                                (4) 

The representation in (4) is the specification commonly used for the ordered probit model. 

The thresholds 1 2 1, , , J     are unknown parameters that need to be estimated along with 

 . In the special case where ),( ixf  is linear, for example, a Cobb-Douglas production 

technology where the ix  are the logarithms of the inputs, (3) can be written as   

.i i i ig x v u                                                                   (5) 
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 It is convenient at this point to introduce some matrix notation. In what follows we 

use the following definitions: 1 2( , , , )Ny y y y   , 1 2( , , , )Ng g g g      , 1 2( , , , )Nv v v v   , 

1 2( , , , )Nu u u u   , 1 2 1( , , , )J       , and 1 2( , , , )NX x x x      is an )1(  kN  matrix 

whose first column contains ones.  

 Our objective is to describe how Bayesian estimation of this model can be carried 

out. The first step in this direction is to specify conditional posterior densities which can be 

used in a Gibbs sampling algorithm to draw values from the joint posterior density of the 

unknown parameters  ,   and  , and the latent variables g  and u. Later, we describe 

how these draws can be used to get posterior densities on other quantities of interest such 

as probabilities for each level of production conditional on ix , and various measures of 

efficiency. In our specification of the conditional posterior densities for  ,  ,  , g  and 

u, we begin by reviewing two alternative algorithms that have been suggested in the 

literature for the ordered probit model (where 0u   and only  ,   and g  are relevant), 

and then introduce the extra conditional posterior densities necessary to accommodate 

0u  . Conditional posterior densities are also specified for a further extension where   is 

allowed to vary over individuals depending on another set of exogenous variables. 

2.2 Conditional posterior densities for an ordered probit production model  

 In this section two MCMC algorithms for estimating the traditional ordered probit 

model are reviewed prior to introducing the complications caused by the stochastic 

frontier inefficiency error. Our review borrows much from Chen et al. (2000, Ch.2). 

 A standard ordered probit production function without the inefficiency error 

component ( 0,  1, , )iu i N    can be written as 
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1
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The probability of ( 1, , ; 0,1, , )iy j i N j J     is given by  

1Pr( ) ( ) ( )ij i j i j ip y j x x          ,                                    (7) 

where ( )   denotes the cumulative distribution function for a standard normal random 

variable. The likelihood function is  
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where ) ( I  is the indicator function which is equal to one when its argument is true and 

zero otherwise. Assuming that ( ,  )   has an improper uniform prior, i.e., ( ,  ) 1p   , the 

posterior density for ( ,  )   is proportional to (8). That is,   

   1
1

, | , ( ) ( )
i i

N

y i y i
i

p y X x x


          .           (9) 

To facilitate estimation via the Gibbs sampler, Albert and Chib (1993) treat the latent 

variables ig  as unknown parameters, in which case the posterior density for ( ,  ,  )g   

becomes 

     2

1
1

1, , | , exp
2 i i

N

i i y i y
i

p g y X g x I g      




          
 .           (10) 
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The original Gibbs sampler for the ordered probit model proposed by Albert and Chib 

(1993) uses the following conditional posterior densities.  

The ig  ( 1, , )i N   follow conditionally independent truncated normal 

distributions 

     1| , , , ~ , 1 
i ii i y i yg X y N x I g     
   .   (11) 

The conditional posterior density for   is the normal distribution 

  1 1| , , , ~ ( ) ,  ( )g X y N X X X g X X        .                                (12) 

The conditional posterior density for , ( 1,2, , 1)j j J   is the uniform distribution 

   ( )| , , , , ~ ,j
j j jg X y U a b   ,                                       (13) 

where  1max , max( | )j j i i
i

a g y j
  ,  1min , min( | 1)j j i ii

b g y j
   , and )( j  

denotes   without j . 

 The Albert-Chib algorithm is a convenient one because drawing from truncated 

normal, normal and uniform distributions is straightforward. However, when N is large, 

say greater than 50, convergence of the Gibbs sampler can be slow (Cowles 1996). The 

interval ( , )j ja b  can be very narrow, leading to values of the threshold parameters j  that 

change very little and are highly correlated in successive iterations. The slow convergence 

of the j  can feed through into slow convergence of  . To overcome this problem 

alternative algorithms have been suggested by Cowles (1996), Nadram and Chen (1996), 

Chen and Dey (1996), and Albert and Chib (1998). The Nadram-Chen algorithm, which 

we utilize for our stochastic frontier model, has two main innovations: (i) a 

reparameterization of the model eliminates one of the thresholds parameters and introduces 
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a latent-variable variance parameter that is no longer equal to one, and (ii) a Metropolis-

Hastings step, with a Dirichlet proposal density, is used to sample from the conditional 

posterior density for all remaining thresholds, conditional on   and the new variance 

parameter, but not conditional on the latent variables. 

 To describe the Nadram-Chen algorithm, we first divide equation (6) by 1J  : 

2
1 1 1 1 1

1, 0, ,i i i
i

J J J J J

g v v
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
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  

               (14) 

Then, after defining 1i i Jv v    and setting 2 2
1var( ) 1v i Jv    , equation (14) suggests 

the following reparameterization 

11v J   ,    1Jg g  
 ,    1J    ,    and    1J                     (15) 

From the above transformations, the reparameterized model is i i ig x v     with new 

thresholds 1 0 1 2 10 ... 1J J J                        . The number of unknown 

thresholds has been reduced from 1J   to 2J  , and the scale parameter v  has been 

added. When 2J  , implying three categories, there are no unknown threshold parameters.  

 At this point it is convenient to change the prior density, anticipating what will be 

needed for the MCMC algorithm after the inefficiency term has been introduced. We 

assume that the prior  ,p     is uniform, and that  2
vp   is an inverted gamma density 

with shape parameter va  and scale parameter vb . That is, 2 ( , )v v vIG a b . This prior is 

computationally convenient and, if desired, can be made noninformative by suitable 
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choices of va  and vb . It leads to the following joint posterior density for the 

reparameterized model  

 
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The conditional posterior densities for implementing the Gibbs sampler are as follows.  

 The conditional posterior densities for the ig  are independent truncated normal 

distributions 

   2 2| , , , , ~ ,i v i vg X y N x          1i iy i yI g 
    ,       1, ,i N  .        (16) 

The conditional posterior density for   is the normal distribution 

 2 1 2 1| , , , ~ ( ) ,  ( )v vg X y N X X X g X X      
     .                              (17) 

The conditional posterior density for 2
v  is the inverted gamma distribution 

     2 1| , , , ~ ,
2 2v v v

N
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        .                (18) 

 For 2J  , there are no unknown thresholds in ~ , and sampling from the 

conditional densities in (16)-(18) is sufficient. For 3J  , an extra step is required to 

sample from the conditional posterior density for the unknown elements in ~ , namely, 

  12

1
| , , , i i

N
y i y i

v
i v v

x x
p X y 



     
              
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 

.                          (19) 
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Because (19) is not a density function whose form is recognizable, a Metropolis-Hastings 

step is used to draw from it. A Dirichlet proposal density is constructed for 

 2| , , ,vp X y    in the following way. Let the differences between adjacent thresholds be 

defined as 1j j jq       for 1,2, , 1j J  , and let 1 2 1( , , , )Jq q q q    . Then, 0jq  , 

and 
1

1
1

J

j
j

q



 , making the Dirichlet distribution a possible proposal density for q. Its 

density is given by  

 
1

12

1
| , , , j j

J
n

v j
j

p q X y q





                                                    (20) 

where 0 1, 1,2, , 1j j J    , are tuning parameters, and 
1

( )
N

j i
i

n I y j


   is the 

number of sample observations in category j. The advantages of the proposal density (20) 

are that the entire vector q can be drawn at once, and it does not depend on ~  and 2
v . 

The tuning parameters, j  ( 1,2, , 1)j J   are chosen to make the dispersion of the 

distribution of q comparable to or at least as large as that of the posterior distribution of ~ . 

To perform the Metropolis-Hastings step a set of candidate values canq  is drawn from 

 2| , , ,vp q X y  , and transformed to a set of candidate values can~ . Given values ~  

from the previous iteration, the vector can~  is accepted with probability min{ ,1}a R  

where  

     
     

1
11

1 11

j j

i i

i i

ncan can
N Jy i v y i v j

can
i j jy i v y i v

x x q
R

qx x

     

     




 

                      
 

  
  

              (21) 
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Values ~  from the previous iteration are accepted with probability 1 a . Observations 

from the posterior densities of the original parameters in (6) are recovered from the 

rescaled parameters by dividing by v . 

2.3 Conditional posteriors for the ordered probit stochastic production frontier  

In this section, the restriction 0 ( 1,..., )iu i N   is relaxed to yield the ordered 

probit frontier model as given in equation (5). A Gibbs sampling algorithm that combines 

the Nadram-Chen algorithm for the ordered probit model and an algorithm for the 

stochastic frontier model with continuous output (Koop, et al. 1997; Koop and Steel 2001) 

is presented. In line with the previous section, we work with a reparameterized model 

i i i ig x v u                   (22) 

where, in addition to the transformations defined in and around equation (15), we have 

1i i Ju u    and 1 1( ) ( )i i J JE u E u       , with  1i.i.d. 1,iu    . Both g  and 

the inefficiency error u  are treated as unknown parameters with values being drawn from 

their conditional posterior densities. Then, conditional on g  and u , the stochastic frontier 

model for ordinal outcomes in (22) reduces to the standard linear regression model, 

facilitating draws from the conditional posterior densities for the parameters. 

For a prior density we continue to assume all parameters are a prior independent, 

that  , 1p     , and that 2 ( , )v v vIG a b . In addition, we assume that ( , )IG a b   . 

Following van den Broeck, et al. (1994) and many subsequent authors (see, for example, 

Koop and Steel 2001), the hyperparameters a and b  can be set by considering the 

implied distribution of efficiency  expr u   . We follow previous tradition and set 
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1a  and ln( )b r
  , yielding a prior density for r which is relatively noninformative, 

and has prior median equal to r .  

Putting a prior on the parameter   for the transformed inefficiency error u  instead 

of on  , which is the parameter for the original inefficiency error u , makes it apparent 

that efficiency measurement is not invariant with respect to scale reparameterizations of 

the model. Both of the above parameterizations will yield the same probability statements 

for each production category, but their respective efficiency measures, exp( )iu  and 

exp( )iu  , will be different. This result is not surprising. We have observations only on 

categorical rankings of production, not on the absolute values of production. Consequently, 

we can only measure efficiency relative to a particular individual, or relative to that for a 

particular parameter setting, such as 2 1v   or 2 2
11v J   . We return to this issue later. 

Given our prior assumptions and the model in (22), the conditional posterior 

densities that can be used for Gibbs sampling are as follows. The conditional posterior 

densities for the transformed latent variables ig  are independent truncated normal 

distributions 

     2 2
1| , , , , , , ~ ,  

i ii v i i v y i yg u X y N x u I g 
                 .         (23) 

The conditional posterior density for ~  is the normal distribution  

   2 1 2 1| , , , , , , ~ ( ) ( ), ( )v vu g X y N X X X g u X X              .                 (24) 

The inverted gamma conditional posterior density for 2
v  is  

 2 1| , , , , , , ~ , ( ) ( )
2 2v v v

N
g u X y IG a b g X u g X u                 

         .      (25) 
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When 3J  , the conditional posterior for ~  is required and is given by 

  12

1
| , , , , , i i

N
y i i y i i

v
i v v

x u x u
p u X y 



       
              


     
   

   
 

.          (26) 

A Dirichlet proposal density for  2| , , , , ,vp u X y       is constructed, as described in the 

previous section. The probability of accepting the candidate draw can~  is min{ ,1}R , where  

     
     

1
11

1 11

j j

i i

i i

ncan can
N Jy i i v y i i v j

can
i j jy i i v y i i v

x u x u q
R

qx u x u

     

     




 

                          
 

   
   

.      (27) 

The conditional posterior density for the transformed inefficiency error iu  is the truncated 

normal distribution 

     2 1 2 2| , , , , , , ~ , 0i v i i v v iu g X y N x g I u                 .                     (28) 

Finally, the conditional posterior density for   is the inverted-gamma density  

 2

1
| , , , , , , ~ 1, ln( ) .

N

v i
i

u g X y IG N u r 



   
 

            (29) 

If desired, values for the original untransformed parameters can be obtained at each 

iteration by dividing by v .  

2.4 Generalising the inefficiency term  

In line with the literature for the stochastic frontier model with a continuous output 

variable, in this section we extend our model to allow the inefficiency term iu  to be related 

to explanatory variables. Of interest is whether individuals with some special 

characteristics are more likely to be more efficient than others. Our model specification 

and algorithm for Bayesian estimation follows that in Koop et al. (1997).  



 17

Suppose there are m variables, ( 1,  2, , ;  1,  2, , )ikw i N k m   , that impact on the 

efficiency of individuals, where 1 1iw   is a constant and ikw  ( 2, , )k m   are dummy 

variables representing individual characteristics. Continuous w variables can be introduced, 

but only at a cost of computation complexity. Define 1( , , )NW w w   as an mN  matrix. 

Assume that iu  follows the exponential distribution:     

 1 1

1
~ 1, ,  ,ik

m
w

i i i k
k

u    


                                                 (30) 

where k  ( 1, , )k m   are unknown parameters. Since the mean of the inefficiency 

distribution i  is always positive, the k  should all be positive. If 1k   for 2, ,k m  , 

1
1i    is a constant and the model collapses to the standard model in equation (5). 

Otherwise, the k  ( 2, , )k m   are to be estimated and the magnitude of a k  (in 

particular whether 1k   or 1k  ) determines whether the attribute kw  is a “bad” or 

“good” attribute in terms of its contribution to mean inefficiency. Since the kth term enters 

the product in (30) as 1kw
k   if 0kw  , and kw

k k   if 1kw  , individuals with attribute 

kw  will have a higher mean inefficiency i  if 1k   (i.e., kw  is a “bad” attribute), and a 

lower mean inefficiency if 1k   ( kw  is a “good” attribute). Note that 1k   does not 

mean that an individual with attribute kw  is definitely more inefficient than those without 

this characteristic, but rather that the former has an inefficiency iu  drawn from a 

distribution with a higher mean, assuming all other characteristics are the same.  

For the reparameterized version that is used for estimation the transformations in 

(22) are adopted again except that 1J     is replaced by 

1 1 1J         and    k k   ( 2, ,k m  ),                                         (31) 
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from which we define 

1

1

ik

m
w

i k
k

 


  .                                                                 (32) 

Since 1 1iw  , 1i i J    , which is in line with the previous section. Also,  1~  1,i iu   .  

To specify a prior distribution for the new parameters 1( , , )m       we assume 

independent gamma priors where ( , )k k ka b   and 1( ) ( ) ( )mp p p     , with ka  and 

kb  being hyperparameters. If none of the dummy variables has an impact on the efficiency 

distribution, i.e., 1k   ( 2, ,k m  ), then 1
1i

    ; the model collapses to the standard 

model. This suggests the settings 11 a  and *
1 ln( )b r   as discussed before. The other 

prior hyperparameters can be selected to yield a relatively noninformative prior.  

The conditional posterior densities for the parameters ~ , ~  and 2
v , as well as that 

for the latent variable g , remain the same as in the standard model. The conditional 

posterior density for iu~  in (28) is only affected by changing 1~  to 1~
i as defined in (32). 

The new parameters, k  ( 1,  2, ,k m  ), can be drawn from 

 ( ) 2

1 1
| , , , , , , , , ~ , is

N N
wk

k v k ik k ik i s
i i s k

u g y X W a w b w u 

  

         
                         (33) 

As before, the original parameters can be recovered from the transformed ones after each 

iteration of the Gibbs sampler. 

3. Modelling with panel data 

Panel data is commonly used in the stochastic frontier model for continuous 

variables. In classical analysis of such models, a relative efficiency measure can be 
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obtained using a fixed effects specification, and an absolute efficiency measure is 

obtainable from a random effects specification. In Bayesian analysis, the difference 

between fixed and random effect models can be defined through the prior distribution for 

inefficiency iu , but, otherwise, the two models are treated in the same way (Koop et al. 

1997). Fixed effect models assume that the siu   are drawn from fully separate distributions, 

while in random effect models the siu   are linked by assuming they are drawn from 

distributions with a small number of unknown common parameter(s). In this section, we 

develop a random effects and time-invariant efficiency stochastic frontier model for 

ordinal outcomes with panel data.  

3.1 Model specification 

Assume we have a balanced panel data set for N individuals over T time periods. 

The methodology can be readily extended to an unbalanced panel data set, where not all N 

individuals have records for all T time periods. Indeed, our later application uses an 

unbalanced panel data set. The stochastic frontier model for ordinal outcomes can be 

written as  

ln ( , )      ( 1, , ;  1, , )it it it iy f x v u i N t T       .                            (34) 

The latent variable ity  can be mapped to the observed values ity  as  

1

1

1

0       0 1

1       1

           2, , 1

      .

it

it

it

j it j

it J

y

y

y
j y j J

J y



 













  

  

 

   


 







    (35) 
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In the special case where ( , )itf x   is linear, (34) and (35) can be written as  

1

              ( 1, , ; 1, , )

,  if and only if      ( 0, , )

it it it i

it j it j

g x v u i N t T

y j g j J






    

   

 





 
   (36) 

where  lnit itg y   and  lnj j  , with 1   , 0 0  and J   . As in the case 

for cross-sectional data, two parameterizations are of interest: the traditional one where itv  

are i.i.d. (0,1)N  and the one that is convenient for estimation where itv  are i.i.d. 2(0, )vN   

and there is one less unknown threshold. In line with the previous section, we distinguish 

between the two setups by using an over-tilde ( ) for the second case. Thus for (36) we 

assume  ~ i.i.d. 0,1 .itv N We again assume the iu  follow an exponential distribution, i.e., 

 1~ i.i.d. 1,iu   . Extending the notation of the previous section, iy , ig  and iv  are 

1T   vectors and ix  is a ( 1)T k  matrix, containing T observations for individual i. 

Because of the assumption of time-invariant efficiency, iu  is still a scalar. Further, we 

define 1 1( ,  , , ) ,Ny y y y      1 2( ,  , , )Ng g g g         and 1 2( ,  , , )Nv v v v      as 

1NT  vectors, and 1 2( ,  , , )NX x x x      as an ( 1)NT k   matrix. We also let 

1 2( ,  , , )Nu u u u    and 1 2 1( ,  , , )J       .  

 For the transformed model the parameters, the latent variable and the two error 

terms are rescaled by dividing by the largest threshold parameter, 

11v J   ,  v  ,  v  ,  * *
vg g  ,  vv v  ,  vu u  ,  v           (37) 

from which we obtain  2~ i.i.d. 0,it vv N   and  1i.i.d. 1,iu     . For prior densities we 

use ( , ) 1p    ,  2 21v vp   , and  1,ln( )IG r   where, as before, r  is the prior 
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median for the efficiency distribution. This prior specification is the same as that specified 

for the cross-sectional case except for the improper prior  2 21v vp    which can be used 

for the frontier model with panel data (Fernández et al 1997).  

3.2 Conditional posteriors  

Combining the various components, the joint posterior for the transformed 

parameters and latent variables is 

     

 
 

2 *
1

1 1 1

2

2 1 22 2 1 1 1

, , , , , | , 0

1 1 1exp ln( )
2

it it

N T N

v y it y i
i t i

N T N

it it i iNT N i t ivv

p u g X y I g I u

g x u u r




  


    

            

         
  

 

 

      

  

     


  

(38) 

The conditional posterior densities for implementing the Gibbs sampler are: 

     * 2 2
1| , , , , , , ~ ,

it itit v it i v y it yg u X y N x u I g
                   (39) 

                     1 12 * * 2| , , , , , , ~ ( ) ,v N T vu g X y N X X X g I u X X
                         (40) 

where NI  is an NN   identity matrix and T  is a 1T  vector of ones. 

   22 *

1 1

1| , , , , , , ~ ,
2 2

N T

v it it i
i t

NT
u g X y IG g x u

 

   
 

             (41) 

For 3J , ~  is drawn from the conditional posterior 

  12 *

1 1

| , , , , , , it it

N T
y it i y it i

v
i t v v

x u x u
p u g X y

   
   

 


 

                      


       .        (42) 

The threshold parameters can be drawn according to the M-H algorithm described in the 

previous section. The inefficiency term iu~  is drawn  from  



 22

      
12 * * 2 1 2| , , , , , , , 0i v i i v v iu g y X N x g T T I u       

          .               (43) 

where ix  and *~
ig  are the respective means of itx and *~

itg  over the T observations for 

individual i. The conditional posterior for   is the same as for the cross-sectional case, i.e.,  

 2 * *

1

| , , , , , , ~ 1, ln( )
N

v i
i

u X y g IG N u r   


   
 

                                  (44) 

If we allow for explanatory variables to influence the distribution of inefficiency, 

all the other conditional posteriors will be the same as before except for the inefficiency 

error u and the new parameters  . Assuming the same prior as in the cross-sectional case, 

the conditional posterior for iu~  from which draws can be taken is  

      
1* 2 * 2 1 2| , , , , , , , , 0i v i i i v v iu g y X W N x g T T I u       

          .            (45) 

The conditional posterior distributions for the elements of ~  are exactly the same as those 

for the case of cross-sectional data given in (33). Finally, draws for parameters in the 

original specification can be recovered by reversing the scale transformation in (37).  

3.3 Test estimation with generated data 

In this section, we generate two sets of artificial panel data to test the MCMC 

algorithms: one with and one without explanatory variables in the distribution of the 

inefficiency term. In Experiment 1, an unbalanced panel data set with 10,000N   and 

maximum 4iT   is generated – a total of 30,031 observations – and no explanatory 

variables appear in the distribution of the inefficiency term iu . The X variables are drawn 

from ),,,1( 321 xxxX  , with two dummy variables 1 ( [0,1] 0.45)x I U   and 

3 ( [0,1] 0.25),x I U  and one continuous variable 2 ln( [0,100])x U , where [ , ]U a b  
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denotes the uniform distribution on the interval [ , ]a b . Parameter values are set as 

(1,  0.5,  0.15,  0.7) '    and 51  , with thresholds (0.6, 1 .2,  2.0) '  , defining 5 

production categories.. For MCMC estimation, the burn-in is taken as 2,000 iterations and 

the number of total recorded iterations after the burn-in is 10,000. The design of 

Experiment 2 is the same as Experiment 1, except that the total number of observations is 

30,092 and there is an explanatory variable in the distribution of inefficiency. We set 

1(1,  ),W w  where 1 ( [0,1] 0.25)w I U  , and (7, 0.5)  .  

Results from the two experiments are presented in Tables 1 and 2, respectively. 

These tables contain the true parameter values, the MCMC-estimated posterior means and 

standard deviations, and the 2.5 and 97.5 percentiles that define 95% credibility intervals. 

The results are very satisfying. We do not know the true values of the posterior means 

from a single sample, and so the table does not tell us the error from the MCMC-estimated 

means, but, nevertheless, obtaining MCMC-estimated means close to the true parameter 

values, and relatively small posterior standard deviations, is reassuring. 

4. Quantities of interest  

 As in the ordered probit model, we are typically more interested in various 

functions of the parameters   and   than in the parameters themselves. Two such 

functions are the probabilities of each ordered outcome and the marginal effects of 

changes in an x or a w on those probabilities. Also of interest are the efficiencies of 

individuals for given values of x and w. 

4.1 Estimated probabilities and marginal effects  

To obtain the posterior distributions of the outcome probabilities Pr( )y j , 

0, ,j J  , we begin by considering the probability of jys   ( 0, ,j J  ) for an out-of-
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sample individual s with observable covariates sx  and sw  and known parameters 

( , , )    ; or with ( , , )     if explanatory variables are allowed to influence the 

inefficiency.  
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

      

        (46) 

Given a value for  , this integral can be estimated by drawing a number of values of su , 

say 1,000, from its distribution    1 1| exps sp u u     , and then taking the average 

value of    1j s s j s sx u x u          over all draws of su . If explanatory 

variables appear in the inefficiency distribution, we replace   with 1
1

sk
m w

s kk
 


 . 

Noting that  

   Pr | , , , , Pr | , , ( | , , )s s s s s sy j x w y X W y j x w p y X W d     , 

to get draws from the posterior density for  Pr | ,s s sy j x w , we repeat the above process 

for each draw of   from the MCMC algorithm.  

Consider now the marginal effects on the probabilities of a change in a continuous 

covariate, say skx , evaluated at settings  ,s sx w . From (46) 

        1
0

Pr | , ,
|s s s

SN j s s SN j s s k s s
sk

y j x w
x u x u p u du

x


       





 
     

     (47) 
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where ( )SN   denotes the density of a standard normal random variable. Draws from the 

posterior density for  Pr | ,s s s sky j x w x    can be obtained using (47) in the same way 

that (46) was used to obtain draws from the posterior density for  Pr | ,s s sy j x w . 

For any binary variable d in x or w, the marginal effect is given by 

   Pr | 1, , Pr | 0, ,s s s sy j d x w y j d x w                                       (48) 

where  ,s sx w  denotes the settings of all other variables at which the effect of d is 

evaluated. Draws from the posterior distributions of these quantities can be obtained by 

computing them for each MCMC draw of  .  

4.2 Efficiency measures 

One of the main aims of traditional production frontier analysis is to evaluate and 

rank the efficiencies of all firms in the sample, given observed input and output levels of 

these firms. While this may be of interest in our micro level data application to the health 

production for individuals, we are more likely to be interested in predicting the efficiency 

of a particular out-of-sample individual whose health output has not been observed, or the 

average efficiency of out-of-sample individuals with particular characteristics. In this 

section, we introduce efficiency measures for an individual within the sample (where 

health output is observed), an individual out of the sample (where health output is not 

observed), and the average efficiency of out-of-sample individuals with particular 

characteristics sw . We present results for the panel data model with explanatory variables 

w in the distribution of the inefficiency term. For cross-sectional data or a simpler version 

of the model, similar results can be obtained. 
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Before turning to these results, we discuss limits to efficiency measurement that are 

a consequence of having ordered categorical data rather than a continuous fully-observed 

output variable. When the original model was transformed to a model with one less 

unknown threshold and an extra variance parameter  2 1v  , we mentioned that 

efficiency measurement is not invariant with respect to scale transformations of that nature. 

To further appreciate this fact and to explore ways of presenting information on relative 

efficiency, consider the panel-data frontier model 

 

2

1 1
1

2

ln , (0, ),

~ 1, ,  ik

it it it it i it v

m
w

i i i k
k

g y x v u v N

u

 

   



 



   

  


          (49) 

where the category iy j  is observed when  

1j i jg 
         0,1, ,j J  ,      with 1 , 00   and J .          (50) 

When ig  is observed, only the equations in (49) are considered and all parameters are 

identified; we have the traditional frontier model where efficiency measurement is well 

defined. When iy  but not ig  is observed, we consider both (49) and (50) and not all of the 

parameters are identified. The two ways of achieving identification that we have 

considered are setting 2 1v   or 1 1J  . We now ask what would be the effect of these 

types of restrictions on efficiency measurement if ig  was observed? They imply we are 

considering efficiency defined by a transformed error of the form i vu   or 1i Ju  . 

Consider, for example, the error i vu  . From (49), its distribution is  

   1~ 1,i v i vu         where      1
1

2

ik

m
w

i v v k
k




                (51) 
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Thus, failure to identify v  (failure to observe ig ), and setting 2 1v   to overcome this 

problem, means we are estimating an inefficiency distribution with first parameter 

 1 1 v
     when the correct inefficiency distribution parameter should be 1 . Because 

we cannot retrieve 1  from 1
 , we cannot estimate the absolute level of efficiency or 

inefficiency implied by 1 . However, we can define an arbitrary absolute level of 

efficiency (and inefficiency) by setting 2
v  equal to a specific value, and then examining 

how efficiencies change relative to that level for different settings of , 2, ,ikw k m  . In 

our application, we took 0ikw   for 2, ,k m   as our reference setting, defined a level of 

efficiency for that setting, and then examined the efficiency implications of other ikw  

values. What we mean by “a level of efficiency” is made more precise in the application, 

after we have considered the various efficiency measures. 

4.2.1 Efficiency measure for the thi  individual in the sample data set  

As defined in Section 2.1, the efficiency of the thi  individual is  (0 1).iu
i ir e r    

To assess the efficiency of this sample individual given the observed data, we are 

interested in the posterior density function,  | , ,ip r X W y  and its mean and variance. We 

derive expressions for these quantities and the other efficiency measures under the 

assumption that 2 1v  . If another setting of 2
v  is used, iu  needs to be scaled accordingly.  

The inefficiency term iu  conditional on  , , , g     , X and W  follows the 

truncated normal distribution  

     1 1*| , , ( ) , 0i i i i iu X W N x g T T I u        ,                              (52) 
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where ix  and *
ig  are the respective means of itx  and *

itg  over T observations for the ith 

individual, and 1

1

ik

m
w

i k
k

 



 . This distribution is obtained from (45) after transforming 

back to the original parameters. Its density ( | , , )ip u X W  can be written as  

   
 

2
0 1| , , exp

22
i

ii i i

i ui
i

uu u u

uI u
p u X W


  

              
,                     (53) 

where   1*
iu i i ix g T      , and 1

iu T  . Using a transformation of variables, the 

conditional posterior density for efficiency of the i-th individual is  

   

2
ln(0 1) 1| , , exp

22
i

ii i i

i ui
i

uu i u u

rI r
p r X W

r


   

                
.                    (54) 

Thus, the unconditional posterior density for a within-sample individual’s efficiency is 

given by  

     | , , | , , | , ,   i ip r X W y p r X W p X W y d                                   (55) 

which can be estimated using 

   ( )

1

1ˆ | , , | , ,
M

n
i i

n

p r X W y f r X W
M 

  ,                                     (56) 

where M is the total number of recorded iterations in the MCMC estimation, and ( )n  is 

the value of   generated in the thn iteration. The average in (56) is carried out for a grid of 

values of ir  in the (0,1) interval. Alternatively, the density can be estimated directly using 

the  MCMC draws of iue . 
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To obtain the mean and variance of  | , ,ip r X W y  the following result is useful. 

Let z be a non-negative truncated normal random variable, i.e.  , ( 0)z zz N I z   , then  

   
 

2 2

exp( ) exp
2

z z z z
z

z z

q q
E qz q

    
 

   
     

.                           (57) 

Thus, the first and second moments for the posterior density for ir  conditional on   are 
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                             (58) 

and  
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                         (59) 

The unconditional posterior moments  | , ,iE r X W y  and  2 | , ,iE r X W y  can be estimated 

by averaging (58) and (59) over the MCMC draws for  , and an estimate for the posterior 

variance of ir  is calculated from these quantities. 

4.2.2 Efficiency measure for an out-of-sample individual 

Suppose that interest centers on the efficiency of an out-of-sample individual with 

characteristics sw  and corresponding inefficiency error su  that is a drawing from an 

exponential distribution with density 

     1 1 1

1

| , exp 0 ,  where sk

m
w

s s s s s s s k
k

p u w u I u      



      (60) 
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From (60), the density function for the efficiency of this individual, exp( )s sr u  , is 

     
1 11| , 0 1s

s s s s sp r w r I r
 
    .     (61) 

Its first and second moments are     1| , 1s s sE r w      and     12 | , 2 1s s sE r w     , 

respectively. These results are different from those for a within-sample individual because 

we no longer condition on the person’s y and x values which are not observed. However, 

the sample values y, X and W provide information on   through its posterior density which 

is used to obtain the Bayesian predictive density 

     | , , , | , | , ,s s s sp r w X W y p r w p X W y d        (62) 

We estimate this density by first computing 1
( ) ( )1

sk
m w

s n n kk
 


  for each MCMC draw ( )n , 

1,2, ,n M  , and then averaging (61) over the M values of 1
( )s n  for a grid of values of sr  

in the interval (0,1). Similarly, estimates of its moments  | , , ,s sE r w X W y  and 

 2 | , , ,s sE r w X W y  are obtained by averaging   1

( ) 1s n


  and   1

( )2 1s n


  over ( )s n .  

 The density  | , , ,s sp r w X W y  and its mean and variance are used to provide 

information about the efficiency of a randomly selected individual from the population 

with specific attributes sw . It includes variation from not knowing the parameters  , and 

from the random selection of an individual from the population. In our application it 

provides an answer to a question such as: If an individual who drinks heavily, smokes and 

never exercises is drawn randomly from the population, what are the likely values of that 

person’s health efficiency? 

4.2.3 Average efficiency of out-of-sample individuals 
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A third efficiency measure likely to be of interest is the “average” performance of 

out-of-sample individuals with particular attributes sw . For example, we might be 

interested in the average efficiency of all individuals who drink heavily, smoke and never 

exercise. What we require is the posterior density for     1| , 1s s sE r w      which can be 

estimated from the MCMC draws ( )s n . In this case variation comes only from the 

uncertainty in  . The posterior mean of   11s
  is the same as the mean of the predictive 

density  | , , ,s sp r w X W y , but the posterior variance of   11s
  will be much smaller 

than that of  | , , ,s sp r w X W y  because it does not include the randomness of selecting a 

particular individual.  

5. An application to health production of individuals 

5.1 Data and specification of variables  

The data used in this application are from the first fives waves of the Australian 

Household, Income and Labour Dynamics in Australia (HILDA) surveys conducted from 

2001 to 2005. These surveys utilise a multi-stage sampling approach stratified by state and 

part-of-state. The HILDA data set is a nationally representative longitudinal one with 

broad information on individual and household characteristics over time. It also supplies a 

large amount of information on health status and health related behaviour, as well as 

demographic, socioeconomic, geographic and lifestyle characteristics of individuals. Some 

information is collected by face-to-face interview, while some is collected by a self-

completed questionnaire which is collected at a later date or returned by post. Most of the 

lifestyle factors are asked in the self-completed questionnaire, and hence there are a 

relatively larger number of missing values on these variables. For this study, our sample is 

restricted to those 18 years or older, which involves 65,449 records. After removal of 



 32

missing values, a sample of 53,164 records for 15,450 individuals was used. It is an 

unbalanced panel data set.  

Definitions of all variables are given in Appendix A. The health status of 

individuals, the output variable in our production frontier, is presented in the form of self-

reported health. It is collected through the question “In general, would you say your health 

is: Excellent (4), Very good (3), Good (2), Fair (1), or Poor (0)”. Of the pooled sample of 

53,164 records, only 3.41% reported poor health status, 13.97%, 34.44%, 35.60% and 

12.58% stated fair, good, very good and excellent health, respectively.  

The stochastic frontier model has two sets of covariates, X and W. In the traditional 

production frontier models (Battese and Coelli 1995), X represents the inputs of production 

and W relates to firm characteristics that may influence the efficiency of production. In the 

health production frontier specified here, demographic, socioeconomic and geographic 

factors, as well as specific health conditions are used for the X covariates (Desai 1987; 

Contoyannis and Jones 2004). We assume personal lifestyle behaviour, given X, influences 

the efficiency of health production via the W covariates. As shown in Appendix A, the X 

variables include gender, marriage status, natural logarithm of age and its square, country 

of birth, education level, long term chronic health conditions, remoteness of residency 

region, work status, and home ownership. For the W covariates, we use exercise level, 

smoking status, alcohol consumption and a social net work measure. As in our panel data 

model W is individual specific but time invariant. It is defined as the overall lifestyle 

behaviour over the five waves. Although we do observe some lifestyle changes over time, 

the changes are small over the five year period. Detailed definitions of the variables in W 

can also be found in Appendix A.   
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Descriptive statistics for observed health status by individual characteristics are 

presented in Appendix B. Individuals with higher education levels produce higher health 

status. Less than 2% of people with a higher degree stated poor health status, while this 

percentage was more than 5% for those with less than 12 years education. Full-time 

students and employed people were more likely to produce good health compared with 

those retired or not in labour force. Cultural origin of individuals was another crucial factor. 

Australian aboriginals report the worst health status; more than 7% of them had poor 

health and only 11% reported excellent health status. As expected, over 12% of those with 

a long term health condition reported poor health for the present period and only 2.5% of 

them reported excellent health status. Conversely, less than 1% of persons without a long 

term condition produced poor health and as high as 15.3% of them produced the highest 

level of health. The descriptive statistics also show that married people and females are 

better producers than their counterparts.  

5.2 Results for estimated parameters 

The Gibbs sampling algorithm utilized the transformed model where 1 1J    and 

2 1v  , but for the presentation of results the parameters were transformed back to the 

original specification. For the prior specification on  , we set 0.7r   and 2ka  , 2kb  , 

2,3, ,k m  , to yield relatively noninformative priors. Improper noninformative priors 

were used for the other parameters. The burn-in period was taken as 2,000 iterations and 

the number of recorded iterations after the burn-in was 10,000. For assessing mixing 

performance, we adopted the simulation inefficiency factor (SIF) (Kim, et al. 1998), and 

plotted the MCMC sample paths of some selected typical parameters (Figure 1), and the 

autocorrelation functions of these sample paths (Figure 2). These graphs suggest that the 

sample paths are reasonably well mixed.  
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The posterior estimates for the parameters are summarized in Table 3. Looking 

first at the SIF values, we find they are all less than 60 and most of them are lower than 10, 

a quite strong indication of the convergence of the sampler. The estimated parameters   

all have 95% credibility intervals that do not include 1, implying all explanatory variables 

adopted in this model have significant impacts on the distribution of efficiency. In 

particular, doing exercise has a positive impact on the efficiency of health production, and 

the more exercise the individual does, the more efficient the individual is likely to be in 

health production. Unsurprisingly, never smoking also has a positive impact on efficiency. 

For alcohol consumption, individuals never drinking or those drinking too much are more 

likely to have low efficiency in health production relative to the base group of moderate 

drinkers. Finally, those who never feel lonely or are lonely only sometimes, have a higher 

mean efficiency compared to those who always feel lonely.  

Because the parameters   represent the effects of X variables on the latent health 

variable, they are not invariant with respect to scale transformations, and their magnitudes 

have no direct meaning. However, they do indicate the direction and the ranking of the 

effects of the X variables. As shown in Table 3, the significant variables all have the 

expected signs. Controlling for all the other factors, females are more likely to produce 

good health status, and education is a positive input. Compared to full-time employed 

persons, full time students are doing better, while people fully retired or not in labour force 

are worse. There is no significant difference between full time employees and part time 

employees or unemployed persons. People owning a house or having a mortgage are more 

likely to produce good health status compared with their renting counterparts.  
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5.3 Marginal effect of X  

For the marginal effects of the X variables on health status probabilities we first 

note there are only two continuous variables in X, both relating to age, while the rest are 

dummies. As discussed in Section 4.1, for each dummy variable the marginal effect is 

calculated as the difference between the probabilities when the dummy is turned on and off, 

with all other variables held at their sample means. For the two age-related continuous 

variables, instead of deriving  Pr( )y j x   , the posteriors for Pr( )y j , 0, ,4j   , 

were graphed against age to give a complete picture of the impact of age over the life cycle.  

Summary statistics for the posterior distributions for the marginal effects of the 

dummy variables are presented in Table 4, and the complete posterior densities for the 

marginal effects of some selected covariates on Pr( 4)y  , the probability of having 

“excellent” health status, are plotted in Figure 3. All the significant marginal effects have 

the expected signs. Consider first the basic demographic factors, gender, marital status and 

cultural origin. The posterior mean for the marginal effect of being a male on poor health 

is 0.19%, which means males are 0.19% more likely to produce poor health than females, 

while males are 0.83% less likely to have excellent health, holding other factors constant. 

And from the 95% credibility interval in Table 4 and the density of the marginal effect of 

gender on Pr( 4)y   in Figure 3, there is a 95% probability that males are from 1.4% to 

0.3% less likely to report excellent health. A married or partnered person is 0.83% to 

0.24% more likely to be in excellent health status with 95% probability, with zero included 

in the credibility interval. Compared with Australian born non-aboriginals, people born in 

other main English speaking countries are 2.45% more likely to have excellent health 

status and 0.49% less likely to have poor health. While 0 is included in the 95% credibility 

intervals for the marginal effects of being Australian aboriginal on poor and excellent 
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health outputs, the aboriginals are 3.6% to 0.0% less likely to report excellent health with 

95% probability. People born in other countries are found to be 1.64% to 0.03% less likely 

to have excellent health status. Education level, as an important proxy of socioeconomic 

status, is a positive input in health production. Compared with those who have less than 

year 12 education, people with a higher degree are 1.36% less likely to report poor health 

output and 6.75% more likely to have excellent health status. These two numbers are 

0.33% and 1.22% for persons with a diploma and 0.75% and 3.08% for those with year 12 

education. The value 0 is not included in the 95% credibility intervals nor in the range of 

probability density functions for the marginal effects of the education dummies, providing 

strong evidence that the effects of education levels on health output are significant. House 

ownership also has a significant positive impact on having good health. Having a long 

term health condition will increase the probability of having poor health status by 2.76% 

and decrease the probability of excellent health status by 8.31%; the 95% credibility 

intervals for these two effects are far from 0. Major work activity is another important 

input in health production. Compared with the full time employed, full time students are 

more likely to produce good health, with a 0.42% less probability of having poor health 

and a 2.45% greater chance of excellent health. There appears to be no significant 

difference in health production between full time employees and other people in the labour 

force (i.e. part time employees and unemployed). Not surprisingly, people fully retired and 

not in the labour market are worse producers of health. They are 3.42% and 3.63% less 

likely to have excellent health, respectively.  

Figure 4 presents the effects of age on the health probabilities with other exogenous 

variables set at their sample means. In Figure 4(a) the probability of poor health status 

( 0)y   increases monotonically with age. It increases from 3.38% for those aged 18, to 
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8.03% for those aged 90, with the increase being slower before the age of 45 and steeper 

after 70. Interestingly, for the most popular choice of health category, that of “very good” 

(Figure 4(d)), the probability decreases from nearly 50% for the young to less than 30% for 

the old, with the rate of decrease much sharper after the age of 50. Finally, the probability 

of reporting “excellent” health decreases from 17% to 2% as age increases. The rate of 

decrease is slow before 23 years old then increases between 23 to 40 years, before slowing 

down again to 90 years old with a much smaller variance. From the above analysis, it can 

be concluded that the impact of age on the probabilities of health status is different at 

different age levels; reporting single measures for the marginal effects of age, evaluated, 

say, at the sample mean value of age, would conceal a great deal of information.  

5.4 Efficiency measures 

 As discussed in Section 4.2, having output defined in terms of an ordered 

categorical variable instead of a continuous one means we cannot obtain an absolute 

measure of efficiency. However, we can choose a reference group with particular 

characteristics, say refw , set v  to define a posterior mean efficiency for that group, and 

then compare the efficiency distributions for other settings of w. It is convenient to choose 

as a reference group that where 1 1w  , and 2 3 8 0w w w    . This group consists of 

those who never exercise, smoke, drink a moderate amount of alcohol, and always feel 

lonely. With the exception of the alcohol variable, these are the characteristics that lead to 

the worst level of efficiency. Perhaps surprisingly, the setting of the alcohol variable that 

leads to the least efficiency is “no alcohol”; that which leads to the greatest efficiency is a 

moderate amount of alcohol. 

 After some experimentation, we set 1 3v   as a convenient value that led to a 

mean efficiency of approximately 0.5 for an out-of-sample reference person. For other 
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settings of w  we chose a “best” individual (one with a high level of exercise, does not 

smoke, has a moderate level of alcohol, and never feels lonely), a ‘worst” individual (never 

exercises, smokes, drinks no alcohol, and always feels lonely), and an “average” individual 

(the w  variables are set at their sample means). We focus on efficiency for out-of-sample 

individuals, both the predictive density for efficiency of a randomly selected individual, 

and the posterior density for mean efficiency of individuals, with best, worst and average 

characteristics. As discussed in Section 4.2, the efficiency measure for an individual from 

the population with attributes w is likely to be more interesting than the efficiency of one 

within-sample individual chosen from a sample of over 15,000. 

Table 5 shows the means and standard deviations of the predictive densities for 

efficiency and the posterior densities for mean efficiency for the different settings. The 

reference category is also included. Compared to the posterior mean of efficiency for the 

reference group of 0.48, the means of the worst, average and best groups are 0.43, 0.67 and 

0.78, respectively. The standard deviations for the predictive densities for a randomly 

selected individual are much greater than those for the means of all individuals in the 

population. This observation is particularly evident from Figures 5 and 6 where the 

predictive and posterior densities are graphed.  

Looking first at Figure 5, we see that an individual with the worst characteristics 

can have an efficiency anywhere in the (0,1) range, although efficiencies closer to zero are 

more probable. Someone with the best characteristics can have an efficiency anywhere 

between 0.1 and 1, but most of the probability is at the right end of the density with a low 

probability of an efficiency less than 0.4. The density for an average individual is almost 

linear, rising steadily over the range 0 to 1. Relative to those in the best category, there is a 

larger probability of a low efficiency and a smaller probability of a higher efficiency. 
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Moving to the posterior densities for mean efficiency given in Figure 6, we find 

that the densities for the different settings no longer overlap. Efficiency is measured with 

greater precision and the densities appear normally distributed as one would expect from 

parameter estimation in a large sample. The greater precision of the best category relative 

to that of the worst category reflects the larger number of observations in that category. 

The average category, which has the greatest precision, is an artificial one where variables 

are set equal to their sample means. If the setting for 2
v  is changed, and hence the 

reference setting changes, the location of each of the densities changes, but their relative 

positions remain the same. 

6. Summary 

We present a stochastic frontier model for discrete ordinal outcomes for both cross-

sectional and panel data. The model is a meaningful extension of the stochastic frontier 

model with a continuous output variable. More generally, with the increasing use of unit 

record data in social science, in which much information is in the form of discrete ordinal 

data, this model has potential applications in other fields. Gibbs sampling with data 

augmentation is adopted as the posterior simulator, and a reparameterization algorithm is 

introduced to improve the simulation performance of the threshold parameters. The 

algorithm worked well when applied to test models with generated data. Posterior 

distributions for quantities of interest, including probabilities of outcome status, the 

marginal effects of inputs on output status, and efficiency measures, are also presented. 

The model is applied to health production analysis using panel data from the 

HILDA survey. The basic demographic variables, education level, health stock and major 

activity, are taken as health production inputs and we allow for lifestyle factors, such as 

exercise level, alcohol consumption, smoking habits, and social network, to impact on the 
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efficiency distribution. The marginal effects of inputs on the probabilities of health status 

are used to present the impact of inputs on health production output. Results on the impacts 

of all the health production inputs are consistent with expectations. Significant impacts of 

the lifestyle factors on health production efficiency are also found.  

Our extension of the stochastic frontier model to discrete ordered dependent 

variables is based on traditional stochastic frontier models, in the spirit of Battese and 

Coelli (1988, 1995), Kumbhakar, et al. (1991), and Koop et al. (1997). Greene (2004, 2005) 

discusses the issue of distinguishing between individual heterogeneity and inefficiency in 

stochastic frontier analysis. He examined several extensions to the commonly used 

stochastic frontier model specifications for panel data to allow for more flexibility in 

accommodating firm heterogeneity while preserving the inefficiency measurement feature 

of the frontier models. These include the ‘true’ fixed and random effect models that have 

both the traditional fixed/random individual-specific term, as typically used in panel data 

linear regression models, as well as the one-sided inefficiency error term. He also 

presented random coefficient and latent class versions of the stochastic frontier model for 

isolating individual heterogeneity. In Greene’s (2004, 2005) context, our model has 

allowed for individual heterogeneity to affect both the production function and the 

inefficiency term via observable time-invariant characteristics; it does not separately 

identify individual heterogeneity and inefficiency due to unobservable factors. Allowing 

for these possibilities is a potential avenue for future research. 
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Table 1  

Results for experiment 1 

 True mean St. D 2.50% 97.50% 
       
 1 1.008 0.033 0.943 1.073 
 0.5 0.492 0.013 0.466 0.518 
 -0.15 -0.150 0.006 -0.162 -0.137 
 0.7 0.700 0.015 0.671 0.729 

1       
 5 4.824 0.389 4.166 5.676 
       
 0.6 0.592 0.005 0.583 0.601 
 1.2 1.208 0.010 1.186 1.226 
 2 2.004 0.013 1.979 2.029 

Note: Mean and St.D. refer to the MCMC-estimated posterior mean and standard deviation of the parameter. 2.5% refers to the lower 
value of the 95% credibility interval, and 97.5% refers to the upper value of the 95% credibility interval.  
 

 

 

Table 2  

Results for experiment 2 

 True mean St. D 2.50% 97.50% 
       
 1 1.024 0.032 0.962 1.086 
 0.5 0.495 0.013 0.469 0.521 
 -0.15 -0.151 0.006 -0.164 -0.139 
 0.7 0.705 0.015 0.675 0.733 
       
 7 6.723 0.845 5.282 8.636 
 0.5 0.521 0.050 0.422 0.619 
       
 0.6 0.591 0.005 0.579 0.599 
 1.2 1.188 0.007 1.173 1.203 
 2 2.017 0.013 1.992 2.041 

Note: Mean and St.D. refer to the MCMC-estimated posterior mean and standard deviation of the parameter. 2.5% refers to the lower 
value of the 95% credibility interval, and 97.5% refers to the upper value of the 95% credibility interval.  
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Table 3  

Posterior information on parameters for the stochastic frontier model for health production  

 Mean 2.50% 97.50% SIF 

      
ONE 1.476 -0.277 3.141 5.468 
MALE -0.059 -0.100 -0.019 8.284 
MARRIAGE -0.021 -0.059 0.017 6.794 
LNAGE 2.648 1.727 3.620 5.695 
LNAGE2 -0.464 -0.598 -0.337 5.764 
AUSABO -0.153 -0.306 0.001 9.334 
MAINENG 0.163 0.102 0.223 7.502 
OTHERC -0.063 -0.125 -0.002 7.125 
DEGREE 0.452 0.399 0.505 8.715 
DIPLOMA 0.098 0.051 0.146 9.176 
YEAR12 0.230 0.172 0.290 8.594 
LONGC1 -0.748 -0.787 -0.710 6.196 
INNER 0.001 -0.039 0.039 5.647 
OUTER -0.068 -0.122 -0.015 7.533 
REMOTE -0.021 -0.129 0.089 4.788 
STUDENT 0.151 0.078 0.223 4.102 
PARTTIME -0.036 -0.075 0.003 5.181 
UNEMP -0.074 -0.149 0.002 3.938 
RETD -0.258 -0.318 -0.197 6.464 
NOTINLAB -0.276 -0.324 -0.228 5.814 
HOUSEOWN 0.161 0.125 0.197 4.862 
      
ONE 0.304 0.276 0.337 58.336 
DOEX 1.457 1.334 1.583 46.757 
ALDOEX 2.063 1.882 2.249 44.239 
NOSM 1.237 1.191 1.285 5.346 
NOA 0.819 0.771 0.867 5.878 
HIGHA 0.930 0.882 0.981 3.528 
LONELY0 1.507 1.422 1.597 14.945 
LONELY1 1.128 1.062 1.198 13.845 
      

1  1.691 1.673 1.708 6.792 

2  3.489 3.453 3.524 6.792 

3  5.356 5.302 5.410 6.792 
Note: Mean refers to the posterior mean of the parameter. 2.5% refers to the lower value of the 95% credibility interval, and 97.5% refers to 
the upper value of the 95% credibility interval.  
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Table 4  
Posterior summary statistics for marginal effects of dummy variables (%) a  

 Pr( 0)y   Pr( 1)y   Pr( 2)y   Pr( 3)y   Pr( 4)y   

 
Mean 
(St. D) 2.50% 97.50% 

Mean 
(St. D) 2.50% 97.50% 

Mean 
(St. D) 2.50% 97.50% 

Mean 
(St. D) 2.50% 97.50% 

Mean 
(St. D) 2.50% 97.50% 

GENDER 0.19(0.07) 0.06 0.31 0.41(0.14) 0.13 0.69 0.94(0.33) 0.30 1.59 -0.71(0.25) -1.20 -0.22 -0.83(0.29) -1.39 -0.26 
MARRIAGE 0.06(0.06) -0.06 0.19 0.14(0.14) -0.12 0.41 0.33(0.31) -0.28 0.94 -0.24(0.23) -0.70 0.21 -0.29(0.28) -0.83 0.24 

AUSABO 0.52(0.28) -0.00
b

 1.08 1.13(0.60) -0.01 2.34 2.41(1.23) -0.02 4.74 -2.14(1.18) -4.55 0.02 -1.91(0.93) -3.59 0.02 
MAINENG -0.49(0.09) -0.66 -0.31 -1.07(0.20) -1.45 -0.68 -2.57(0.49) -3.52 -1.61 1.68(0.29) 1.10 2.22 2.45(0.49) 1.49 3.42 
OTHERC 0.20(0.10) 0.01 0.41 0.45(0.22) 0.01 0.90 0.99(0.49) 0.03 1.98 -0.81(0.41) -1.65 -0.03 -0.84(0.40) -1.64 -0.03 
DEGREE -1.36(0.09) -1.53 -1.19 -2.99(0.18) -3.34 -2.63 -7.09(0.44) -7.94 -6.25 4.69(0.29) 4.11 5.26 6.75(0.44) 5.91 7.59 
DIPLOMA -0.33(0.08) -0.50 -0.17 -0.73(0.18) -1.08 -0.37 -1.55(0.38) -2.29 -0.80 1.38(0.34) 0.71 2.05 1.22(0.30) 0.64 1.82 
YEAR12 -0.75(0.10) -0.94 -0.56 -1.63(0.21) -2.05 -1.22 -3.63(0.47) -4.57 -2.70 2.93(0.36) 2.21 3.66 3.08(0.42) 2.26 3.91 
LONGC1 2.76(0.11) 2.55 2.97 5.97(0.21) 5.55 6.40 11.21(0.32) 10.59 11.85 -11.63(0.44) -12.50 -10.77 -8.31(0.19) -8.69 -7.95 
INNER 0.00(0.06) -0.12 0.13 0.00(0.14) -0.26 0.27 -0.01(0.31) -0.61 0.62 0.01(0.23) -0.47 0.45 0.01(0.28) -0.55 0.55 
OUTER 0.22(0.09) 0.05 0.40 0.48(0.19) 0.10 0.87 1.08(0.43) 0.23 1.93 -0.86(0.35) -1.57 -0.18 -0.92(0.36) -1.63 -0.20 
REMOTE 0.07(0.18) -0.27 0.42 0.15(0.38) -0.59 0.92 0.34(0.87) -1.40 2.02 -0.28(0.67) -1.67 0.97 -0.28(0.76) -1.70 1.29 
STUDENT -0.42(0.10) -0.62 -0.22 -0.93(0.22) -1.36 -0.50 -2.36(0.57) -3.48 -1.23 1.27(0.27) 0.71 1.77 2.45(0.63) 1.24 3.72 
PARTTIME 0.11(0.06) -0.01 0.23 0.24(0.13) -0.02 0.50 0.57(0.32) -0.04 1.19 -0.38(0.21) -0.81 0.03 -0.54(0.30) -1.12 0.04 
UNEMP 0.23(0.12) -0.01 0.46 0.50(0.26) -0.02 1.02 1.17(0.61) -0.04 2.36 -0.83(0.45) -1.74 0.02 -1.07(0.55) -2.11 0.03 
RETD 0.84(0.11) 0.63 1.05 1.83(0.23) 1.39 2.29 4.06(0.48) 3.11 5.01 -3.31(0.44) -4.19 -2.46 -3.42(0.39) -4.16 -2.66 
NOTINLAB 0.90(0.09) 0.74 1.08 1.97(0.19) 1.61 2.34 4.34(0.39) 3.57 5.11 -3.58(0.36) -4.29 -2.90 -3.63(0.31) -4.24 -3.02 
HOUSEOWN -0.52(0.06) -0.64 -0.40 -1.14(0.14) -1.40 -0.88 -2.54(0.30) -3.12 -1.97 2.04(0.25) 1.55 2.54 2.16(0.24) 1.69 2.63 

Notes: (a) The marginal effect of a dummy variable is estimated as the difference between the probabilities when the dummy is turned on and turned off, keeping all the other variables at their sample mean values.  All numbers 
in this table are presented as percentages. For example the posterior mean for the marginal effect of being male on the probability of poor health status is 0.19%, the posterior standard deviation is 0.09%, and the 95% 
credibility interval is from 0.04% to 0.38%.  
(b): This value is -0.0048043243  
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Table 5  
Posterior summary statistics of efficiency for three types of individuals 
 
 
 
 
 
 
 
 
 
 
 

  r  E(r) 
 Mean ST.D Mean ST.D 

Best 77.75% 17.75% 77.75% 0.42% 
Average 67.46% 23.21% 67.46% 0.31% 
Reference 47.65% 29.29% 47.65% 1.25% 
Worst 42.69% 29.87% 42.69% 1.34% 
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  (a) MARRIAGE       (b) AUSABO  

             
         (c) DEGREE       (d) NOSM  

            
      (e) HIGHA       (f) 1  

           
      
Fig. 1. Sampled path for selected parameters 



 46

 
 
 
     (a) MARRIAGE  

 
      (c) DEGREE  

 
      (e) HIGHA  

 
 
Fig. 2. ACFs for selected parameters 
 
 
 
 

       (b) AUSABO  

 
      (d) NOSM  

 
      (f) 1  
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        (a) marginal effect of MALE    (b) marginal effect of DEGREE 

                   
 
(c) marginal effect of DIPLOMA   (d) marginal effect of YEAR12 

                   
 

Fig. 3. Posterior densities for marginal effects of selected covariates on the probability of 
excellent health. 
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  (a) Probabilities of 0y                                                     (b) Probabilities of 1y     

                  
 
   (c) Probabilities of 2y                                                     (d) Probabilities of 3y                                  

                
 
   (e) Probabilities of 4y   

   
 

Fig. 4. Probabilities of health status on age. The middle solid line represents the mean of the 
posterior for the probabilities, the upper dotted line represents the upper 2.5% value of the 
probability and the lower dotted line represents the lower 2.5% value of the probability. 
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Fig. 5.  Predictive densities for efficiency of best, average, and worst settings for w.  
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Fig. 6.  Posterior densities for mean efficiency of best, average, and worst settings for w.  
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Appendix A. Definition of variables  

 
Variables  Definition  
y  
SRH self-reported health, 0 for poor, 1 for fair, 2 for good, 3 for very good and 4 for excellent 
 
X 

 

GENDER 1 for male and 0 for female 
MARRIAGE 1 if living with somebody in a relationship and 0 otherwise 
LNAGE natural logarithm of age 
LNAGE2 square of LNAGE 
AUSABO 1 if born in Australia and aboriginal and 0 otherwise 
MAINENG 1 if born in other main English speaking countries and 0 otherwise 
OTHERC 1 if born in other countries rather than Australia and main English speaking countries and 0 otherwise 
AUSNABO 1 if born in Australia and not aboriginal and 0 otherwise. This variable is used as the base for country born status and is 

dropped in the estimation  
DEGREE 1 if the highest qualification is a tertiary degree and 0 otherwise  
DIPLOMA 1 if the highest qualification is diploma or trade certificate and 0 otherwise  
YEAR12 1 if the highest qualification is Year 12 and 0 otherwise  
LOWER12 1 if still in school or cannot finish Year 12 and 0 otherwise. This variable is used as the base for education level and is 

dropped in the estimation  
LONGC1 1 if having long term condition for more than 1 year and 0 otherwise 
INNER 1 if living in inner region of Australia and 0 otherwise 
OUTER 1 if living in outer region of Australia and 0 otherwise 
REMOTE 1 if living in remote region of Australia and 0 otherwise 
MAJOR 1 if living in major cities of Australia and 0 otherwise. This variable is used as the base for living region and is dropped 

in the estimation  
STUDENT 1 if full time study and 0 otherwise  
PARTTIME 1 if part-time employed and 0 otherwise 
UNEMP 1 if unemployed and 0 otherwise 
RETD 1 if completely retired from labour market and 0 otherwise 
NOTINLAB 1 if not in labour force and 0 otherwise 
FULLTIME 1 if part-time employed and 0 otherwise. This variable is used as the base for major activity and is dropped off in the 

estimation  
HOUSEOWN 1 if own or in mortgage of the house and 0 otherwise 
 
W 

 

NOEX 
1 if for all time periods low exercise level a  and 0 otherwise. This variable is used as the base for exercise and is 
dropped in the estimation  

DOEX 1 if not the case of NOEX and ALDOEX and 0 otherwise  
ALDOEX 1 if more than one third of all the time periods high exercise level and less than one third of all the time periods low 

exercise level 
NOSM 1 if never smoke and 0 otherwise  
NOA 

1 if for all time periods no alcohol risk b  or low alcohol risk and 0 otherwise  
MEDA 1 if not the case of NOA and HIGHA and 0 otherwise. This variable is used as the base for alcohol consumption and is 

dropped in the estimation  
HIGHA 1 if more than one third of all the time periods high alcohol risk and less than one third of all the time periods no 

alcohol risk or low alcohol risk  
LONELY0 

1 if never feel lonely c  and 0 otherwise 
LONELY1 1 if sometimes feel lonely and 0 otherwise 
LONELY2 1 if always feel lonely and 0 otherwise. This variable is used as the base for social net work and is dropped in the 

estimation  

 
Notes: (a) We define low exercise level as never doing exercise at all, middle exercise level as doing exercise less than 3 times a week, and 
high exercise level as doing exercise more than 3 times a week. 
           (b) Generally, no alcohol risk means 0 standard drinks per week; low alcohol risk means, for males, 1-6 standard drinks per week, or, 
for females, 1-4 standard drinks per week; high alcohol risk means, for males, at least 7 standard drinks per week, for females, at least 5 
standard drinks per week. 
           (c) The information on loneliness is collected through the statement, ‘I often feel very lonely’. Respondents are assigned a number 
from 1 to 7 representing from strongly disagree to strongly agree; that is, the higher the number the individual chooses, the more she or he 
agrees with the statement. We re-classify the respondents into three groups as never feel lonely (1 or 2), sometimes feel lonely (from 3 to 5) 
and always feel lonely (6 or 7). If this indicator changes over time, we take the value in the last time period. 
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Appendix B. Percentage of X variables by health status 
 POOR FAIR GOOD VERY GOOD EXCELLENT 
gender      
FEMALE 3.18 13.98 34.17 36.08 12.59 
MALE 3.67 13.96 34.74 35.06 12.57 
marital status      
MARRIAGE 3.10 12.81 35.16 36.74 12.19 
otherwise 4.07 16.38 32.95 33.22 13.38 
living region       
MAJOR 3.13 13.01 33.91 36.50 13.44 
INNER 3.77 14.76 34.83 35.14 11.50 
OUTER 4.35 17.52 36.07 31.64 10.42 
REMOTE 1.89 12.44 35.72 37.23 12.72 
health stock       
LONGC1 12.44 34.69 35.13 15.22 2.51 
otherwise 0.99 8.40 34.25 41.08 15.29 
country born       
AUSABO 7.12 18.03 35.36 28.47 11.02 
AUSNABO 3.11 13.81 34.13 36.63 12.32 
MAINENG 3.52 12.88 35.10 34.88 13.62 
OTHERC 4.71 15.47 35.65 30.75 13.43 
education       
DEGREE 1.66 8.22 28.98 42.44 18.70 
DIPLOMA 3.32 12.96 36.39 36.25 11.08 
YEAR12 2.01 10.55 31.76 39.93 15.76 
LOWER12 5.13 19.73 37.15 29.12 8.87 
major activity       
STUDENT 1.06 7.71 26.06 42.08 23.09 
FULLTIME 0.90 8.37 34.68 40.93 15.13 
PARTTIME 1.56 9.73 34.53 40.40 13.79 
UNEMP 2.32 17.52 36.56 31.06 12.54 
RETD 7.74 27.37 37.28 22.65 4.95 
NOTINLAB 9.55 22.50 32.45 26.84 8.65 
      
HOUSEOWN 3.01 13.42 34.51 36.50 12.56 
otherwise 4.48 15.45 34.24 33.20 12.63 
      
Overall  3.41 13.97 34.44 35.60 12.58 

 

Appendix C. Descriptive statistics for variables in W 
 Mean Std. Deviation 
NOEX 0.0511 0.2203 
DOEX 0.5637 0.4959 
ALDOEX 0.3852 0.4867 
NOSM 0.4401 0.4964 
NOA 0.1108 0.3139 
MEDA 0.7462 0.4352 
HIGHA 0.1430 0.3501 
LONELY0 0.5737 0.4946 
LONELY1 0.3068 0.4612 
LONELY2 0.1195 0.3244 
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