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SOME STABILITY RESULTS FOR MARKOVIAN
ECONOMIC SEMIGROUPS

LEONARD J. MIRMAN, KEVIN REFFETT, AND JOHN STACHURSKI

Abstract. The paper studies existence, uniqueness and stabil-

ity of stationary equilibrium distributions in a class of stochastic

dynamic models common to economic analysis. The stability con-

ditions provided are suitable for treating multi-sector models and

nonlinear time series models with unbounded state.

1. Introduction

Stability and instability of random dynamic systems are among the

most fundamental themes of economic modeling. In the theory of

long-run growth, stability is the key criterion behind convergence (or

divergence) of cross-country income series. Stability analysis also has

applications to business cycle fluctuations, demand for credit and real

cash balances, sustainable exploitation of renewable resources, and cal-

culation of ruin probabilities given cash flows from insurance premiums

and claims. For models of economic learning stability determines the

degree of convergence to long-run rational expectations equilibria. In

econometrics many Monte Carlo calculations rely on the stability of

Markov chains which have as their limit the distribution from which

one wishes to sample. In operations research the stability of queues

must be analyzed in order to determine their relative cost and optimal
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control, with applications to flexible manufacturing systems and the

design of service facilities.1

In this paper we study the large class of dynamic economic models

whose evolution can be described by a semigroup of operators (Pt)t∈T

on L1 := L1(S,B(S), λ), where topological space S is the state space

for the endogenous variables of the economic system, B(S) is the Borel

sets on S, and λ is some σ-finite measure. The idea is that for many

Markovian economic models one can construct the semigroup (Pt) such

that if ψ ∈ L1 is a density that gives the probability distribution of the

initial condition, then its image under Pt is the density which gives the

probability distribution of the state variable at time t ∈ T, so that the

map t 7→ Ptψ describes the orbit or flow of probability mass over time.

Here T may be either [0,∞) or N0 := N ∪ {0}.

Our interest is in whether or not this system is (globally) asymptotically

stable, in the sense that there is a unique density ψ∗ with the property

(1) Ptψ
∗ = ψ∗, ∀ t ∈ T, and lim

t→∞
‖Ptψ − ψ∗‖ = 0, ∀ψ ∈ D .

Here ‖ · ‖ is the L1 norm, and D := {ψ ∈ L1 : ψ ≥ 0 and ‖ψ‖ = 1} is

the collection of all densities on S. The objective is to develop simple

sufficient conditions for (1) that are both applicable and easy to verify

1A very partial list of references is as follows. For stochastic growth see Mirman

(1970) and Brock and Mirman (1972). For business cycles and stability see for ex-

ample Long and Plosser (1983), or Farmer and Woodford (1997); for money demand

see Lucas (1980), or Stokey Lucas and Prescott (1989). Sustainable exploitation is

discussed in Mitra and Roy (2003). The literature on stability in queues is vast. A

reference in manufacturing systems is Courcoubetis and Weber (1994). Bray (1982)

and Evans and Honkapohja (2001) are well-known studies of stability in learning

processes.
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for common economic and econometric models, as well as to extend

existing results on asymptotic stability of Markov semigroups.

After stating our main stability result two applications are given. One

is a short proof of asymptotic stability for the threshold autoregression

model of Chan and Tong (1986) under suitable conditions on param-

eters and the shock. The second gives stability conditions for discrete

time models evolving on the positive cone of finite dimensional vector

space. Such models are typical of economic applications.

Conditions for dynamic stability of stochastic economic models with a

Markovian structure has been studied by many authors. Early studies

include Mirman (1970), Razin and Yahav (1979) and Futia (1982). A

summary of these techniques with new material is given in Stokey,

Lucas and Prescott (1989). For more recent work see for example

Hopenhayn and Prescott (1992), Bhattacharya and Majumdar (2001,

2003) or Stachurski (2003) and their references.2

Many dynamic economies have a Markov structure. Recently, condi-

tions for the existence of recursive transition rules have been found for

economies with tax distortions, externalities, heterogenous agents, and

so on. See, for example, Le Van, Morhaim and Dimaria (2002), or

Mirman, Morand and Reffett (2004).

Mathematically, this work extends techniques developed by Lasota

(1994). In that paper, Lasota developed a fundamental new method

to prove asymptotic stability of integral Markov semigroups. He shows

that their stability is closely connected to L1 weak precompactness of

trajectories. The present paper provide new ways to verify this prop-

erty, by identifying simple conditions under which uniformly tight flows

2For an analysis of economic models that do not necessarily have a Markovian

structure see for example Schenk-Hoppé (2002) and references therein.
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of densities generated by integral Markov semigroups are also uniformly

integrable. Also, we introduce Meyn and Tweedie’s (1993) very general

notion of norm-like functions to help identify uniformly tight trajecto-

ries. The latter method proves to be useful when the state space is

a positive cone of finite-dimensional vector space, as often happens in

economic theory.

2. Formulation of the Problem

First we give some definitions and examples. A linear operator P

sending L1 into itself (a self-mapping) is called a Markov operator if

PD ⊂ D . From the definition it follows that every Markov operator is

both positive and a contraction.3 By a Markov semigroup is meant a

collection (Pt) of self-mappings on L1 such that

1. Pt is a Markov operator for each t ≥ 0;

2. P0 = I, the identity map on L1; and

3. Ps ◦Pt = Ps+t for all s, t ≥ 0 (semigroup under composition).

In practice Markov semigroups appear in several ways, probably the

most common being via transition probability functions of Markovian

random systems. By a transition probability function we mean a map

p : T × S × S → [0,∞) such that (x, y) 7→ p(t, x, y) is B(S) ⊗B(S)-

measurable, ∀t ∈ T; and p(t, x, ·) ∈ D for each t ∈ T and x ∈ S.

Heuristically, one thinks of p(t, x, y)λ(dy) as the probability of travel-

ling to y from x after t units of time have elapsed.

For example, many financial time series are assumed to follow an

Ornstein–Uhlenbeck process

dXt = −µXtdt+ σdBt,

3That is, ψ ≥ 0 implies Pψ ≥ 0, and ‖Pψ‖ ≤ ‖ψ‖, ∀ψ ∈ L1.
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where µ, σ are positive constants and (Bt)
∞
t=0 is a Brownian motion.

In this case it is well-known that (Xt)
∞
t=0 has transition probability

function

p(t, x, y) =
1√

2πh(t)
exp

(
−(y − xe−µt)2

2h(t)

)
,

where h(t) := (σ2/2µ)(1− e−2µt).

It is not difficult to verify that if p is a transition probability function

then the collection of operators (Pt) defined by

(2) (Ptψ)(y) =

∫
S

p(t, x, y)ψ(x)λ(dx)

is a Markov semigroup. The density Ptψ is the marginal distribution

of the time t state given that p is the law of motion and ψ is the initial

distribution of the state. Markov semigroups with the representation

(2) for some transition probability function p will be called integral

Markov semigroups.

Discrete time Markovian systems may also generate integral Markov

semigroups. Suppose that p : S×S → [0,∞) is jointly measurable and

satisfies p(x, ·) ∈ D for all x ∈ S, where p(x, y)λ(dy) is thought of as

representing the probability that the state variable transits from x to

y in one step. If we define p(1, x, y) := p(x, y), and, for each t ∈ N,

(3) p(t+ 1, x, y) :=

∫
S

p(t, x, u)p(u, y)λ(du),

then p : T × S × S → [0,∞) is a transition probability function for

T = N0, and (Pt)t∈T defined as in (2) is an integral Markov semigroup

when P0 := I. It is easy to check that in this case Pt = Pt, the t-th

iterate of the map P : L1 → L1 defined by

(4) (Pψ)(y) =

∫
S

p(x, y)ψ(x)λ(dx).
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Consider for example the nonlinear autoregression

(5) Xt+1 = T (Xt, ξt), T : S × E → S, t ∈ N0,

where (ξt) is an i.i.d. sequence of valued random variables on proba-

bility space (Ω,F ,P) taking values in measurable space (E,E ), and T

is a (B(S) ⊗ E ,B(S))-measurable map. The random sequence (Xt)

represents the endogenous variables, and T is some transition rule.

There is of course a large number of dynamic macroeconomic models

which have the discrete recursive structure used in (5). See for example

Stokey, Lucas and Prescott (1989) or Hamilton (1994) and references

therein.

Loosely speaking, we can say that the conditional distribution of the

next period state given that the current state Xt = x is M(x, dy) when

(6) M(x,B) :=

∫
Ω

1B[T (x, ξt(ω))]P(dω).

Very often in economic applications it turns out that M(x, dy) is ab-

solutely continuous with respect to the underlying measure λ (write

M(x, dy) - λ), which is typically the Lebesgue measure. In this

case, the transition probabilities have a density representation p, where

p(x, y)λ(dy) := M(x, dy), so that p is a function on S×S with p(x, ·) ∈

D for all x ∈ S. If all goes well, p is jointly measurable, so we can con-

struct the transition probability function as in (3), and therefore a

semigroup (Pt).

All of this would be meaningless if T 3 t 7→ Ptψ ∈ D does not describe

the flow of density functions for the state variables of the economy

when ψ ∈ D is the distribution of x0. Note that Xt can be viewed as

a σ{ξ0, . . . , ξt−1}-measurable random variable on (Ω,F ,P). Let µt :=
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P ◦ X−1
t be the marginal distribution of Xt, a measure on (S,B(S)).

Given the independence of Xt and ξt one has

µt+1(B) = P{T (Xt, ξt) ∈ B}

=

∫
S

∫
Ω

1B[T (x, ξt(ω))]P(dω)µt(dx) =

∫
S

M(x,B)µt(dx).

If µt - λ, then it is clear that µt+1 - λ, and in fact if ψt := dµt/dλ for

each t, then some rearranging of the above expression gives ψt+1(y) =∫
S
p(x, y)ψt(x)λ(dx). Comparing this with (4) we see that ψt+1 = Pψt,

so if the initial distribution ψ0 is in D , then ψt = Ptψ0 = Ptψ0 as

required.

3. Results

In this section the main stability result is proved. First we need some

assumptions on the state space and the underlying measure.

Assumption 3.1. The space S is metrizable, locally compact and also

σ-compact, in the sense that every open subset of S can be expressed

as a countable union of compacts sets, and the measure λ is locally

finite.4

Definition 3.1. A nonnegative, continuous function V : S → R is

called norm-like if there exists a sequence of compact sets (Kj) in S

with Kj ↑ S and infx/∈Kj
V (x) →∞ as j →∞.5

For example, let S be Euclidean space, let B be the closed unit ball in S

and let V (x) = ‖x‖. Then Kj := j ·B ↑ S and infx/∈Kj
V (x) = j →∞.

4A measure λ on (S,B(S)) is called locally finite if λ(K) <∞ for every compact

subset K of S.

5As usual, Kj ↑ S means that Kj ⊂ Kj+1, all j, and ∪∞j=1Kj = S.
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Norm-like functions were introduced in relation to Markov chains by

Meyn and Tweedie (1993).

Condition 3.1. For some s ∈ T, the transition probability is every-

where positive. That is ∀x, y ∈ S, p(s, x, y) > 0.

This condition is a “mixing” or “communication” assumption. Over

the time interval 0 ≤ t ≤ s, the state variable travels to any open set

with positive probability.

Condition 3.2. For some s ∈ T, there exists a continuous function

h : S → R such that supx∈S p(s, x, y) ≤ h(y) for all y ∈ S.

Condition 3.3. For some s ∈ T, there exists a norm-like function V

and constants α, β ∈ [0,∞), α < 1, such that∫
p(s, x, y)V (y)λ(dy) ≤ αV (x) + β, ∀x ∈ S.

Condition 2 is largely technical. Condition 3 is a drift condition, which

ensures that the state variable tends to return to the “center” of the

state space over time. Of course in a metric space there is no center,

but we can generate the space using the expaning sequence of compact

sets discussed in Condition 3.

The main theorem can now be stated. The proof is given in Section 5.

Theorem 3.1. Let (Pt)t∈T be an integral Markov semigroup with tran-

sition probability function p. If Conditions 3.1–3.3 hold for common

s ∈ T, then (Pt)t∈T is asymptotically stable.

4. Applications

In this section we give two applications of Theorem 3.1. Both are in

discrete time. The first is a very simple proof of stability in L1 norm of
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the Threshold Autoregression (TAR) model of Chan and Tong (1986)

under suitable hypotheses on the coefficients. (See Chan and Tong,

1986, for an earlier proof.) TAR models have recently found many

applications in economics (c.f., e.g., Hansen 2001).

The second application provides a condition for stability of systems

evolving on the positive cone of finite dimensional Euclidean space.

Many economic models have this property, given that prices and quan-

tities are typically nonnegative.

4.1. Threshold Autoregression. The basic model has the form

(7) Xt+1 =
K∑
k=1

(AkXt + bk)1{Xt∈Bk} + ξt,

where Xt takes values in RN , (Bk)
K
k=1 is a (measurable) partition of

RN , and (Ak)
K
k=1 and (bk)

K
k=1 are N × N -dimensional matrices and

N × 1-dimensional vectors respectively. The idea is that when Xt is in

the region of the state space Bk, the state variable follows the law of

motion AkXt + bk. The shock ξ is assumed to be an uncorrelated and

identically distributed RN -valued process with density g.

For this model S = RN , and λ is the Lebesgue measure. We write

dx, dy instead of λ(dx), λ(dy) etc., and
∫

for
∫
S
. When the current

state is equal to x ∈ RN , a simple change of variable argument shows

that the conditional density p(x, ·) for the next period state is

(8) p(x, y) = g

[
y −

K∑
k=1

(Akx+ bk)1Bk
(x)

]
.

From (8) one can contruct the transition probability functions and

Markov semigroup (Pt)t∈T corresponding to (7) as described in Sec-

tion 2.

An application of Theorem 3.1 gives the following stability result.
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Proposition 4.1. Let (Pt)t∈T be the Markov semigroup generated by

the dynamical system (7). Suppose that g is strictly positive on RN ,

that g ≤M for some M <∞, and that E‖ξ‖ :=
∫
‖z‖g(z)dz <∞. If,

in addition, α := maxk αk < 1, where αk is the spectral radius of Ak,

then (Pt) is asymptotically stable.

For example, if ξ is multivariate normal then g satisfies all of the hy-

potheses of Proposition 4.1.

Proof. We check that the conditions of Theorem 3.1 hold for s = 1,

recalling that p(1, x, y) := p(x, y), where in this case p(x, y) is given

by (8). Condition 3.1 follows immediately from positivity of g and (8).

Condition 3.2 is immediate from the assumption g ≤ M . Regarding

Condition 3.3, let V := ‖ · ‖, the Euclidean norm on RN . Then for any

x ∈ RN we have∫
p(x, y)‖y‖dy =

∫ ∥∥∥∥∥
K∑
k=1

(Akx+ bk)1Bk
(x) + z

∥∥∥∥∥ g(z)dz
≤

K∑
k=1

‖Akx+ bk‖1Bk
(x) + E‖ξ‖

≤
K∑
k=1

αk‖x‖1Bk
(x) +

K∑
k=1

‖bk‖+ E‖ξ‖

≤ α‖x‖+ β, β :=
K∑
k=1

‖bk‖+ E‖ξ‖.

�

4.2. Models on the Positive Cone. Consider again the model (5),

when S = ×N
n=1(0,∞), the interior of the positive cone in finite-

dimensional space, and λ is the Lebesgue measure. The vector of

shocks ξt takes values in S with density g. As before the sequence

(ξt) is uncorrelated over time.
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Let the map T be described by

(9) T (x, z) =


T1(x) · z1

...

TN(x) · zN

 ,

where each Tn : S → (0,∞) is a measurable map. As above, a standard

change of variable argument shows that when the current state is equal

to x, the next period state has distribution

(10) p(x, y) = g

(
y1

T1(x)
, . . . ,

yN
TN(x)

) N∏
n=1

1

Tn(x)
,

Consider the following conditions.

Condition 4.1. There is an r > 0 and a k ∈ N such that for all n

between 1 andN , Tn(x) ≥ x1∧· · ·∧xN on Ar and Tn(x) ≥ 1/k on Acr :=

S \ Ar, where Ar := ∪Nn=1{x ∈ S : xn ≤ r}.

The effect of Condition 4.1 is to push the state variable away from

the boundaries of the state space, which prevents it from becoming too

“small.” The effect of the next condition is to prevent it from becoming

too large.

Condition 4.2. There exist constants C, γ ∈ [0,∞) such that γ < 1

and ∫
‖T (x, z)‖g(z)dz ≤ C + γ‖x‖, ∀x ∈ S.

Condition 4.3. The joint distribution of ξ = (ξ1, . . . , ξN) satisfies∫ N∑
n=1

1

zn
g(z)dz < 1.

Proposition 4.2, which is proved in Section 5, establishes the most

difficult part of the following theorem.
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Proposition 4.2. Let V : S → R be defined by V (x) =
∑N

n=1
1
xn

+‖x‖.

If Conditions 4.1–4.3 hold, then there exist constants α, β ∈ [0,∞) with

α < 1 and ∫
p(x, y)V (y)dy ≤ αV (x) + β, ∀x ∈ S.

The main result of this section is

Theorem 4.1. Let (Pt)t∈N0 be the Markov semigroup generated by the

dynamical system (9). Let Conditions 4.1–4.3 by satisfied. If, in ad-

dition, g > 0 everywhere on S and there is a constant M such that

g(z)
∏N

n=1 zn ≤M for all z ∈ S, then (Pt) is asymptotically stable.

For example, if ξ is multivariate lognormal then g satisfies all of the

hypotheses of Theorem 4.1.

Proof. We check that the conditions of Theorem 3.1 hold for s = 1.

Condition 3.1 follows immediately from positivity of g and the expres-

sion (10). Condition 3.2 follows from the assumptions on g, because

p(x, y) = g

(
y1

T1(x)
, . . . ,

yN
TN(x)

) N∏
n=1

yn
Tn(x)

·
N∏
n=1

1

yn
≤M

N∏
n=1

1

yn
.

Finally, Condition 3.3 follows from Proposition 4.2, as V is clearly

norm-like. �

5. Proofs

For the remainder of the paper, let us agree to call Markov operator

P asymptotically stable if the semigroup (P)t∈N0 defined by P0 = I,

Pt = Pt is asymptotically stable. The following result simplifies the

proof of Theorem 3.1 by showing that in the case of Markov semigroups

it is sufficient to verify stability for the discrete semigroup formed by

iteration of some fixed member.
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Lemma 5.1. Let (Pt)t∈T be a Markov semigroup. If Ps is asymptoti-

cally stable for some s ∈ T, then so is (Pt)t∈T.

We provide a proof for completeness, although the ideas are available

in the literature—see for example the discussion in Lasota and Mackey

(1994, pp. 201–2 and Remark 7.4.2).

Proof. Write P for Ps. Let P be asymptotically stable with fixed point

ψ∗ ∈ D . Pick any ε > 0 and any t ∈ T. Choose N ∈ N so that

‖PN(Ptψ
∗)− ψ∗‖ < ε. Then

‖Ptψ
∗ − ψ∗‖ = ‖Pt(P

Nψ∗)− ψ∗‖ = ‖PN(Ptψ
∗)− ψ∗‖ < ε.

∴ ‖Ptψ
∗ − ψ∗‖ = 0.

Regarding asymptotic stability, for ψ ∈ D choose N ∈ N so that

‖PNψ − ψ∗‖ < ε. Then t ≥ N implies

‖Ptψ − ψ∗‖ = ‖Pt−N(PNψ∗)−Pt−Nψ
∗‖ ≤ ‖PNψ∗ − ψ∗‖ < ε,

where we have used the fact that every Markov operator is an L1 con-

traction (Lasota and Mackey, Proposition 3.1.1). �

We need the following two auxiliary notions.

Definition 5.1. Markov operator P on L1 is said to overlap supports

if, ∀ψ, ψ′ ∈ D , λ(suppPψ∩ suppPψ′) > 0. Also, P is called Lagrange

stable on D if the collection of points {Ptψ0} ⊂ D is precompact for

every ψ0 ∈ D .6

The following result is due to Lasota (1994, Theorem 3.3).7.

6Precompact sets are those with compact closure. Here and below, unless oth-

erwise stated, all topological concepts are with respect to the norm topology.

7See also Stachurski (2002, 2003) for a proof of a slightly weaker result
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Theorem 5.1. Markov operator P on L1 is asymptotically stable if

and only if it is Lagrange stable on D and overlaps supports.

To establish Lagrange stability is in general difficult, as the criteria

for norm-compact subsets of L1 are quite restrictive. However, Lasota

(1994, Theorem 4.1) has pointed out that in the case of integral Markov

operators, Lagrange stability holds if and only if every trajectory {Ptψ}

is weakly precompact in L1.
8

Theorem 5.2. Let P be an integral Markov operator on L1. The

operator is Lagrange stable if and only if there exists a set D0 ⊂ D

such that D0 in norm dense in D and {Ptψ} is weakly precompact for

every ψ ∈ D0.

Weakly precompact sets in L1 are relatively easy to identify. For ex-

ample, order intervals are weakly compact. Also, there is the following

characterization.

Definition 5.2. Let M be a subset of D . The collection of densities

M is called tight if

∀ε > 0, ∃K ⊂⊂ S s.t.

{∫
Kc

ψ(x)λ(dx) < ε, ∀ψ ∈M
}
.

The notation K ⊂⊂ S means that K is a compact subset of S, and

Kc := S \K. The collection M is called uniformly integrable if

∀ε > 0, ∃δ > 0 s.t. λ(A) < δ =⇒
{∫

A

ψ(x)λ(dx) < ε, ∀ψ ∈M
}
.

Applying a famous theorem of Dunford and Pettis, any subset of D is

weakly precompact whenever it is both tight and uniformly integrable,

8As usual, the adjective weakly refers to the topology induced on L1 by its norm

dual L∞.



MARKOVIAN SEMIGROUPS 15

provided that the measure λ is locally finite. Thus, in view of Theo-

rem 5.2, to show Lagrange stability one need only check tightness and

uniform integrability of all trajectories under P with initial condition

in some dense subset of D . Establishing uniform integrability, however,

can itself be quite challenging. In this connection,

Proposition 5.1. Let (Pt)t∈T be an integral Markov operator on L1

with transition probability function p. Fix ψ ∈ D and s ∈ T. If the set

of densities {Pt
sψ}t∈N0 is tight, and, in addition, there exists a contin-

uous function h : S → R such that p(s, x, y) ≤ h(y) for all x, y ∈ S,

then {Pt
sψ}t∈N0 is also uniformly integrable.

Proof. Fix ε > 0. Write P for Ps and p(x, y) for p(s, x, y). Since {Ptψ}

is tight, there exists a compact set K such that

(11)

∫
Kc

Ptψ dλ <
ε

2
, ∀t ∈ N0.

For arbitrary Borel set A ⊂ S, the decomposition

(12)

∫
A

Ptψ dλ =

∫
A∩K

Ptψ dλ+

∫
A∩Kc

Ptψ dλ

holds. Consider the first term in the sum. We have∫
A∩K

Ptψ(x)λ(dx) =

∫
A∩K

[∫
p(x, y)Pt−1ψ(x)λ(dx)

]
λ(dy)

=

∫ [∫
A∩K

p(x, y)λ(dy)

]
Pt−1ψ(x)λ(dx).

But by the hypothesis and the fact that the image of a continuous real-

valued function h on a compact set K is bounded by some constant

N <∞, ∫
A∩K

p(x, y)λ(dy) ≤
∫
A∩K

h(y)λ(dy) ≤ N · λ(A).
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Therefore,

(13)

∫
A∩K

Ptψ dλ =

∫ [∫
A∩K

p(x, y)λ(dy)

]
Pt−1ψ dλ ≤ Nλ(A).

Combining (11), (12) and (13), we obtain the bound∫
A

Ptψ(x)λ(dx) ≤ N · λ(A) +
ε

2

for any t and any A ∈ B. Setting δ := ε/(2N) now gives the desired

result. �

Regarding tightness, we need the following lemma (Meyn and Tweedie,

1993 Lemma D.5.3—the proof is straightforward).

Lemma 5.2. A collection of densities M ⊂ D is tight whenever there

exists a norm-like function V with supψ∈M
∫
V ψ dλ <∞.

The following kind of argument is quite standard (see, for example, the

Lasota and Mackey, 1994, §§10.5).

Lemma 5.3. Let (Pt)t∈T, p s ∈ T and V be as in Theorem 3.1. If

ψ ∈ D and
∫
V ψ dλ <∞, then the trajectory {Pt

sψ} ⊂ D is tight.

Proof. Let P := Ps. By Lemma 5.2, it suffices to show that

sup
t∈N0

∫
VPtψ dλ <∞.

By the definition of P,∫
V (y)Ptψ(y)λ(dy) =

∫
V (y)

∫
p(x, y)Pt−1ψ(x)λ(dx)λ(dy)

=

∫ ∫
V (y)p(x, y)λ(dy)Pt−1ψ(x)λ(dx)

≤
∫

[αV (x) + β]Pt−1ψ(x)λ(dx)

= α

∫
V (x)Pt−1ψ(x)λ(dx) + β
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By induction, then,∫
V (y)Ptψ(y)λ(dy) ≤ αt

∫
V ψ dλ+

β

1− α
,

which is sufficient for the proof, since α < 1. �

Proof of Theorem 3.1. By Lemma 5.1 it suffices to prove asymptotic

stability of the Markov operator Ps when Conditions 1–3 of the the-

orem hold. From Condition 1 it is easy to see that Ps overlaps sup-

ports. By Condition 3 and Lemma 5.3, (Pt
sψ)t∈N0 is tight whenever∫

V ψdλ < ∞. By Condition 2 and Proposition 5.1 (Pt
sψ) is also uni-

formly integrable and therefore weakly precompact. Combining Theo-

rems 5.1 and 5.2, the asymptotic stability of Ps will be established if

D0 := {ψ ∈ D :
∫
V ψdλ <∞} is norm-dense in L1(S,B(S), λ). This

is the case because V is continuous, and, since S is locally compact

Hausdorff and λ is Borel regular, the functions with compact support

are norm-dense. �

It just remains to prove Proposition 4.2.

Proof of Proposition 4.2. By using a change of variable with the ex-

pression (10) we get∫
p(x, y)V (y)dy =

∫
V (T (x, z))g(z)dz

=

∫ N∑
n=1

1

Tn(x)zn
g(z)dz +

∫
‖T (x, z)‖g(z)dz.

For x ∈ Ar,∫ N∑
n=1

1

Tn(x)zn
g(z)dz ≤

∫ N∑
n=1

1

zn
g(z)dz

1

x1 ∧ · · · ∧ xN

≤
∫ N∑

n=1

1

zn
g(z)dz

N∑
n=1

1

xn
.
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Setting θ :=
∫ ∑N

n=1
1
zn
g(z)dz < 1, then,

(14)

∫ N∑
n=1

1

Tn(x)zn
g(z)dz ≤ θ

N∑
n=1

1

xn
+ k, ∀x ∈ S,

where we have used the previous bound on Ar with the bound∫ N∑
n=1

1

Tn(x)zn
g(z)dz ≤ k on Acr.

Combining (14) with Condition 4.2, then,∫
p(x, y)V (y)dy ≤ θ

N∑
n=1

1

xn
+ k + C + γ‖x‖

for all x ∈ S. Setting α := θ ∨ γ < 1 and β := k + C gives the desired

result. �

References

[1] Bhattacharya, R. and M. Majumdar (2001): “On a Class of Stable Random

Dynamical Systems: Theory and Applications,” Journal of Economic Theory,

96, 208–229.

[2] Bhattacharya, R. and M. Majumdar (2003): “Dynamical systems subject to

random shocks: An introduction,” Economic Theory, 23 (1), 1–12.

[3] Bray, M. (1982): “Learning, Estimation and the Stability of Rational Expec-

tations,” Journal of Economic Theory, 26, 318–339.

[4] Brock, W. A. and L. Mirman (1972): “Optimal Economic Growth and Uncer-

tainty: The Discounted Case,” Journal of Economic Theory, 4, 479–513.

[5] Chan, K. S. and Tong, H. (1986): “On Estimating Thresholds in Autoregres-

sive Models,” Journal of Time Series Analysis, 7, 179–90.

[6] Courcoubetis, C. and R.R. Weber (1994): “Stability of Flexible Manufacturing

Systems,” Operations Research, 42, 947–957.

[7] Donaldson, J. B. and R. Mehra (1983): “Stochastic Growth with Correlated

Production Shocks,” Journal of Economic Theory, 29, 282–312.

[8] Evans, G. W., and S. Honkapohja, (2001): Learning and Expectations in

Macroeconomics, Princeton University Press, Princeton.



MARKOVIAN SEMIGROUPS 19

[9] Farmer, R. and M. Woodford (1997): ”Self-Fulfilling Prophecies and the Busi-

ness Cycle,” Macroeconomic Dynamics, 1 (4), 740–769.

[10] Futia, C. A. (1982): “Invariant Distributions and the Limiting Behavior of

Markovian Economic Models, Econometrica, 50, 377–408.

[11] Hamilton, J. D. (1994), Time Series Analysis, Princeton University Press,

Princeton.

[12] Hansen, B. (2001): “Threshold Autoregression with Unit Root,” Economet-

rica, 69 (6), 1555–96.

[13] Hopenhayn, H. A. and E. C. Prescott (1992): “Stochastic Monotonicity and

Stationary Distributions for Dynamic Economies, Econometrica, 60, 1387–

1406.

[14] Lasota, A. (1994): “Invariant Principle for Discrete Time Dynamical Systems,”

Universitatis Iagellonicae Acta Mathematica, 31, 111–127.

[15] Lasota, A. and M. C. Mackey (1994): Chaos, Fractals and Noise: Stochastic

Aspects of Dynamics, 2nd edition, Springer-Verlag, New York.

[16] Le Van, C. L. Morhaim and C.H. Dimaria (2002): “The discrete time version

of the Romer model,” Economic Theory, 20 (1), 133–158.

[17] Long, and Plosser (1983), “Real Business Cycles,” The Journal of Political

Economy, 91 (1), 39–69.

[18] Lucas, R. (1980): “Equilibrium in a Pure Currency Economy,” Economic In-

quiry, 18, 203–220.

[19] Mirman, L. J. (1970): Two Essays on Uncertainty and Economics, Ph.D.

Thesis, University of Rochester.

[20] Mirman, L.J., O.F. Morand and K. Reffett (2004): “A Qualitative Approach

to Markovian Equilibrium in Infinite Horizon Economies with Capital,” (man-

uscript).

[21] Mitra, T. and S. Roy (2003): “Optimal Exploitation of Renewable Resources

under Uncertainty and the Extinction of Species,” CAE Working Paper 03-10,

Cornell.

[22] Razin, A. and J. A. Yahav, “On Stochastic Models of Economic Growth,”

International Economic Review, 20, 599–604.
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