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Abstract 

 

 

In this paper, we present a general model of the joint data generating process 

underlying economic activity and stock market returns allowing for complex 

nonlinear feedbacks and interdependencies between the conditional means and 

conditional volatilities of the variables. We propose statistics that capture the long and 

short run responses of the system to the arrival of fundamental and non-fundamental 

news, conditioning on the sign and time of arrival of the news. The model is applied 

to US data. We find that there are significant differences between the short and long 

run responses of economic activity and stock returns to the arrival of news. Moreover, 

for certain classifications of news, the respective responses of economic activity and 

stock returns vary according to the nature of the news and the phase of the business 

cycle at which the news arrives.  
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1. Introduction 

 

There is an extensive empirical literature that investigates the market impact of new 

information about the economy. This literature is often in the context of the stock 

market (see, inter alia Chen, Roll and Ross, 1986, Sun and Tong 2000, Boyd et al, 

2005, Anderson et al, 2007), the foreign exchange market (see inter alia DeGennaro 

and Shreives, 1997, Almeida, Goodhart and Payne, 1998, Anderson et al, 2007), and 

the bond market  (see inter alia, Fleming and Remolona, 1999, Kim et al, 2007, Faust 

et al, 2007). The literature focuses on both how, and to what extent, scheduled and 

unscheduled news (i.e. information that becomes available after taking into account 

expectations) on macroeconomic fundamentals is incorporated in prices in these 

markets.  

 Underlying these studies is the view that in an efficient market, and in the absence 

of speculative bubbles, asset returns reflect the range of factors associated with 

investors’ exposure to  state variables that characterise the economy (see, for example, 

Chen, Roll and Ross (1986), Campbell and Shiller (1988) and Cox et al (1985) inter 

alia). Support for the efficient markets hypothesis exists in the empirical literature; for 

example, variables that are likely to be informative about future corporate cash flows 

such as real GNP, industrial production and investment, have been found to influence 

stock prices (see Fama (1981), Geske and Roll (1983), Kaul (1987) and Barro (1990) 

inter alia).  An alternative school of thought, motivated predominately by Shiller 

(1981), suggests that the link between prices and macroeconomic fundamentals is 

more tenuous and that there might be long periods of divergence. Indeed, there are a 

number of empirical studies suggesting that the potential speculative bubbles in US 

stock markets in the 1980s and 1990s served to dilute the links between 

macroeconomic fundamentals and asset returns (see inter alia, Mandelkar and Tandon 

(1985), Gjerde and Saettem (1999), Chaudhuri and Smiles (2004), Binswanger 

(2004)).  

 A variety of approaches have been adopted to resolve the question of the nature of 

a link between asset returns and macroeconomic fundamentals; for instance, the effect 

of the business cycle on the response of financial market indicators; the asymmetric 

effect of ‘good’ news and ‘bad’ news on market returns and volatility; and the 

comparative response to macroeconomic news by various asset classes, markets and 
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countries (see Anderson et al, 2007, for further details). These studies share a 

common feature; whether the modelling framework is univariate (the dependent 

variable of interest being returns), or multivariate (so that the various returns of the 

assets or financial markets of interest are jointly modelled to allow for their 

contemporaneous determination), there is generally assumed to be one-way causality 

from news on macroeconomic fundamentals to market prices. This assumption is 

consistent with prices changing in response to new information. Further, it is possible 

(albeit with slight modifications) to accommodate the impact on returns of the 

uncertainty with which news arrives on macroeconomic fundamentals. This might be 

important if, for instance, uncertainty in macroeconomic news causes changes in the 

investment opportunity set due to changes in expectations of future market returns or 

in the risk-return trade-off.1 

 In our view, there are two important considerations when formulating an empirical 

model to shed light on this issue that are not often addressed in the literature. Firstly, 

there need not be a simple one-way causal structure flowing from economic activity 

to stock returns; for instance, there may be a common news component that causes 

revisions to both activity and returns.  Secondly, and typical of speculative markets, is 

that market uncertainty has implications for economic decisions and hence potentially 

for the real economy.  

 A far more general modelling framework than that usually adopted is required to 

accommodate these considerations. This framework would need to allow (i) for 

movements in market returns which are not due to economic fundamentals, to have an 

impact on the real economy; (ii) for the joint determination of market returns and 

economic fundamentals and therefore  the accommodation of  news which arrives and 

which impacts on both market prices and economic activity contemporaneously; and 

(iii) the conditional volatility (i.e. uncertainty) of both economic fundamentals and 

market returns to affect the conditional means of, respectively, asset returns and 

economic activity. 

 In light of these considerations, this paper makes the following contributions to 

the  literature.  
                                                 
1 Most notably, Black (1987), for example, suggests that, during periods of growth uncertainty, the 
riskiest investment projects may become more profitable, and hence there will be a positive feedback 
between macroeconomic uncertainty and the real economy. On the other hand, Woodford (1990) 
hypothesizes a negative feedback based on the increased riskiness of investment when output is 
volatile. Both effects will be reflected in the market’s pricing of risk and hence also the return to 
investment.  
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 Firstly, the paper presents a general model of the joint data generating process 

underlying a measure of economic activity, namely, industrial production, and stock 

market returns. The modelling framework allows for the joint determination of market 

returns and economic activity, accommodates inter-linkages between uncertainty in 

stock market returns and uncertainty in the macroeconomy, and allows volatility 

associated with the market and economic activity each to feedback into the levels of 

these variables. Specifically, the characterization of the joint data generating process 

is a bivariate, asymmetric GARCH-in-mean specification in which allowance is made 

for a possible asymmetric response of the conditional variance-covariance process to 

good and bad news. This empirical specification allows for a greater deal of generality 

in the underlying dynamics than has previously been the case.  

 Secondly, using stochastic simulation techniques, the paper quantifies the extent 

to which ‘innovations’ impact on the conditional means of economic activity and 

stock returns and develops a measure of the relative persistence of these impacts. The 

computed innovations for each variable have the property that they are orthogonal to 

each other. Hence, the innovations to stock returns can be thought of the innovations 

that cause changes in stock prices which are not due to innovations in economic 

activity. In a loose sense, these can be thought of innovations that occur due to  

factors such as changes in opinion, investor psychology or speculative behaviour. On 

the other hand, the dynamic response of market returns to innovations in economic 

activity can be thought of reflecting news on fundamentals that causes prices to 

change. Therefore, in contrast to the existing literature, the impacts of, and dynamic 

responses to, innovations on the conditional means and volatilities of both variables 

are considered. 

 Thirdly, the paper develops a simulation methodology and associated metrics to 

investigate the short and long run responses of stock returns and economic activity to 

innovations sourced from, respectively, the real economy and from the stock market. 

  Finally, the paper explicitly addresses the questions of whether these short run 

impact and long run persistence effects differ (i) according to the sign of the 

innovation (sign asymmetry), and (ii) across the phases of the business cycle (phase 

asymmetry). 

 Our paper proceeds as follows. In the next section we present a general nonlinear 

bivariate modelling framework and introduce the concepts of sign and phase 

asymmetry. The third section provides a data description for our empirical 
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application. The empirical model and the results are presented in the fourth section. 

The fifth section describes the stochastic simulation of the empirical model and the 

associated results. The final section then provides a summary and some concluding 

comments.  

2. Modelling Framework and Measures of Asymmetry 

 

Consider the general, bivariate, nonlinear model for growth, ,ty  and stock returns  ,tr

 
( )0 1

1 2

     ,    
{ } ,  ,  . . . , ,

t t i

t i t t t p

Y f Y
Y Y Y Y

tφ φ ε−

− − − −

= + +

=
 (1) 

where f(.) is a nonlinear function, ( ),t t tY y r= '  , 0φ  is a vector of intercepts, 1φ  is a 

matrix of parameters and tε  is a vector of innovations. This framework is sufficiently 

general that it allows for a range of interdependencies and feedbacks between the 

conditional means and volatilities of both growth and returns. 

The focus in this paper is in the investigation of the dynamic system-response to 

an impulse acting on (1) which would lead agents to revise their expectations of future 

growth and/or returns. Analysis of the dynamic impact of an innovation upon this 

system may be performed using the generalized impulse response function (GIRF) 

developed by Koop, Peseran and Potter (1996) and obtained by stochastic simulation 

of (1). GIRFs are the appropriate analytical tool in this instance, given the nonlinear 

nature of equation (1). Unlike conventional impulse responses obtained from vector 

autoregressions, GIRFs make allowance for the effects of the sign, size and timing of 

impulses on the estimated dynamic responses derived from (1). The GIRF derived 

from (1) following a specific innovation tυ  and history 1tω −  can be written as, 

[ ] [ ]1 1( , , ) | , |Y t t t n t t t n tGIRF n E Y E Yυ ω υ ω ω 1− + − += − − ,           (2) 

for n = 1, 2, ….. Hence, the GIRF is conditional on tυ  and 1tω −  and constructs the 

response by averaging out future innovations given the past and present. Given this, a 

natural reference point for the impulse response function is the conditional 

expectation of  given only the history ntY + 1tω − , and, in this benchmark response, the 

current innovation is also averaged out. Assuming that tυ  and 1tω −  are realisations of 

the random variables Vt  and 1t−Ω , respectively, that generate realisations of { }, tY
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then (following the ideas proposed in Koop et al, 1996) the GIRF defined in (2) can 

be considered to be a realisation of a random variable given by, 

[ ] [ ]1 1( , , ) | , |Y t t t n t t t n tGIRF n V E Y V E Y 1− + − +Ω = Ω − Ω − .               (3) 

By conditioning on the sign or timing of the impulse when constructing the GIRFs, it 

is possible to quantify asymmetric reactions to the arrival of new information.2  

 

2.1 Sign Asymmetry 

 

Let  denote the GIRF from conditioning on the set of all possible 

positive innovations, where 

1( , , )Y t tGIRF n V +
−Ω

}{ | 0t t tV υ υ+ = >

1, )Y t tV −
−Ω

 and  denote the 

GIRF from conditioning on the set of all possible negative innovations. It follows that 

if the response to innovations is symmetric, then 

=GI  for all horizons n. 

1( , , )Y t tGIRF n V −
−Ω

1( , , )Y t tRF n V +
−ΩGI ( ,RF n

Denoting the cumulative generalised impulse function, CGIRF, for horizon 

N=1,2,3,…, as  

1
1

( , , ) ( , ,
N

Y t t Y t t
n

CGIRF N V GIRF n V−
=

Ω = Ω∑ 1)− ,                     (4) 

it is possible to construct a measure of sign asymmetry as a random variable, 

, capturing the relative persistence in the response of the system to 

positive against negative impulses. In more detail, the measure can be expressed as: 

1( , , )S t tR N V −Ω

1
1

1

( , , )
( , , )

( , , )
Y t t

S t t
Y t t

CGIRF N V
R N V

CGIRF N V

+
−

− −
−

⎛ ⎞Ω
⎜Ω =
⎜ Ω⎝ ⎠

⎟
⎟

.                  (5) 

Analogous to the construction of the ( , , )Y t tGIRF n υ ω in expression (2), assuming that 

t
υ+ ,  

t
υ−  and 1tω −  are realisations of the random variables 

t
V + ,  and 

t
V −

1t−Ω , 

respectively, then 1( , , )S t tR N υ ω −

( ,R N

 can be considered to be a realisation of the random 

variable given in expression (5). This measure is centered on unity under the null 

hypothesis of symmetry. In the event of sign asymmetry, the reaction of the system to 

a positive (negative) innovation exceeds that to a negative (positive) innovation of 

equal magnitude and the 1, )t−S tV Ω  statistic will on average be significantly 
                                                 
2 There are other asymmetries that could also be considered within this framework, such as those 
associated with the size of innovations. We leave investigation of these asymmetries for future 
research. 
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different from one in absolute value. This statistic and its associated standard error 

can be obtained using a model based bootstrap, thereby providing a statistical test for 

sign asymmetry and an estimate of the relative importance of the sign of the 

innovation at horizon N.  

 

2.2 Phase Asymmetry 

 

Sign asymmetry relates to the distinction between positive and negative innovations. 

Another potentially important source of asymmetry relates to the timing of the 

innovation. As outlined above, information about the macroeconomy could have an 

effect on asset markets. Given the strong pro-cyclicality of investment (Blanchard and 

Fisher, 1989 pp19-20, inter alia), this effect may vary according to the particular 

phase of the business cycle in which the information arrives. Furthermore, new 

information arriving to asset markets will cause revisions to expected returns and lead 

to changes in asset prices, resulting in changes in the cost of capital, impacting upon 

investment and growth. Again, given the pro-cyclicality of investment, it can be 

hypothesised that the effect of this information may differ according to the phase of 

the business cycle.  

 We use the term phase asymmetry to denote the possibility that the dynamic 

response to an impulse affecting (1) differs according to the phase of the business 

cycle. To the best of our knowledge, phase asymmetry has not been investigated 

previously in this context. 

 To make the concept of phase asymmetry operational, there are issues to be 

resolved concerning the taxonomy of business cycle phases. Consider the 

representation of the business cycle in Figure 1.  Such a representation may be based 

on a business cycle chronology, such as that used by the NBER for the United States. 

For our purposes, it is useful to break up the cycle into regular intervals, enabling an 

investigation of phase asymmetry across all stages of the business cycle, not just 

peaks and troughs. The difficulty here is that, in the data, the phase of the cycle can 

vary with time, most notably, expansions being longer than contractions, and 

expansions and contractions being of varying lengths across cycles. A business cycle 

chronology, however, allows the identification of points that are fixed in relation to 

the peak and trough; in Figure 1, for example, Mid-PhaseC is half-way between Peak1 

and the trough. Dividing the cycle into similar fixed points for each successive phase 
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allows a structured stochastic simulation to be performed based on the entire span of 

the sample data and hence allows the construction of metrics to measure the degree to 

which the effect of impulses varies across fixed reference points on the cycle.  

 
 
 
 
 
 
 

 

Output 

Time 

Trough Peak1 Peak2 

Contraction  

Mid 
PhaseC 

Mid 
PhaseE 

Expansion 

⎤⎦

 
Figure 1: Phases of the Business Cycle 

 

In detail, GIRFs can be calculated according to  

 where ph represents the particular 

fixed reference point of interest. For example, GIRFs can be constructed for peak or 

trough histories; histories that relate to the mid-point between peaks and troughs; 

histories relating to the mid-point between troughs and peaks, or indeed any fixed 

reference point across the cycle.  

( , , ) | , |ph ph ph
Y t t n t t nGIRF n V E Y V E Y+ +⎡ ⎤ ⎡Ω = Ω − Ω⎣ ⎦ ⎣

 Analogous to the measure for sign asymmetry, a random variable  

measuring phase asymmetry can also be constructed. To illustrate the form of this 

measure, we can write,   

( , , )ph
ph tR N V Ω

( , , )( , , )
( , , )

i
ph Y t

ph t j
Y t

CGIRF N VR N V
CGIRF N V

⎛ ⎞Ω
Ω = ⎜ Ω⎝ ⎠

⎟                    (6) 
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where  and , for , denote specific histories relating to phase i and phase j 

over the cycle. For instance,  and 

iΩ jΩ i ≠ j
iΩ jΩ  could relate to the fixed histories associated 

with all peaks and all troughs, respectively.  Assuming that tυ  and phω  are 

realisations of the random variables Vt and phΩ ,

( ,ph N

 r can

                                                

espectively, then ( ,phR  

be considered to be a realisation of the random variable (6). Under the null of no 

phase asymmetry, this measure will be centered on unity. In the event of phase 

asymmetry, the reaction of the system to a shock in one given phase relative to 

another given phase implies that the  statistic will on average be 

significantly different from one. Both the statistic and its associated standard error can 

be obtained using a model based bootstrap. 

, phυ ω )tN  

, )ph
tV ΩRP

  These approaches to the detection and quantification of sign and phase asymmetry 

bear some relation to the long tradition of papers that study patterns and magnitudes 

of variations in the mean and volatility of stock returns over the course of the business 

cycle (Perez-Quiros and Timmermann 2000 inter alia). In general, these papers find 

that risk premia and stock return volatility are negatively correlated with the business 

cycle.3 It is important to recognise, however, that the approaches in this paper are 

quite distinct from those taken in this previous literature. Rather than examining how 

the first and second moments of stock returns vary across the business cycle, we 

address the issue of how new information impacts on asset returns and economic 

activity, accommodating inter-linkages and feedbacks, and whether this reaction is 

correlated with the business cycle. These methods to deal with the asymmetric effect 

of new information in the context of both sign and phase asymmetries are novel to the 

literature. 

 

 
3 Consumption based asset pricing models (see Breeden 1979) would ascribe these fluctuations in the 
mean and variance of return to changes in the marginal utility of wealth over the course of the business 
cycle. Cochrane (2006) argues that given the relative smoothness in consumption, and that 
macroeconomic shocks occur in product and labour markets, the link between asset prices and 
production is likely to be of more relevance. Cochrane (1991) develops a link between asset prices and 
production through firm first order conditions, revealing that investment returns are highly correlated 
with stock returns.  
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3. Data Description 

 

The industrial production data used in this study were obtained from the FRED 

database at the Federal Reserve Bank of Saint Louis. The sample comprises monthly 

data over the period July 1946 to June 2004. We measure real activity, yt, as  

1
log 100t

t
t

Iy I −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

× .              (7) 

where It represents the index of industrial production. 

We measure stock returns, , as the, monthly difference of the logarithm of Pt, 

the Standard and Poor’s 500 index sourced from Datastream,  

tr

1
log 100t

t
t

Pr P−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

×

t

.           (8) 

Note that  is adjusted for dividend payments, so  represents a measure of total 

return for period t. The growth and return data are plotted in Figure 1 and appear to 

display the volatility clustering associated with ARCH processes.  

tP tr

-Figure 1 about here- 

Table 1 presents summary statistics for the data. Both real activity and stock 

returns fail to satisfy the null hypothesis of the Bera-Jarque (1980) test for normality. 

While yt is positively skewed,  displays negative skewness and excess kurtosis. 

Augmented Dickey-Fuller (1979) unit root tests and Kwiatkowski, Phillips, Schmidt 

and Shin (1992) tests for stationarity suggest that both 

tr

and ty r  are I(0) series4.  

However, a series of Ljung-Box tests for serial correlation suggests that there is a 

significant amount of serial dependence in the growth data.  

-Table 1 about here- 

Also reported in Table 1 are Engle’s (1982) LM test for ARCH and Engle and 

Ng’s (1993) test for asymmetry in volatility. Engle and Ng’s approach facilitates a test 

of sign bias; whether positive and negative shocks to volatility affect future volatility 

differently. Size bias, where not only the sign, but also the magnitude of the 

innovation in volatility is important, can also be tested.  Given the evidence of serial 

correlation in the growth data, the Engle (1982) LM test for ARCH and the Engle and 

                                                 
4 The lag orders for the ADF tests reported in Table 1 were chosen using the Schwarz (1978) 
information criterion. The Akaike (1974) criterion selects higher orders of augmentation without 
qualitatively affecting the results of the tests. 
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Ng (1993) tests for sign and sign bias were performed on the residuals from a fourth 

order autoregression, which was sufficient to ensure that the residuals were free from 

serial correlation. Choosing the order of the autoregression using either the Schwarz 

(1978) or Akaike (1974) criteria does not qualitatively affect the evidence reported in 

Table 1. 

The results in Table 1 suggest that the data display strong evidence of conditional 

heteroscedasticity. Furthermore, it appears that the conditional volatility of real 

activity may be sensitive to the size and sign of the innovation. There is strong 

evidence of negative size bias, some evidence of positive size bias, and the joint test 

for both sign and size bias in variance is highly significant at all usual levels of 

confidence. Likewise, the tests suggest that the sign of innovations to equity returns 

influences returns volatility with rt displaying negative sign and size bias. The joint 

test for rt is also significant at all usual levels of confidence. 

 

3. The Empirical Model 

 

Given the evidence of conditional heteroscedasticity and asymmetry in the conditional 

second moment of the data, we characterise the joint data generating process 

underlying equity returns and real activity as a Multivariate Asymmetric GARCH-in-

Mean model.  

The conditional mean equations of the model are specified a kth order augmented 

Vector Autoregression5, 

1

k

t i t i t
i

Y Y h tμ ε−
=

= + Γ +Ψ +∑        (9) 

where

, ,1 11 1211 12

,2 21 2221 22 ,

; ; ; ; ;
i i

y t y tt
t i ti i

r tt r t

hy
Y h

r h

εμ ψ ψ
μ ε

εμ ψ ψ

⎡ ⎤⎡ ⎤ ⎡ ⎤Γ Γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥= = Γ = Ψ = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Γ Γ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
;t

  

Under the assumption | ~ (0, )t t tN Hε Ω , the model may be estimated using 

Maximum Likelihood methods, subject to the requirement that Ht be positive definite 

for all values of tε  in the sample.  
                                                 
5 We choose the value of k that minimises the Schwartz information criteria. In the results below, k=2. 
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To allow for the possibility of asymmetry in volatility we follow Henry and 

Sharma (1999) and Brooks et al (2002),  inter alia, who extend the BEKK approach 

of Engle and Kroner (1995), using 
*' * *' ' * *' * *' ' *
0 0 11 1 1 11 11 1 11 11 1 1 11t t t t tH C C A A B H B D Dε ε ξ ξ− − − − −= + + + t       (10) 

where 
* * * * * *

* * *11 12 11 12 11 12
0 11 11* * * *

22 21 22 21 22

; ;
0

c c
C A B

c *

α α β β
α α β

⎡ ⎤ ⎡ ⎤ ⎡
= = =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ β

⎤
⎥
⎦

⎥
⎦

⎤
⎢
⎣

⎡
= *

22
*
21

*
12

*
11*

11 δδ
δδ

D;  and 

{ }
{ }

,,

, ,

min ,0

min ,0
y ty t

r t r t

εξ
ξ ε

⎡ ⎤⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

tξ . 

 

Note that ,y tξ  and ,r tξ  allow for the observed negative sign and size bias in real 

activity and equity returns. The inclusion of these variables allows for different 

relative responses to positive and negative shocks in the time-varying variance-

covariance matrix, relaxing the assumption of symmetry in the BEKK model.  

 

4. Results and Specification Tests 

 

Maximum likelihood techniques were used to obtain estimates of parameters for 

equations (9) and (10) assuming a Student’s-t distribution with unknown degrees of 

freedom, η, for the errors. The parameter estimates for the conditional mean and 

variance equations are displayed in Table 2.  

- Table 2 about here - 

The estimates of the conditional mean equations suggest that the data strongly 

reject the null hypothesis of no linear Granger causality. The null hypothesis that the 

companion matrices of the VAR are diagonal, ( ) ( ) ( ) ( )1 1 2 2
0 12 21 12 21: 0H Γ = Γ = Γ = Γ = , 

distributed as ( )2 4χ

(

 is strongly significant (Wald statistic = 20.1691, marginal 

significance level = 0.0005). This relationship is consistent with one-way linear 

causality from returns to growth because the null hypothesis that equity returns do not 

cause growth, ) ( )1 2
2 12:Γ = Γ =0 1H 0 , distributed as ( )2

(

2χ  is strongly rejected by the 

data (Wald statistic = 18.5316, marginal significance level = 0.0001). On the other 

hand, the hypothesis that growth does not cause equity returns, ) ( )1 2
0 21 21: 0H Γ = Γ = , 
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distributed as ( )2 2χ ,  is satisfied for the data. (Wald statistic = 0.4909, marginal 

significance level = 0.7824). 

We note that not all the elements of the Ψ matrix are statistically significant at the 

5% level. The null hypothesis 0 2 22H 1: 0ψ ψ= = , that is, that the GARCH-M 

parameters in the equity returns equation are insignificantly different from zero, is 

satisfied for the data.  

The estimates confirm that the equity return-real activity process is strongly 

conditionally heteroscedastic. The hypothesis 0 : 0,  for ,ij ij ijH i 1, 2jα β δ= = = = , 

distributed as ( )2 12χ  is overwhelmingly rejected by the data (Wald statistic = 

24407.7625, marginal significance level = 0.0000). There is a lack of statistical 

significance in the case of the estimated off-diagonal elements of the * *
11 11 11, and *A B   D

0

 

matrices. Individually, only  is significant at the 5% level. A test of the null 

hypothesis, 

21δ̂

1:0 12 21 2 21 12 21H α α β β δ δ= = = = =

21

= ( )2 6χ

21δ̂

12δ̂

, distributed as  is satisfied 

for the data (Wald statistic = 4.3041, marginal significance level 0.6355). Lagged 

squared innovations to equity returns (real activity) do not significantly influence the 

conditional variance of real activity (equity returns). However, there is some evidence 

that negative innovations to growth spill over into equity volatility since  is 

individually significant at the 5% level. Given the insignificance of , there is no 

evidence that negative return innovations influence growth volatility. This implies 

that the evidence for non-linear Granger causality is very weak and hinges on the 

significance of one coefficient, . δ̂

Shocks to volatility appear highly persistent. Estimates of the main diagonal 

elements of  are, in general, close to unity. There is also some evidence of own 

variance, cross variance and covariance asymmetry in the data. This is highlighted by 

the significance of the parameters in the  matrix. The hypothesis 

*
11

21

B

12

*
11D

0 11 22: 0H δ δ δ = δ == = , distributed as ( )2 4χ  is strongly rejected by the data 

(Wald statistic = 43.1548, marginal significance level 0.0000).  

-Figure 2 about here- 

Figure 2 displays the estimated elements of . Visual inspection of this figure 

suggests that the volatility of output growth is highest in the early part of the sample. 

tH
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Returns volatility is at its highest in 1987, but also peaks in the 1970s. The conditional 

covariance between returns and growth is largely positive, but displays a negative 

spike at the time of the 1987 equity market crash. 

The evidence in Table 2 suggests that the model is well specified. The 

standardised residuals, /  for ,it it itz h iε= y r= , and their corresponding squares, 

satisfy the null of no twelfth order linear dependence of the Q(12) and Q2(12) tests at 

the 1% level.  For a well-specified model, ( ) 0itE z =  and 2( ) 1itE z = . These conditions 

are not rejected at any standard level of significance.  The model also reduces the 

degree of skewness and kurtosis in the standardised residuals when compared with the 

raw data. Similarly, the model predicts that ( )2
, ,i t i tE hε for   ,i= = y r  and 

( ), , ,y t r t yr tE hε ε = . These conditions are not rejected at the 5% level.  

Table 3 reports the results of applying robust conditional moment bias tests to the 

estimated model (Kroner and Ng 1998). These tests are based on a comparison of the 

cross-product matrix of the residuals from the estimated model with the estimated 

covariance matrix. One indication that the estimated model provides a good 

characterization of the data is the absence of systematic patterns in the vertical 

distance between the elements of , ,y t r tε ε

, yr t

 and . This distance is measured by the 

generalized residual 

,yr th

, ,yr t y t r tu ,hε ε=

u

−

,yr t

. A correctly specified model would imply 

; this means that  should be orthogonal to any variable known in 

period t-1. Similar generalized residuals 

1 ,( )t yr tE u− = 0

,h, ,i t i tu ,i t i tε ε= −  can be defined for  . ,i y r=

We check for three types of systematic biases in the generalized residuals. For 

sign bias, we define indicator variables 1 , 1( 0i
i tm I ε − )= <  for ,i y r= , where I(·)=1 if 

the argument is true. A test for quadrant bias can be based on a partition of , 1 , 1y t r tε ε− −  

according to ( ) , , 1 , 10, 0y t r tε ε− −< < ( ), 1 , 10, 0y t r tε ε− −> < , ( )0ε −, 1 0,y tε − , 1r t< >  and 

. The indicator variables  relate to these respective quadrants. 

Finally, a set of indicators, , can be defined that scale the sign bias indicators by 

the magnitude of the innovations. These variables can be used to detect sensitivity to 

the sign and size of the innovations. 

( , 1 0,y t rε − > ), 1 0tε − >

im3

im2

-Table 3 about here- 
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Table 3 shows that, in the main, the model is well specified.  Only six of the thirty 

generalised residual test statistics are significant at the 5% level.  

 

5. Stochastic Simulations 

 

In this section, we investigate the dynamics implied by the model by perturbing the 

system with orthogonal innovations to real activity and returns. We use the NBER 

recession chronology to impose structure on our simulation experiments and employ a 

bootstrap-on-bootstrap approach to construct our measures of sign and phase 

asymmetry.  

 Specifically, we trace the effects of innovations on the elements of the state vector 

 in (9). It is important to distinguish between shocks and impulses or innovations. 

We reserve the term shocks for the contemporaneously correlated vector of 

disturbances 

tY

tε , while we treat impulses as a vector of i.i.d. innovations. These i.i.d. 

innovations, tυ , may be referred to as the underlying innovations obtained via a 

Jordan decomposition of the conditional variance-covariance matrix . If tH tsλ , s=1,2, 

denote the eigenvalues of Ht with corresponding eigenvectors tsξ , s=1,2, then the 

symmetric matrix 21
tH  is defined as '2121

ttttH ΞΛΞ= , with ( 21 , t )tt ξξ=Ξ  and 

( 1 ,t )2diag tt λλ=Λ . Therefore, tυ̂  is drawn from the vector of standardized residuals 

. This atheoretic approach ensures identification and uniqueness if, as found in this 

analysis, the elements of  are not normally distributed.

ˆtz

ˆtz 6  

 Despite their statistical construct, the innovations are nevertheless meaningful. By 

construction, they are uncorrelated with each other. This implies that the innovations 

to returns, for instance, can be thought of as news unrelated to real economic activity 

which cause stock prices to change. News with this type of property would be 

exhibited by innovations in investor opinion or psychology, for instance, or by 

innovations originating from the financial sector such as those underlying the recent 

subprime mortgage crisis. These innovations not only cause stock prices to change but 
                                                 
6 This approach to the definition of news can also be found in Hafner and Herwartz (2001). Note that 
our approach differs from that of Gallant, Rossi and Tauchen (1993), who directly set tt ευ ˆˆ = ; 
however, in this case the shocks would be contemporaneously correlated and so would fail our 
definition for innovations. 
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could also potentially affect the real economy. Analogously, the innovations in 

economic activity can be thought of as being the part of news that relates to the 

‘fundamentals’ in the economy. It is the stock market response to this type of news 

(although distinctly defined here) that is typically investigated in the literature. 

In order to investigate the dynamic response of the variables to these innovations, 

Monte Carlo methods of stochastic simulation need to be used since analytical 

expressions for the conditional expectations cannot be constructed for the non-linear 

structure proposed in this paper.7 The algorithm essentially follows that described in 

Koop et al (1996), but allows for time-varying composition dependence. To allow for 

the observed time-varying dependence, the estimated residuals tε̂  are first 

transformed to obtain 21ˆˆˆ −= ttt Hz ε , using 1 2ˆ
tH − , the Jordan decomposition of the 

variance-covariance matrix . Next, 2000 innovations are drawn randomly with 

replacement from the joint distribution of the underlying innovations at each of the 

696 histories. These innovations are identically and independently distributed over 

time. Recovering the time-varying contemporaneous dependence, 1,392,000 

realisations of the impulse responses are therefore computed for horizons n=1,…,15. 

Finally, R=20 replications are used to average out the effects of the impulses. 

ˆ
tH

 

5.1 Sign Asymmetry 

 

Table 4 presents evidence of how the cumulative responses of returns and growth (or 

equivalently the response of the level of stock prices and industrial production) to 

innovations to returns and growth vary with the sign of the innovation. The Table 

reports t-ratios relating to , the cumulative impulse response 

functions conditioning on positive shocks, and , the cumulative 

impulse response functions conditioning on negative shocks. These cumulative 

generalised impulse response functions, which underlie the measure of sign 

asymmetry, 

1( , , )Y t tCGIRF N V +
−Ω

CG 1( , , )Y t tIRF N V −
−Ω

1( , , )S t tR N υ ω −

,ˆ  and y t r

, capture the system response to positive and negative 

innovations of ,ˆ tυ υ , which respectively denote orthogonal innovations in 

economic activity and stock returns.  In each panel of Table 4, impulses are drawn 

                                                 
7  See Granger and Teräsvirta (1993, Ch. 8), Koop et al (1996) and Pesaran and Shin (1998) for a 
background to the methods employed here. 
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with replacement from the set of all innovations, tυ̂ . Measures are reported in the 

upper panel by averaging over all histories and then, in the lower panels, conditioning, 

respectively, on expansions and contractions as defined by the NBER’s reference 

dates. We refer to the horizon N=1 as the initial impact and N=15 as the final effect.8 

 There are two findings worth noting. First, with the exception of the initial 

response of economic activity to an innovation to stock returns, all the responses are 

statistically significant from zero, whether the economy is in an expansionary or 

contractionary phase. The finding that innovations in stock returns have no initial 

impact on economic growth is not surprising. It is interesting to note however, that 

there is a significant long run effect on the real economy of these ‘non-fundamental’ 

innovations. This may reflect that our modeling framework allows transmission 

through feedbacks of the conditional means, the conditional volatilities, or both.9 The 

second finding worth noting is that negative innovations in economic activity cause a 

positive response in stock market returns, both on impact and at the final horizon. In 

other words, ‘bad’ news about fundamentals is ‘good’ news for the stock market.  

 Table 5 displays the measures for sign asymmetry 1( , , )S t tR N υ ω − , as defined by 

expression (5), and associated standard errors and t-ratios for the hypothesis, 

. The 0 : SH R =1 SR  measures are constructed as the average values of 1000 random 

comparisons of the simulated realisations of the CGIRF’s in the numerator relative to 

the denominator. 

 In the upper panel of Table 5 the SR  measures relate to an information set which 

consists of all histories, while the middle and lower panels average across 

expansionary and contractionary histories, respectively. 

There is weak evidence of sign asymmetry in the impact effect of an innovation to 

growth on growth when averaging over all histories. On the other hand, there is strong 

evidence of sign asymmetry in the final effect of a growth innovation on growth. The 

relevant SR  measure is greater than one in magnitude, implying that positive growth 

innovations elicit a more persistent response from growth than negative impulses of 

equal magnitude at the long horizon.  

                                                 
8 The dynamic response of the system to the innovations has dissipated by the 15th period and hence the 
final or long-run effect is measured at this horizon. 
9 It may be the case that this effect reflects the role that the conditional volatility of growth has in 
affecting returns; for example, in times of uncertainty about the real economy, the proportion of wealth 
held as stocks might increase. This is the subject of future research. 
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Averaging over all histories, returns appear to display statistically significant 

asymmetry to growth innovations in the long run. In this case negative growth 

innovations have relatively greater long run persistence. However, the evidence for 

sign asymmetry in the impact effect of a growth innovation on returns (or stock 

prices) is weak.  

There is no evidence of asymmetric response by growth to purely returns 

innovations upon impact, when averaging over all histories. However, in the long run, 

positive shocks are significantly more persistent than negative shocks of equal 

magnitude.  

Looking at the effects of a return innovation on returns, we note that the impact 

and final effects are significantly different from unity where a positive return 

innovation has a relatively greater effect than a negative return innovation. We also 

note that they are almost identical in magnitude, when averaging over all histories. 

This suggests that the majority of the response to news which arises purely from the 

financial market, and is not associated with news on the fundamentals in the 

economy, occurs upon impact.10 One implication of this is that the market quickly 

assesses the information content of this news and immediately impounds this into 

prices.11 

 Using the NBER recession chronology we are able to examine whether this 

pattern of asymmetric response is consistent across this definition of expansions and 

contractions12. Averaging over all expansions, the results are qualitatively unchanged 

from those obtained by averaging over all histories. In contrast, averaging over all 

contractions, there is far less evidence of significant asymmetry in response. In fact, 

the only evidence of asymmetry occurs in the final effect for a growth innovation on 

returns where the effect of a negative growth innovation generates a more persistent 

response from returns than an impulse of equal magnitude but opposite sign. 

Interestingly, whether the economy is in an expansionary phase or a contractionary 

phase, the impact response of market returns does not differ whether the innovations 

represent ‘good news’ or ‘bad news’. However, once the system accounts for the 

fairly complicated feedbacks and interactions between the conditional moments of the 

                                                 
10 Note that innovations associated with macroeconomic fundamentals will be correlated with the 
growth innovations. 
11 Visual inspection of the respective cumulative impulse response functions is consistent with this 
interpretation. These are available on request from the authors. 
12 These are available on http://www.nber.org/cycles.html/. 
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variables, both in mean and volatility, the long-run effect shows a significantly larger 

response to negative innovations. This highlights the usefulness of impulse responses 

as a tool to investigate both the short run and long run dynamics of a system once 

potentially non-linear feedback and inter-dependencies are considered to be 

important. 

 

5.2 Phase Asymmetry 

 

In this section, we consider whether the cumulative responses of returns and growth to 

innovations to returns and growth vary with the phase of the business cycle. Note that 

here, we condition on all innovations, making no distinction between innovations 

which are positive or negative. Our interest is in whether there is an asymmetric effect 

that arises purely from the timing of innovations. Our approach fixes specific 

histories, , at various points over the cycle. The phases we consider are based on 

the NBER chronology which identifies business cycle reference dates.  

phΩ

In more detail, the histories considered over the time interval between the peak 

and the trough, PTΤ , are given by ph
PTΩ  for  ph = 1, 25, 50, 75, 100; ph = 1 refers to 

one month after the peak; ph = 25, 50, 75, are respectively one-quarter, one-half and 

three-quarters of PTΤ ; ph = 100 denotes the trough. Analogously, let  be the time 

interval between the trough and peak, with relevant histories given by  for ph = 1, 

25, 50, 75, 100; ph = 1 refers to one month after the trough; ph = 25, 50, 75, are 

respectively one-quarter, one-half and three-quarters of 

TPΤ
ph
TPΩ

TPΤ ; ph = 100 denotes the 

peak.  

The GIRFs for each phase are calculated by drawing from the joint distribution of 

the innovations as described above according to the expression   

 for ( , , ) | , |ph ph ph
Y t t n t t nGIRF n V E Y V E Yκ κ+ +⎡ ⎤ ⎡Ω = Ω − Ω⎣ ⎦ ⎣ κ ⎤⎦ κ  = PT and TP. We draw 

20000 realizations at each  and repeat this experiment 50 times to obtain each 

GIRF. These GIRFs are then cumulated according to expression (4) to obtain 

. 

ph
κΩ

( , , )ph
Y tCGIRF N V κΩ

We consider the following two questions. First, are the cumulative impulse 

responses significantly different from zero? Second, is there phase asymmetry? In 
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other words, are there significant differences in the CGIRFs across the histories ph
κΩ , 

for  = PT and TP, for given forecast horizons?  κ

To answer the first question, we use standard errors obtained from the 

simulation experiments to derive confidence intervals around the CGIRFs for each 

respective history. The resulting t-ratios of the CGIRFs for horizons N=1 and N=15 

for each phase history are presented in Table A1 of the Appendix to this paper. 

To address the second question, we calculate measures for phase asymmetry, Rph. 

Expression (6) shows that the numerator and denominator of this measure of phase 

asymmetry differ in that they relate to cumulative impulse response functions, each 

respectively corresponding to a different phase. These Rph measures are constructed as 

the average values of 1000 random comparisons of the simulated realisations of the 

CGIRFs in the numerator relative to the denominator of expression (6). Tables A2-A5 

in the Appendix present evidence regarding phase asymmetry based on these Rph 

statistics across the histories , for ph
κΩ κ  = PT and TP, for N=1 and N=15. 

Figures 3 – 6 present the  following innovations to returns and 

growth. The respective CGIRFs are scaled such that the innovation driving the 

impulse causes average growth over all histories to increase by one percent on impact. 

The units of measurement on the respective x-axes are the various histories defined by 

 for  = PT and TP. These are one period after the average peak [1], 25% to the 

average trough [2], 50% to the average trough [3], 75% to the average trough [4], at 

the average trough [5], one period after the average trough [6], 25% to the average 

peak [7], 50% to the average peak [8], 75% to the average peak [9], at the average 

peak [10]. The vertical axis of each diagram plots the cumulative response of variable 

i in the system to innovations in variable j. The z-axis plots the horizon of the 

cumulative impulse response.

( , , )ph
Y tCGIRF N V κΩ

ph
κΩ κ

13 For a given forecast horizon, N, the absence of phase 

asymmetry would imply that the level of the surface in each figure be invariant to the 

phase of the cycle. 

-Figure 3 here - 

                                                 
13 We take a graphical approach rather than calculate relative persistence measures across each of our 
10 reference points on the cycle. For a given impulse horizon there are P[P-1]/2 necessary relative 
persistence measures, where P measures the number of fixed reference points. In our case P=10 so we 
would need 45 such measures for each horizon. We consider a maximum of 15 horizons in this 
analysis. 
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Figure 3 presents the cumulative impulse responses for growth following an 

innovation to growth over the specific histories described above. The t-ratios in Table 

A1 in the Appendix suggest that neither the impact nor final effects are significantly 

different from zero at each history, ph
κΩ . Further, although visual inspection of Figure 

3 might suggest phase asymmetry on impact and at the final horizon, the t-ratios of 

the  statistics in Table A2 suggest that there is no such evidence.( , , )ph
ph tR N V Ω 14 In 

other words, there is no statistical evidence to suggest that the response of economic 

activity to innovations about the real economy varies systematically across the phases 

of the business cycle. 

-Figure 4 here - 

The cumulative impulse responses for stock returns following an innovation to 

growth across the histories  are displayed in Figure 4. The relevant t-ratios in 

Table A1 suggest that innovations in macroeconomic fundamentals are statistically 

important for both the impact and final effects on stock returns, at each respective 

history, . The observed variation in the height of the surface plotted in Figure 4 

also suggests phase asymmetry on impact, whilst the long run effect is unclear from 

the Figure. Table A3 provides statistical evidence for this where significant t-ratios 

suggest phase asymmetry at the initial horizon. More specifically. there is strong 

evidence that innovations to growth arriving in the contractionary histories of the 

cycle, 

ph
κΩ

ph
κΩ

ph
PTΩ for ph = 1, 25, 50, 75, 100, elicit a systematically different initial response 

in returns relative to innovations arriving in the expansionary histories considered, 
ph
TPΩ , for ph = 1, 25, 50, 75, 100. This finding that the time of arrival of an innovation 

to the real economy is important for the short run response of stock returns is 

consistent with the literature – for instance, see Boyd et al (2005) who find that the 

stock market’s short run response to news about the real economy depends on 

whether the economy is expanding or contracting. However, after allowing for 

feedback within, as well as between, the conditional means and volatilities of both 

variables, any observed initial phase asymmetry disappears in the long-run response 

of stock returns.  

-Figure 5 here - 

                                                 
14 For instance, in Figure 3, there is the minimum initial impact occurring at point [6] on impact, one 
period after the average trough, whilst at the final horizon, there also appears to be visual evidence of 
variation in the height of the surface. 
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Figure 5 presents the cumulative impulse responses for growth following an 

innovation to stock returns over the histories ph
κΩ . It is an open question whether 

news causing stock prices to change, which is unrelated to economic activity, would 

have any real effects on the economy – regardless of it’s time of arrival. In fact, the t-

ratios for the relevant CGIRFs at horizon N=1 in Table A1 suggest that none of the 

impact effects are significantly different from zero. However, once system feedbacks 

and inter-linkages are accommodated, Table A1 shows that, in the case where the 

stock return (or ‘non-fundamental’) innovation arrives at 1
PTΩ , one period after the 

average peak, the long-run response of economic activity is statistically different from 

zero. This statistical significance at this history implies that there will also be 

evidence of phase asymmetry only at the long horizon. This is suggested by Figure 5 

and confirmed in Table 5 where the t-ratios show that the final responses of economic 

activity to stock return innovations arriving immediately after the peak, 1
PTΩ , are 

significantly different at the 10% level or better when compared to the growth 

response to innovations arriving during expansionary histories, ph
TPΩ , for ph = 1, 75 

and 100. This is consistent with a view that a peak in the business cycle is an 

important event in this context. 

-Figure 6 here - 

Finally, cumulated generalized impulse responses for returns following a 

innovation purely associated with stock returns are presented in Figure 6. The 

evidence in Table A1 suggests that this news is not important for the stock market 

since none of the initial or final responses are statistically different from zero, over the 

. Whilst there is some suggestion of variation in the height of the surface in the 

figure across histories, , and horizons, N in the figure, as expected from the 

results in Table A1, Table A5 suggests an absence of phase asymmetry. There is no 

evidence that the time of arrival of a return innovation has a significant impact on 

equity prices. Together with the results from Table 4, these findings are consistent 

with the efficient markets hypothesis for the type of innovation arising from ‘non-

fundamentals’. 

ph
κΩ

ph
κΩ
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6. Conclusions 

 

This paper examines the nature of the link between stock returns and real economic 

activity. The contributions of this research are at least four-fold. 

 First, our approach uses an empirical specification that allows for a greater deal of 

generality in the underlying dynamics than has previously been the case. The 

modelling framework allows for the joint determination of equity returns and growth 

in industrial production whilst accommodating complex feedbacks and 

interdependencies between the conditional means and conditional volatilities of these 

variables. Further, the framework, while nesting the linear VAR framework, captures 

a range of possible non-linearities in the dynamic response of the system to shocks.   

 Second, the approach taken in this paper allows for the statistical characterisation 

of two types of innovations which can, to some extent, be thought of as economically 

meaningful. We distinguish between (i) innovations that can be thought of as being 

representative of those purely associated with macroeconomic fundamentals and (ii)  

innovations that cause stock prices to change which are not associated with the real 

economy. This second type of innovation can be thought of as being due to changes in 

speculative behaviour, investor opinion, or due to a financial market shock, for 

example. 

 Third, we develop metrics to quantify the significance of these non-linear 

interactions based upon stochastic simulations from the proposed multivariate, non-

linear model. In more detail, the simulation framework and the associated metrics 

enable investigation of the long-run response of both stock returns and economic 

activity to the different types of innovation accounting for potentially important 

interactions and feedbacks. This is in addition to the short run response, which is 

typically examined in research examining the link between stock returns and 

announcements on the real economy. It should be noted that the design of our 

simulation experiment is quite general and, with the use of the proposed metrics, 

lends itself to quantifying the potentially non-linear impacts of any innovations on the 

economy.  

 Fourth, the non-linear nature of the modelling framework allows stock returns and 

economic activity to respond asymmetrically to the sign, magnitude and timing of an 

innovation. In our simulation experiments we hold the magnitude of the average 
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innovation constant and use our proposed metrics to quantify the effects of differences 

in the sign of the innovation (sign asymmetry) and its time of arrival (phase 

asymmetry). In more detail, we investigate whether there is sign asymmetry once we 

condition on all histories and whether sign asymmetry itself varies over business cycle 

expansions and contractions. In the case of phase asymmetry, we hold the sign and 

average size of the innovation constant and assess the possibility that the dynamic 

response to an impulse differs according to the phase of the business cycle. 

 The main findings of this paper are as follows. 

 The first is that there is a clear rejection of a linear conditional characterization of 

the joint data generating process underlying stock returns and growth. Hence, 

inference based on a linear representation would be potentially misleading. 

 With respect to the impact of an innovation derived from macroeconomic 

fundamentals (as represented by the index of industrial production), we find that the 

time horizon over which the analysis is undertaken is crucial. If we look first at how 

innovations to industrial production impact on industrial production itself, we find 

that there is no asymmetry in terms of the response to good or bad news on impact. 

There is, however, sign asymmetry at the long horizon, where we find that in 

expansions, good news on growth has a more persistent long run impact on growth 

than bad news. The results suggest sign asymmetry is of fundamental importance in 

this context since we find no evidence of phase asymmetry once we condition on all 

possible innovations.  In other words, timing of itself is not a source of asymmetry; 

instead, it is timing in conjunction with the sign of the innovation that causes a 

relative differential in the response of economic activity. 

 The picture that emerges once we examine how innovations from macroeconomic 

fundamentals affect stock returns also depends on the time horizon but is slightly 

more complicated. Once again, there is no sign asymmetry apparent on impact. 

However, significant sign asymmetry is present at long horizons, with bad news being 

relatively more persistent, and this is true in both economic expansions and 

contractions. Here, however, there is some evidence of a pure phase asymmetry effect 

with the results suggesting that the effect on impact, conditioning on all possible 

innovations, differs between expansions and contractions. 

 We now summarise our findings with regard to innovations that originate in the 

stock market, and which are unrelated to industrial production. As before, the time 

horizon is critical. There is an asymmetric effect on industrial production but this 
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exists only in the long run. This is apparent from the results on sign asymmetry which 

shows positive innovations to be more persistent in the long run in expansions (there 

is no asymmetric effect in contractions). There is also a pure phase effect detectable in 

the long run when the innovation arrives at the turning point immediately after a peak 

in economic activity. 

 There is also an asymmetric effect in terms of how these innovations impact on 

stock returns themselves but, consistent with the efficient markets hypothesis, this 

occurs only on impact. Interestingly, the asymmetry is only apparent in economic 

expansions. Of itself, the time of arrival of the innovations seems unimportant; 

conditioning on all histories, there is no evidence whatsoever of phase asymmetry.  

 The analysis in this paper highlights the potential benefits of adopting a very 

general modelling specification, one that allows for non-linear interactions between 

variables that derive from interdependencies between the conditional first and second 

moments of the data, and a simulation framework that identifies asymmetries at the 

short and long time horizons.  Of interest is the question of the channels through 

which these effects are transmitted. For example, to what extent are the long run 

asymmetries that we identify the result of the effect of innovations on the conditional 

means or the conditional volatilities or some combination of both? To the extent that 

conditional volatility reflects uncertainty, this investigation will provide further 

economic insights into the transmission mechanism by which variables respond to 

news. This is the subject of future research. 
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Tables and Figures 

 
Table 1: Summary Statistics 

 
 Mean Variance Skewness Excess 

Kurtosis 
Normality 

ty  
 

0.3077 
[0.0000] 

1.2010 1.3550 
[0.0000] 

12.4106 
[0.0000] 

4706.7855 
[0.0000] 

tr  0.5874 
[0.0002] 

17.5284 -0.5751 
[0.0000] 

2.1817 
[0.0000] 

177.6692 
[0.0000] 

      
Time Series Properties 

 ADF(μ) KPSS(μ) Q(4) Q(12) ARCH(4) 
ty  
 

-12.9857 0.3299 197.1891 
[0.0000] 

228.0106 
[0.0000] 

69.3836 
[0.0000] 

tr  -25.7742 0.0763 1.4020 
[0.8438] 

12.1742 
[0.4317] 

141.3775 
[0.0000] 

5 % C.V. -2.8661 0.463    
      

Tests for Size and Sign Bias in Variance 
 

Sign 
Neg. Size Pos. Size Joint 

 
ty  
 

1.9313 
[0.0539] 

-6.9538 
[0.0000] 

4.2287 
[0.0000] 

90.8586 
[0.0000] 

tr  4.1049 
[0.0000] 

-4.1473 
[0.0003] 

-3.0629 
[0.0023] 

20.5976 
[0.0000] 

 
Notes: P-values displayed as [.]. The ARCH(4) tests and the tests for size and sign bias are 
based on residuals from a 4th order autoregression. 
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Table 2: The Multivariate Asymmetric GARCH-in-Mean Model 

1

k

t i t i t
i

Y Y h tμ ε−
=

= + Γ +Ψ +∑

, ,1 11 1211 12

,2 21 2221 22 ,

; ; ; ; ;
i i

y t y tt
t i ti i

r tt r t

hy
Y h

r h

εμ ψ ψ
μ ε

εμ ψ ψ

⎡ ⎤⎡ ⎤ ⎡ ⎤Γ Γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥= = Γ = Ψ = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Γ Γ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
;t

 
μ Element 1Γ  2Γ  Ψ  

 
1μ  1,1 0.2811 

(0.0344) 

0.1609 
(0.0311) 

0.1280 
(0.0978) 

0.4909 

(0.2229) 
 

1,2 0.0133 
(0.0060) 

 

0.0184 
(0.0054) 

-0.1082 
(0.0557) 

2μ  2,1 -0.0176 
(0.1328) 

 

-0.1062 
(0.1522) 

0.4219 
(0.3629) 

-0.9967 
(1.2366) 

2,2 -0.0137 
(0.0381) 

 

-0.0152 
(0.0373) 

0.3674 
(0.2955) 

*' * *' ' * *' * *' ' *
0 0 11 1 1 11 11 1 11 11 1 1 11t t t t tH C C A A B H B D Dε ε ξ ξ− − − − −= + + + t  

* * * * * *
* * *11 12 11 12 11 12
0 11 11* * * *

22 21 22 21 22

; ;
0

c c
C A B

c *

α α β β
α α β

⎡ ⎤ ⎡ ⎤ ⎡
= = =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ β

⎤
⎥
⎦

{
;

}
{ }

* *
,* 11 12

11 * *
21 22 ,

min ,0
;

min ,0
y t

t
r t

D
εδ δ

ξ
δ δ ε

⎡ ⎤⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Element *
0C  *

11B  *
11A  *

11D  
1,1 0.1285 

(0.0415) 
0.9151 

((0.0271) 
-0.0698 
(0.0508) 

0.5259 
(0.0917) 

1,2 -1.4457 
(0.8394) 

0.1285 
(0.0790) 

0.1446 
(0.1899) 

-0.1835 
(0.2091) 

2,1 0 0.0144 
(0.0088) 

-0.0055 
(0.0074) 

-0.0283 
(0.0148) 

2,2 0.8211 
(1.0317) 

0.8610 
(0.0358) 

0.2457 
(0.0715) 

0.2730 
(0.1129) 

η 
7.6219 

(1.3373) 
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Table 2 (continued) 

Diagnostic Tests 
 Mean Variance Skew Ex. Kurt Q(12) Q2(12) 
,y tz  -0.0083 

[0.8375] 
1.1392 

[0.9649] 
0.3249 

[0.0000] 
5.6538 

[0.0000] 
21.9710 
[0.0378] 

11.3156 
[0.5021] 

,r tz  -0.0518 
[0.1671] 

0.9813 
[.9701] 

-0.7272 
[0.0000] 

2.8115 
[0.0000] 

13.9120 
[0.3063] 

6.2898 
[0.9008] 

Moment Conditions 
2
, ,( )y t y tE hε =  

0.0629 
[0.8020] 

, , ,( )y t r t yr tE hε ε =  
1.5788 

[0.2089] 

( )2
, ,r t r tE hε =  

1.0364 
[0.3087] 

 
Notes: Asymptotic standard errors displayed as (.).Q(12) and Q2(12) are Ljung-Box tests for 12th order 
serial correlation in respectively for j =y,r. P-values for for the Ljung-Box tests and moment 

conditions , , zero skewness,  zero excess kurtosis and for the elements of  are 
displayed as [.].  

2
,, and tjtj zz

0 2( )itE z =( )itE z = 1 ˆ
tH
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Table 3: Robust Conditional Moment Tests 
Indicator 2

, ,y t y t y tu hε= − , , , , ,yr t y t r t yr tu hε ε= −  2
, ,r t r t r tu hε= − ,  

1
ym  0.0629 

[0.8020] 
1.0461 

[0.3064] 
0.5019 

[0.4787] 
1
rm  0.7635 

[0.3822] 
0.0867 

[0.7684] 
14.5076 
[0.0001] 

,
2m− −  8.0138 

[0.0044] 
2.5781 

[0.1083] 
0.0091 

[0.5845] 
,

2m− +  0.2442 
[0.6212] 

5.9797 
[0.0145] 

1.5677 
[0.2105] 

,
2m+ −  0.7115 

[0.3989] 
2.6656 

[0.1025] 
3.7623 

[0.0524] 
,

2m+ +  0.2379 
[0.6257] 

4.9422 
[0.0262] 

3.3838 
[0.0658] 

,
3
y ym  0.3083 

[0.5787] 
0.0915 

[0.7623] 
6.5625 

[0.0104] 
,

3
y rm  0.2109 

[0.6461] 
0.0014 

[0.9701] 
3.4520 

[0.0632] 
,

3
r ym  1.9648 

[0.1610] 
2.2442 

[0.1341] 
3.1197 

[0.0773] 
,

3
r rm  0.1385 

[0.7097] 
1.2565 

[0.2623] 
6.728 

[0.0095] 
Sign Misspecification Quadrant  Size/ Sign  

( )1 , 1 0y
y tm I ε −= <  ( ),

2 , 1 , 10, 0y t r tm I ε ε− −
− −= < <

 
( ), 2

3 , 1 , 1 0y y
y t y tm Iε ε− −= <  

( )1 , 1 0r
r tm I ε −= <  ( ),

2 , 1 , 10, 0y t r tm I ε ε+ −
− −= > <

 
( ), 2

3 , 1 , 1 0y r
y t r tm Iε ε− −= <  

 ( ),
2 , 1 , 10, 0y t r tm I ε ε− +

− −= < >

 
( ), 2

3 , 1 , 1 0r y
r t y tm Iε ε− −= <  

 ( ),
2 , 1 , 10, 0y t r tm I ε ε+ +

− −= > >

 
( ), 2

3 , 1 , 1 0r r
r t r tm Iε ε− −= <  

 
Notes: P-values are displayed as [.]. 
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Table 4: Significance of Positive and Negative Innovations 
 

,ˆ ony t tyυ  ,ˆ ony t trυ  ,ˆ onr t tyυ  ,ˆ on r t trυ  
 + - + - + - + - 

All histories 
         
Impact  14.432 -18.347 27.519 23.587 7.160 -1.318 21.126 -9.834 
Final 15.911 -15.021 18.301 32.269 19.249 -3.954 20.957 -9.983 
         

Expansions 
         
Impact 11.758 -13.594 22.075 19.926 6.092 -1.658 22.782 -8.751 
Final 13.218 -11.467 17.717 25.203 16.921 -3.512 22.671 -8.912 
         

Contractions 
         
Impact 6.975 -4.691 25.733 20.116 7.812 -1.424 8.480 -4.713 
Final  7.630 -4.167 12.258 22.433 14.540 -3.080 8.373 -4.747 
         
Notes: The statistics represent the t-ratios of CG  and 

 as measured on impact and at the final horizon. These 
cumulative generalised impulse response functions capture the system response to 
positive and negative innovations of 

1( , , )Y t tIRF N V +
−Ω

,ˆ

1( , , )Y t tCGIRF N V −
−Ω

,ˆ and y t r tυ υ , which respectively denote innovations in 
growth and returns.  
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Table 5: Measures of Sign Asymmetry RS 
 

,ˆ ony t tyυ  ,ˆ ony t trυ  ,ˆ onr t tyυ  ,ˆ on r t trυ  
All histories 

Impact Effect 1.179 1.187 15.043 1.456 
Standard Error 0.101 0.060 29.921 0.157 

0 : 1sH R =  1.831 1.813 0.0647 2.970 
     
Final Effect 1.594 0.597 2.638 1.441 
Standard Error 0.142 0.037 0.657 0.154 

0 : 1sH R =  4.300 -11.370 2.569 2.937 

Expansions 
Impact Effect 1.103 1.106 8.286 1.433 
Standard Error 0.120 0.072 10.951 0.165 

0 : 1sH R =  0.879 1.510 0.720 2.682 
     
Final Effect 1.515 0.605 2.603 1.420 
Standard Error 0.169 0.041 0.855 0.161 

0 : 1sH R =  3.109 -9.940 2.033 2.660 

Contractions 
Impact Effect 1.192 1.114 12.816 1.375 
Standard Error 0.360 0.069 24.586 0.359 

0 : 1sH R =  0.537 1.692 0.703 1.067 
     
Final Effect 1.512 0.597 1.844 1.368 
Standard Error 0.522 0.054 0.679 0.356 

0 : 1sH R =  1.038 -7.699 1.279 1.057 
 
Notes: ,ˆ  and y t r t,ˆυ υ denote innovations in growth and returns, respectively. 
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Figure 1: The data 
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Conditional Standard Deviation: Output
1946 - 2004
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Figure 2: Estimated elements of  tH
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Figure 3: Cumulative Impulse Responses of an Innovation to Growth on Growth 
over the Phase of the Business Cycle 
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Figure 4: Cumulative Impulse Responses of an Innovation to Growth on 
Returns over the Phase of the Business Cycle 
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Figure 5: Cumulative Impulse Responses of an Innovation to Returns on 
Growth over the Phase of the Business Cycle 

 40



 

 
 

 Figure 6: Cumulative Impulse Responses of an Innovation to Return on 
Returns over the Phase of the Business Cycle  
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Appendix: Phase asymmetry 

Table A1: Significance of )K  ( , , ph
Y tCGIRF N V Ω

 ,ˆ ony t tyυ  ,ˆ ony t trυ  ,ˆ onr t tyυ  ,ˆ on r t trυ  
 N=1 N=15 N=1 N=15 N=1 N=15 N=1 N=15 

1
TPΩ  0.039682 0.26546 8.868752 3.690155 0.296621 0.127915 -0.20163 -0.20792
25
TPΩ  -0.25715 -0.07947 11.29764 4.443811 0.258565 0.070113 0.014133 0.012693
50
TPΩ  -0.14854 -0.00779 11.61541 4.30199 0.391491 -0.08212 0.095202 0.099431
75
TPΩ  0.152413 0.201654 15.37928 5.863271 0.279998 -0.43158 0.048481 0.06051
100
TPΩ  0.306099 0.517901 8.480966 3.149904 0.342794 0.207743 0.127766 0.125242
1
PTΩ  -0.03921 -0.44551 9.810599 4.099415 -0.03724 -2.04254 0.003831 0.062836
25
PTΩ  0.236378 0.355569 12.35176 5.011712 0.365707 0.048475 0.297982 0.302221
50
PTΩ  0.106515 0.056265 8.418738 4.20152 0.416288 -0.64637 0.20633 0.222394
75
PTΩ  -0.16293 0.065165 8.234967 6.176936 0.138152 0.155085 0.087575 0.085372
100
PTΩ  -0.24325 -0.08004 5.601557 3.964044 -0.53395 -0.20765 -0.06336 -0.05903

 
Notes: ,ˆ,ˆ and y t r tυ υ denote innovations in growth and returns, respectively. Figures are 

bootstrap t-ratios for the significance of )K  for horizons N=1 (impact effect) 

and N=15 (final effect) for phase histories 

( , , ph
Y tCGIRF N V Ω

ph
κΩ , κ  = PT and TP. 



Table A2: Asymmetry measures Rph  - ,ˆ ony t tyυ  
Impact Effect, N=1 

  
1
TPΩ  

25
TPΩ  50

TPΩ  75
TPΩ  100

TPΩ  1
PTΩ  25

PTΩ  50
PTΩ  75

PTΩ  100
PTΩ  

 1
TPΩ   -0.22002 -0.17474 -0.05968 -0.27856 -0.12347 0.00817 -0.09477 -0.01313 -0.1217 

 25
TPΩ  -0.18155  -0.19164 -0.08482 -0.2306 -0.12212 -0.01298 -0.06669 -0.03191 -0.10984 

Final 50
TPΩ  -0.11187 -0.11236  -0.08662 -0.34462 -0.15951 -0.0026 -0.10039 -0.01834 -0.1511 

Effect 75
TPΩ  -0.10086 -0.09565 -0.15536  -0.38229 -0.27352 -0.14223 -0.02396 -0.1169 -0.23719 

N=15 100
TPΩ  -0.17351 -0.15142 -0.22074 -0.24948  -0.25783 -0.11234 -0.03147 -0.09853 -0.22755 

 1
PTΩ  -0.05936 -0.06055 -0.10013 -0.06615 -0.05279  -0.03263 -0.07999 -0.05314 -0.16418 

 25
PTΩ  -0.09643 -0.07446 -0.13251 -0.04342 0.009724 -0.1999  -0.06751 -0.14066 -0.32802 

 50
PTΩ  -0.04594 -0.03634 -0.06317 -0.10563 -0.10395 -0.00487 -0.14522  -0.08769 -0.26048 

 75
PTΩ  -0.08876 -0.07113 -0.11669 -0.08153 -0.05742 -0.14039 -0.13169 -0.16363  -0.30329 

 100
PTΩ  -0.13683 -0.11455 -0.17722 -0.17826 -0.16033 -0.14056 -0.24876 -0.23765 -0.33606  

Notes: The Table presents t-ratios for the null hypothesis  1=0 : ( , , )ph
ph tH E RP N V κΩ⎡ ⎤⎦   across the histories ph

κΩ  for ⎣ κ  = PT and 

TP. ,ˆy tυ  denotes a growth innovation. Figures above and below the diagonal relate to the impact and final effects, respectively. 

For instance the figure -0.22002 in cell 1,2 is the test statistic for the null hypothesis  10 : ( , ,ph tH E RP N V )ph
κΩ =⎡ ⎤⎣ ⎦  comparing an 

impulse arriving at history 1
TPΩ  to one arriving at history 25

TPΩ  on impact. Cell 2,1 shows the test statistic for the corresponding 
final impact.  

 43



Table A3: Asymmetry measures Rph - ,ˆ ony t trυ  
Initial Effect, N=1 

  
1
TPΩ  25

TPΩ  50
TPΩ  75

TPΩ  100
TPΩ  1

PTΩ  25
PTΩ  50

PTΩ  75
PTΩ  100

PTΩ  

 
1
TPΩ   -1.31395 -0.73072 -0.43705 -0.12885 1.220975 1.940216 1.938416 1.399973 1.662159 

 
25
TPΩ  -0.57375  0.722749 1.209382 1.049279 2.443817 3.385601 3.049066 2.443072 2.280231 

Final 
50
TPΩ  -0.18176 0.368967  0.303717 0.438315 2.030734 3.076929 2.770427 2.102557 2.068638 

Effect
75
TPΩ  -0.03831 0.619028 0.390605  0.275395 1.937522 3.054637 2.728405 2.023288 2.018574 

N=15 
100
TPΩ  0.313731 0.522124 0.438312 0.338033  1.863307 2.772442 2.563572 1.975913 1.998989 

 
1
PTΩ  0.236211 0.632336 0.490192 0.282857 0.211565  0.839822 1.050095 0.43547 1.082048 

 
25
PTΩ  0.880749 1.25524 1.23661 1.064936 0.927933 0.780231  0.468209 -0.20131 0.720106 

 
50
PTΩ  0.250095 0.461346 0.489155 0.374916 0.290598 0.192056 -0.2495  -0.77804 0.30334 

 
75
PTΩ  0.766364 1.286853 1.303886 1.016397 0.83141 0.624775 -0.5034 -0.44629  1.033646 

 
100
PTΩ  0.933549 1.283871 1.282422 1.11925 0.987593 0.840564 0.153026 0.133518 0.696869  

 
Notes: See notes to Table A2. 
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Table A4: Asymmetry measures Rph - ,ˆ onr t tyυ  
Initial Effect, N=1 

  
1
TPΩ  25

TPΩ  50
TPΩ  75

TPΩ  100
TPΩ  1

PTΩ  25
PTΩ  50

PTΩ  75
PTΩ  100

PTΩ  

 
1
TPΩ   -0.27787 -0.25551 -0.1298 -0.10487 -0.03294 -0.07276 -0.15689 -0.07213 -0.16983 

 
25
TPΩ  -0.27303  -0.26139 -0.13653 -0.09699 -0.0425 -0.08195 -0.1606 -0.07776 -0.16183 

Final 
50
TPΩ  -0.24173 -0.21671  -0.13001 0.025711 0.061969 0.011114 -0.14729 -0.0091 -0.28318 

Effect 
75
TPΩ  -0.36674 -0.33779 -0.35098  -0.17394 -0.06195 -0.11429 -0.19527 -0.09384 -0.15648 

N=15 
100
TPΩ  -0.28369 -0.2685 -0.26853 -0.41616  -0.00059 -0.07846 -0.26962 -0.09367 -0.34736 

 
1
PTΩ  -1.67243 -1.4965 -1.46244 -1.68337 -2.84072  -0.11947 -0.18721 -0.1179 -0.10564 

 
25
PTΩ  -0.06738 -0.05571 -0.00131 -0.16174 0.048534 -0.23317  -0.2418 -0.07066 -0.29961 

 
50
PTΩ  -0.20435 -0.17938 -0.17677 -0.15595 -0.34155 0.096321 -0.26223  -0.10924 -0.25422 

 
75
PTΩ  -0.17175 -0.16534 -0.12802 -0.37998 -0.06073 -0.38152 -0.16242 -0.48176  -0.35078 

 
100
PTΩ  -0.05616 -0.03327 0.013628 -0.12894 0.058792 -0.19673 0.033042 -0.16656 0.031341  

 
Notes: ,ˆr tυ  denotes a returns innovation. See notes to Table A2. 
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Initial Effect, N=1 

  
1
TPΩ  25

TPΩ  50
TPΩ  75

TPΩ  100
TPΩ  1

PTΩ  25
PTΩ  50

PTΩ  75
PTΩ  100

PTΩ  

 
1
TPΩ   -0.27046 -0.09303 -0.26411 -0.1415 -0.33285 -0.10698 -0.12182 -0.05863 -0.08035 

 
25
TPΩ  -0.27533  -0.08826 -0.24384 -0.13739 -0.31363 -0.09339 -0.10013 -0.05355 -0.08473 

Final 
50
TPΩ  -0.06908 -0.06008  -0.28492 -0.10082 -0.37636 -0.06533 -0.03967 -0.03365 -0.15252 

Effect 
75
TPΩ  -0.26304 -0.24507 -0.29591  -0.15266 -0.50025 -0.09686 -0.07013 -0.0555 -0.19394 

N=15 
100
TPΩ  -0.15371 -0.14349 -0.1065 -0.16139  -0.54571 -0.07336 -0.04333 -0.04077 -0.22553 

 
1
PTΩ  -0.30652 -0.29531 -0.38748 -0.501 -0.56374  -0.05225 -0.03417 -0.03101 -0.19453 

 
25
PTΩ  -0.10624 -0.09287 -0.06627 -0.09418 -0.07544 -0.04297  0.048423 0.012338 -0.2136 

 
50
PTΩ  -0.12484 -0.10109 -0.05024 -0.08053 -0.06508 -0.03519 0.02717  -0.06299 -0.21866 

 
75
PTΩ  -0.05155 -0.04723 -0.02991 -0.04605 -0.03687 -0.02084 0.012512 -0.05294  -0.25541 

 
100
PTΩ  -0.09909 -0.09061 -0.08894 -0.10815 -0.10199 -0.06599 -0.03783 -0.10665 -0.12931  

Table A5: Asymmetry measures Rph - ,ˆ on r t trυ  
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Notes: ,ˆr tυ  denotes a returns innovation. See notes to Table A2. 
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