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COMPUTING THE DISTRIBUTIONS OF ECONOMIC
MODELS VIA SIMULATION

JOHN STACHURSKI

Abstract. This paper studies the convergence properties of a
Monte Carlo algorithm for computing distributions of state vari-
ables when the underlying model is a Markov chain with absolutely
continuous transition probabilities. We show that the L1 error of
the estimator always converges to zero with probability one. In
addition, rates of convergence are established for L1 and integral
mean squared errors. The algorithm is shown to have many appli-
cations in economics.

1. Introduction

Many economic models are both stochastic and dynamic. The process

for the state variables often has a Markov structure, and when shocks

are nondegenerate, or when the set of agents has positive measure,

the distribution of the state is a nondegenerate over some subset of

Rn. This distribution may indicate the dispersion of asset holdings,

wealth, capital, wages or other such attributes across agents; or the

probabilities of future outcomes for the state.

In this paper we explore a method for computing the distributions of

state variables via simulation recently introduced by Glynn and Hen-

derson (2001). As with other simulation-based techniques, the method

can be used to examine the predictive aspects of economic models too

complex to admit analytical solution.

Our study investigates global convergence properties of Glynn and Hen-

derson’s estimator. Arguably the most important global measure of

error for this estimator is the L1 distance between the estimator and

This project has benefitted from helpful conversations with Roberto Raimondo
and Rabee Tourky, as well as financial support from Australian Research Council
Grant DP0557625.
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2 JOHN STACHURSKI

target distribution. By applying McDiarmid’s bounded difference in-

equality, we show that the L1 error always converges to zero with prob-

ability one. Second, we establish rates of convergence for expected L1

and integral mean squared error for a large class of models. These

rates are faster than those achieved by standard nonparametric kernel

density estimators.

2. Formulation of the Problem

Suppose that, after setting down a model, solving all relevant decision

problems and combining equilibrium constraints, one arrives at a law of

motion for the state variables given by the recursive stochastic sequence

(1) Xt = Ht(Xt−1,Wt), X0 given , Wt ∼ ψ.

Here Xt takes values in S ⊂ Rk and Wt takes values in Z ⊂ Rj, while

Ht : S × Z → S. We assume that the shocks (Wt)t≥1 are independent

over time and identically distributed (IID) with common distribution

ψ. The IID restriction on the shocks and the fact that the state variable

only enters with one lag may seem restrictive, but in fact many models

can be set in this framework by adjusting the definition of the state.

In Section 3 below the theory is developed for a general discrete time

Markov process.

When analytical results are unavailable, one can still explore the impli-

cations of (1) by computing distributions of the state variables (Xt)t≥0.

The distribution ϕT of XT provides a complete description of the prob-

abilities implied by the model for time T events.1

If (1) is stationary and ergodic, another common exercise is computa-

tion of the stationary (invariant) distribution for the state. The issues

here are mathematically more subtle but conceptually very similar, and

we discuss them in detail below.

1In the context of density forecasting, Sarno and Valente (2004) describe one
rationale for computing distributions rather than just moments as follows: “In a
decision-theoretical context, the need to consider the predictive density of a time
series—as opposed to considering only its conditional mean and variance—seems
fairly accepted in the light of the argument that economic agents may not have
loss functions that depend symmetrically on the realizations of future values of
potentially non-Gaussian variables.”
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2.1. Methods of Computing Distributions. Let T ∈ N and let ϕT

denote the distribution of the S-valued random variable XT defined

inductively by (1). A common technique for computing ϕT is to dis-

cretize the state space onto a grid of size n, derive for each t a Markov

matrix Pn
t on this finite state space which approximately represents

the probabilistic dynamics in (1), and then compute

(2) ϕn
T := ϕn

0 ·Pn
1 × · · · ×Pn

T ,

where ϕn
0 is the approximate distribution of X0, represented on the

grid.2 For (2) computation is fast, but bounds on the deviation of ϕn
T

from ϕT are difficult to obtain, as errors associated with the original

discretization are propagated in a complex way at each multiplication

in (2).3

An alternative which does not involve discretizing the state space is

Monte Carlo simulation. In this procedure one starts with X0, gener-

ates a draw (W1, . . . ,WT ) for the shock process, and then computes XT

iteratively via (1). Repeating this procedure n times gives independent

observations (X1
T , . . . , X

n
T ) of the random variable XT . By definition

each Xm
T is a draw from the target distribution ϕT .

With the sample, one can construct a histogram, an empirical distri-

bution function, or a nonparametric kernel density estimate such as

(3) fn
T (y) :=

1

n · δn

n∑
m=1

K

(
y −Xm

T

δn

)
,

where K is a symmetric probability density, and the “bandwidth” pa-

rameter δn controls the “smoothness” of the estimate, and is chosen so

that δn → 0 as n→∞. Regarding (3), it is well-known that—at least

when ϕT is a density—we always have |fn
T (y)− ϕT (y)| → 0 as n→∞

with probability one for all y ∈ S. Probability one (almost sure) con-

vergence to zero also holds for the L1 error
∫
|fn

T −ϕT |, independent of

the choice of kernel K (Devroye and Gyöfi, 1985).

2Here the distributions ϕn
t are regarded as row vectors, and Pn

t = (pt
ij), where

pt
ij is the probability of moving from state i at t − 1 to j at t. Postmultiplication

by the current Markov matrix moves the distribution one period forwards, in which
case the right hand side of (2) is a measure of the time T state.

3For a concrete example of this problem see Johnson (2005), which uses contin-
uous state methods to revise an earlier discretization-based study.
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On the other hand, the finite sample properties of fn
T are not always

good. For example, E|fn
T (y) − ϕT (y)| is known to be proportional

asymptotically to (nδn)−1/2, and since δn → 0 with n at a rate that

is sensitive to dimension of the state space S, the convergence rate is

strictly slower that O(n−1/2), and possibly much slower. Thus, while

asymptotic limiting properties are excellent, convergence to the target

may be slow. This is a problem common to many forms of Monte Carlo

simulation.

Poor finite sample properties are problematic in a number of situations,

such as when the state space is high-dimensional, when drawing ran-

dom variates from the state distributions is computationally expensive,

or when a large parametric class is being studied. In addition, low prob-

ability regions of the state space are rarely sampled, making it difficult

to uncover features of the distribution on these sets via simulation—a

situation which is particularly troubling for studies of extreme events,

such as bankruptcy or market crashes.

Another issue is that poor choice of bandwidth or kernels can have

significant impact on rates of convergence and finite sample properties.

Making good choices depends on sufficient knowledge of the target den-

sity ϕT —in particular, being able to place ϕT in a certain restricted

class with desirable features. Such knowledge is not always easy to ac-

quire for marginal distributions of state variables when the information

at hand consists only of the laws of motion given in (1).

Without additional structure one cannot easily improve on fn
T . Sup-

pose, then, that the conditional distribution of Xt given Xt−1 can be

represented by a density. To give an elementary example, consider the

Solow model defined by

(4) kt = sAkα
t−1Wt, lnWt ∼ N(0, σ2),

where k is capital, s > 0 is the savings rate, and α,A > 0 are productiv-

ity parameters. It is clear that when kt−1 is taken as given, the current

state kt is lognormally distributed: ln kt ∼ N(ln(sA) + α ln kt−1, σ
2).

Thus, the distribution of the current state given the lagged state is in-

deed represented by a density. This existence of density representation

turns out to provide exactly the kind of structure in question.

To see this, fix T ∈ N and suppose that the conditional distribution

of XT given XT−1 can be represented by density pT (XT−1, y)dy. Using
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pT , Glynn and Henderson (2001) proposed the following “look-ahead”

estimation scheme for ϕT . First, generate n independent draws of the

state variable as above, but this time generate draws of XT−1 rather

than of XT . Now calculate

(5) ϕn
T (y) :=

1

n

n∑
m=1

pT (Xm
T−1, y).

To see why ϕn
T is a natural estimator of the distribution of XT , observe

the following. It can be shown (formal arguments are deferred to a later

section) that when the density representation pT exists, the distribution

of XT can be represented by a density ϕT , and ϕT satisfies

(6) E pT (XT−1, y) = ϕT (y), ∀y ∈ S.

The intuition for (6) is simple: If ϕT (y) is thought of as the probability

of observing y at T , then this should be equal to the probability pT (x, y)

of going from x at T − 1 to y at T , summed over x and weighted by

the probability that XT−1 = x; and this is precisely the left hand side

of (6).

From (5) and (6) we have Eϕn
T (y) = 1

n
nϕT (y) = ϕT (y) at each point y,

so that ϕn
T is pointwise unbiased. Moreover, the law of large numbers

implies that, with probability one,

(7) ϕn
T (y) =

1

n

n∑
m=1

pT (Xm
T−1, y) → EpT (XT−1, y) = ϕT (y)

as n→∞. In other words, ϕn
T (y) is a consistent estimator of ϕT (y) at

each point y ∈ S.

Notice that ϕn
T makes use of the structure of the model as embodied

in pT —a key aspect of efficient computation. In contrast to fn
T there

is no bandwidth parameter, nor any need to choose a kernel K. These

two features suggest that ϕn
T will have good finite sample properties to

match the asymptotic result (7). Indeed, Glynn and Henderson point

out that by the Central Limit Theorem we have E|ϕn
T (y) − ϕT (y)| =

O(n−1/2), independent of the dimension of the state space S.

To illustrate the speed of convergence, consider Figure 1, which com-

pares the look-ahead estimator to the actual time T density ϕT and

a kernel density estimate for the elementary Solow model (4).4 We

4In the figure, the parameters are α = 0.3, A = 2, σ = 0.11, and s = 0.2.
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Figure 1. The Look-Ahead Estimator.

argued that the distribution for the current state given kt−1 = x is the

lognormal density p(x, y)dy, where

(8) p(x, y) = (2πσ2)−1/2 1

y
exp

{
−(ln y − ln(sA)− α lnx)2

2σ2

}
.

Given this function p, implementation of the look-ahead estimator (5)

is extremely simple. Programmed in R and using samples as the vec-

tor which contains the draws of the time T − 1 state, the look-ahead

estimate ϕn
T (y) is evaluated for Figure 1 by

look_ahead = function(y) {

q = numeric(n) # vector of length n

for (i in 1:n) q[i] = p(samples[i],y)

return( mean(q) )

}
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In Figure 1 the estimates of ϕT are for T = 2. The initial condition ϕ0

has been deliberately chosen as multi-modal, making ϕ2 multi-modal

and increasing the complexity of the approximation problem.5 Despite

this complexity, the combination of log-linearity and log-normality

means that an analytical solution for ϕT is also available for compari-

son, and this is plotted using the ◦ symbol. The look-ahead estimate

ϕn
T is the unbroken line. Although the sample size is tiny by Monte

Carlo standards (n = 100), the estimator closely follows the actual

density.

The broken line in Figure 1 is a standard kernel density estimate of

the form given in (3). In this case we are using the default algorithm

in R.6 The kernel density estimate uses the same draw of shocks as the

look-ahead estimate, and the same sample size (n = 100). At least for

this default algorithm, the approximation is much poorer.7

In this paper we extend the analysis of Glynn and Henderson, partic-

ularly with regards to global convergence of the function ϕn
T to ϕT .

The most important metric here is arguably the L1 distance, which is

always well-defined, and for which Scheffés identity provides a natural

quantitative interpretation.8 We prove for the first time that ϕn
T always

converges to ϕT in L1 with probability one as n→∞.

Second, we provide rates of convergence for global error measures. We

prove that for a wide class of models the expected L1 error (respectively,

the integral mean square error) is O(n−1/2) (respectively, O(n−1)). This

5We are using ϕ0 = (1/3)(f1 + f2 + f3), where fi is lognormal with parameters
µi and σi; µ1 = −4, σ1 = 1, µ2 = 3, σ2 = 1, µ3 = 7, σ3 = 0.5.

6The kernel K is Gaussian, and the bandwidth is selected according to the
rule-of-thumb δn = 1.06 min(σ̂n, R̂n/1.34)n−1/5, where σ̂n is the sample standard
deviation, and R̂n is the inter-quartile range.

7This is not a criticism of the standard nonparametric kernel estimator, which
is far more general. Further, careful choice of bandwidth and kernel will lead to
improvement. The point is that the look-ahead estimator automatically incorpo-
rates model structure, while for the kernel estimator including enough structure to
obtain similar rates of convergence is in general a nontrivial exercise.

8Sheffés identity states that
∫
|ϕn

T − ϕT | = 2 × supB |
∫

B
ϕn

T −
∫

B
ϕT |, where

the supremum is over all Borel subsets of the state space S. It follows that if∫
|ϕn

T − ϕT | ≤ ε, then for any event B of interest the deviation in the probability
assigned to B by the approximate density ϕn

T from that assigned by the true density
ϕT is less than ε/2.
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is strictly faster than rates obtained for the kernel estimator fn
T .9 For

some common situations we provide upper bounds on the L1 and inte-

gral mean square error in terms of the functions Ht and the distribution

ψ of the shock in the benchmark model (1).

2.2. Computation of Stationary Distributions. In some cases the

model is stationary over time (Ht = H for all t) and ergodic, in the

sense that the distribution ϕt of Xt converges to some limiting dis-

tribution ϕ∞ (usually called the stationary or invariant distribution)

independent of initial conditions. For such models the stationary dis-

tribution has the interpretation of long-run stochastic equilibrium, and

hence is of central interest to the modeler.

As Glynn and Henderson (2001) point out, the look-ahead estimator

can often be applied. Precisely, let p(Xt−1, y)dy again be the condi-

tional density of Xt given Xt−1 as implied by Xt = H(Xt−1,Wt), and

let (X1, . . . , Xn) be a series drawn recursively from Xt = H(Xt−1,Wt).

They propose the estimator

(9) ϕn
∞(y) :=

1

n

n∑
t=1

p(Xt, y).

Notice that we are now summing over time, rather than across inde-

pendent samples of the state at a fixed point in time.

The intuition for ϕn
∞ is as follows. As discussed above, a stationary

density for the model Xt = H(Xt−1,Wt) is defined as a density ϕ∞
satisfying

(10)

∫
p(x, y)ϕ∞(x)dx = ϕ∞(y), ∀ y ∈ S.

When a stationary density exists, and moreover, ϕt → ϕ∞ as t → ∞,

we often also have the correlated law of large numbers result

(11)
1

n

n∑
t=1

w(Xt) →
∫
w(x)ϕ∞(x)dx as n→∞,

where w is any measurable function with
∫
w(x)ϕ∞(x)dx finite. As a

result,

(12) ϕn
∞(y) =

1

n

n∑
t=1

p(Xt, y) →
∫
p(x, y)ϕ∞(x)dx = ϕ∞(y)

9See, for example, Hansen (2005) and references.
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as n → ∞. Thus the look-ahead estimator ϕn
∞ is again seen to be

a very natural estimator, and Glynn and Henderson establish strong

finite sample and asymptotic properties under reasonable assumptions.

We extend their analysis by establishing almost sure L1 convergence to

the true density under weaker conditions than previous results.

3. The General Model

The state space is any separable and completely metrizable topological

space S. Let BS denote the Borel sets of S, and let (S,BS) be endowed

with a σ-finite measure µ. Typically S is a Borel subset of Rk, in which

case µ will always be the Lebesgue measure. When integrating over S

with respect to µ, write dx for µ(dx), dy for µ(dy), etc.; and
∫

in place

of
∫

S
. As usual, L1(S) is the set of real, BS measurable functions f on

S such that |f | is µ-integrable.

The set of densities on S is the set of Borel measurable, nonnega-

tive real functions on S that integrate to 1. A distribution on S is a

probability measure on (S,BS). A stochastic kernel is a family of dis-

tributions P (x, dy) on S, ∀x ∈ S, with the property that x 7→ P (x,B)

is Borel measurable for each B ∈ BS. A density kernel p on S is a

measurable map p : S × S → [0,∞) such that p(x, y)dy is a density on

S for every x ∈ S.

We take as our primitive a Markov chain on S defined by a sequence

of stochastic kernels (Pt)t≥1. The interpretation is that Pt(x, dy) is the

probability distribution of Xt given Xt−1 = x ∈ S; in the case of (1)

we have Pt(x,B) = ψ{z ∈ Z : Ht(x, z) ∈ B}. More generally, the

Markov chain (Xt)t≥0 associated with initial distribution ϕ0 on S and

our model (Pt)t≥1 is defined by:

(13) X0 ∼ ϕ0 and then recursively Xt ∼ Pt(Xt−1, dy).

Formally, given an initial distribution ϕ0 and a sequence of kernels

(Pt)t≥1, there exists a probability space (Ω,F ,P) and a sequence of S-

valued random variables (Xt)t≥0 on (Ω,F ,P) with the property that

X0 ∼ ϕ0 and

(14) P{Xt ∈ B |Xt−1} = Pt(Xt−1, B), ∀t ≥ 1, ∀B ∈ BS.

For more background see, for example, Durrett (1996, Chapter 5), or

Lindvall (2002, Chapter 3, Section 8).
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Assumption 3.1. For each stochastic kernel Pt in (Pt)t≥1, there exists

a density kernel pt which represents it:

(15) Pt(x,B) =

∫
B

pt(x, y)dy, ∀B ∈ BS, ∀x ∈ S.

At this point we can verify Equation (6). To do so, take expectations

of both sides of (14) to get P{Xt ∈ B} = EPt(Xt−1, B). From this

expression, (15) and Fubini’s Theorem we have

(16) P{Xt ∈ B} =

∫
B

E pt(Xt−1, y)dy, ∀B ∈ BS.

From (16) it is clear that the distribution of Xt is absolutely continuous

with respect to µ for every t ∈ N, with density representation ϕt(y) =

E pt(Xt−1, y).

Following (5), the T -step look-ahead (TSLA) estimator is the random

density function ϕn
T defined by ϕn

T (y) := 1
n

∑n
m=1 pT (Xm

T−1, y), where

X1
T−1, . . . , X

n
T−1 are IID draws from ϕT−1. If pt = p for all t, then

the stationary distribution look-ahead (SDLA) estimator is the ran-

dom density function ϕn
∞ defined by ϕn

∞(y) := 1
n

∑n
t=1 p(Xt, y), where

now we are now summing over a time series draw, rather than across

independent samples of the state at a fixed point in time.10

4. Almost Sure Global Convergence

The measure of global convergence with most immediate quantitative

interpretation is the L1 error, given by

‖ϕn
t − ϕt‖ :=

∫
|ϕn

t (y)− ϕt(y)|dy, t ∈ N ∪ {∞}.

Regarding the TSLA ϕn
T , T ∈ N, Glynn and Henderson (2001) establish

that the L1 error always converges to zero in expectation. They also

prove almost sure convergence when pt is uniformly continuous and

bounded on S × S. In fact almost sure L1 convergence always holds:

Theorem 4.1. The TSLA ϕn
T converges in L1 to ϕT with probability

one as n→∞.

10In other words, X1, . . . , Xn obeys (13), where X0 is given.
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Now consider almost sure L1 convergence for the look-ahead estimator

of the stationary distribution. We require some minimal conditions

on the Markov chain to ensure that its time series satisfy the strong

law of large numbers. To state them, some definitions are necessary.11

Let pt = p for all t. A density ϕ∞ ∈ DS is called stationary for p if

(10) holds; that is, if
∫
p(x, y)ϕ∞(x)dx = ϕ∞(y) holds for all y ∈ S.

Let (Xt)t≥0 be the Markov chain generated by p and initial condition

X0 ≡ x ∈ S. For this chain define

L(x,A) := P ∪t≥1 {Xt ∈ A}.

The chain is called λ-irreducible there exists a nontrivial measure λ

on (S,BS) such that L(x,A) > 0 for all x ∈ S and all A ∈ BS with

λ(A) > 0; and Harris recurrent if L(x,A) = 1 for all x ∈ A whenever

A ∈ BS and λ(A) > 0. A Harris recurrent chain with a stationary

distribution is called positive Harris. (For Harris chains the stationary

distribution is necessarily unique.)

Assumption 4.1. The model is time homogeneous: pt = p for all t.

The Markov chain (Xt)t≥0 generated by p is positive Harris.

This positive Harris assumption is sufficient to obtain a law of large

numbers result for the series (Xt)t≥0: By Meyn and Tweedie (1993,

Theorem 17.1.7), if (Xt)t≥0 is positive Harris with stationary distribu-

tion ϕ∞, then for every function w : S → R with
∫
|w|dϕ∞ < ∞ we

have 1
n

∑n
t=1w(Xt) →

∫
w(x)ϕ∞(x)dx almost surely as n → ∞. (In

fact the converse is true, in the sense that when a stationary distri-

bution exists and the law of large numbers holds for all such w then

(Xt)t≥0 is positive Harris. In this sense the positive Harris assumption

is minimal for our purposes.)

For positive Harris chains, Glynn and Henderson (2001) proved almost

sure L1 convergence of the SDLA ϕn
∞ to ϕ∞ when p is uniformly contin-

uous and bounded on S × S. Here we show that the same result holds

under the following condition, which is weaker than uniform continuity

and independent of boundedness.

Assumption 4.2. Let d metrize S. The kernel p is continuous in y

uniformly in x. Precisely, for all ε > 0 and all y ∈ S, there is a δ > 0

such that d(y′, y) < δ implies supx∈S |p(x, y)− p(x, y′)| < ε.

11See Meyn and Tweedie (1993) for further details.
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Theorem 4.2. If Assumptions 4.1 and 4.2 hold, then the SDLA ϕn
∞

converges in L1 to ϕ∞ with probability one.

5. Rates of Convergence

Asymptotic convergence results are reassuring, but without bounds

on the rate of convergence they provide no guidance on finite sample

properties. In this section we examine rates of convergence, and bounds

on global error measures such as expected L1 error or integral mean

squared error.

Consider first the expected L1 error. In macroeconomics it is common

to deal with continuous models on compact state spaces.12 Our first

result pertains to this situation.

Theorem 5.1. Let S be a compact subset of Rk. If pT is continuous

on S × S, then E‖ϕn
T − ϕT‖ = O(n−1/2).

To deal with state spaces which are not compact, we require that the

shock is additive with exponentially decreasing tails. In addition, a

mild restriction is placed on the growth rate of the law of motion:

Assumption 5.1. Let S = Z = Rk, and let Xt = gt(Xt−1) + Wt,

where Wt is distributed according to some density ψ on Rk, the map

gt : Rk → Rk is measurable for all t, and, for some norm ‖ · ‖ on Rk,

(i) ∃α,L > 0 s.t. ‖gt(x)‖ ≤ α‖x‖+L for all t ∈ N, all x ∈ Rk; and

(ii) ∃K, % > 0 s.t. ψ(z) ≤ K exp(−%‖z‖2) for all z ∈ Rk.

Theorem 5.2. Let (Xt) be the sequence in Assumption 5.1, where X0

is a constant x0 ∈ S, let ϕT be the density of XT , and let ϕn
T be the

TSLA of ϕT . If Assumption 5.1 holds, then E‖ϕn
T − ϕT‖ = O(n−1/2).

Another common measure of global error is the integral mean square

error, defined as

IMSE (ϕn
t ) := E

∫
[ϕn

t (y)− ϕt(y) ]2 dy, t ∈ N ∪ {∞}.

12See, for example, Brock and Mirman (1972), or Stokey, Lucas and Prescott
(1989, Chapter 13).
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We give a condition for the integral mean square error of the TSLA

to be O(n−1)—a fast rate of convergence relative to standard nonpara-

metric kernel density estimators.

Theorem 5.3. Let (pt)t≥1 be given and let T ∈ N be fixed. If ϕn
T is

the TSLA of ϕT , then IMSE (ϕn
T ) = O(n−1) whenever

∫
pT (x, y)2 dy is

bounded above independent of x ∈ S. In particular,

(17) IMSE (ϕn
T ) ≤ 1

n
· sup

x∈S

∫
pT (x, y)2 dy.

Notice that the rate does not depend on the time T or the dimension

of S, although the dimension of S typically influences the size of the

constants in the order term. We give some applications of this result

in Section 6.

6. Examples and Applications

First, let’s consider Assumption 3.1, which requires that the transition

probabilities have a density representation. The first lemma gives suf-

ficient conditions for the basic model Xt = Ht(Xt−1,Wt) to satisfy the

assumption. The conditions are not necessary, but when they hold the

result also provides a representation for the density kernel pt.

Lemma 6.1. For the model (1), let Z and S be open subsets of Rk, and

let ψ be a density on Z. Let Sx := H(x, Z), the range of z 7→ H(x, z),

and let z 7→ Ht(x, z) be one-to-one for each x ∈ S. Define Gx : Sx → Z

to be the inverse mapping of this function. If Gx is a C1 function for

each x ∈ S, then Assumption 3.1 holds.13 Moreover, if Jx denotes the

Jacobian of Gx, then

(18) pt(x, y) =

{
ψ{Gx(y)} · | det Jx(y)| if y ∈ Sx

0 otherwise,

This is just an elementary change of variable result, and the proof is

omitted. It tells us how to compute the density of the random variable

Ht(x,Wt) when x is fixed andWt ∼ ψ, which is precisely what p(x, y)dy

represents. The following corollary helps to illustrate application of the

lemma.

13A function f from one open subset of Euclidean space to another is called C1

if it is continuously differentiable everywhere on its domain.
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Corollary 6.1. Assume the hypotheses of Lemma 6.1, and assume in

addition that Z = S = Rk, and that

(19) Xt = Ht(Xt−1,Wt) = gt(Xt−1) + Σt(Xt−1)Wt,

where gt : S → S is any Borel measurable function, and Σt(x) is an

invertible n× n matrix for all t and all x ∈ S. In this case,

(20) pt(x, y) = ψ{Σt(x)
−1[y − gt(x)]} · | det Σt(x)

−1|

holds everywhere on S × S.

Example 6.1. Let Z = S = R, and consider the smooth transition

threshold autoregression (STAR) model

(21) Xt = (β0 +β1Xt−1)(1−G(Xt−1))+(β′0 +β′1Xt−1)G(Xt−1)+σWt,

where (Wt)t≥1 is IID according to density ψ on S, σ > 0, and G : S →
[0, 1] is a smooth transition function, such as the logistic function,

satisfying G′ > 0, limx→−∞G(x) = 0 and limx→∞G(x) = 1. Evidently

the conditions of Corollary 6.1 are satisfied, and from (20) we get

(22) pt(x, y) = p(x, y) = ψ

{
y − g(x)

σ

}
1

σ
,

where g(x) := (β0 + β1x)(1−G(x)) + (β′0 + β′1x)G(x).

Example 6.2. In finance one frequently studies continuous time dif-

fusion processes of the form

(23) Xt = µ(t,Xt)dt+ σ(t,Xt)dWt,

where Xt is Rk-valued, (Wt) is Brownian motion, and σ is everywhere

strictly positive definite. The model (23) is used to price financial

instruments such as stock options and bonds. Many pricing algorithms

involve simulation, and a standard simulation method is discretization

of the time parameter via Euler’s scheme:

(24) Xt = Xt−1 + µ(t− 1, Xt−1) + σ(t− 1, Xt−1)Wt,

where Wt is standard normal. Corollary 6.1 clearly applies, and the

density kernel is immediate from (20).

Example 6.3. Consider the following simple one-sector optimal growth

model. At t a representative household observes kt and divides it be-

tween consumption ct and investment xt. The current productivity

shock At+1 is then observed, and production takes place, yielding out-

put At+1f(xt) at the start of next period. Here At := (1 + γ)tWt,
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where γ is the rate of productivity growth, and (Wt)t≥1 are IID on

Z := (0,∞) with density ψ.

Let Π be the set of all Borel measurable h : [0,∞) → [0,∞) satisfying

0 ≤ h(k) ≤ k. These are the feasible policies, and each one defines a

process

(25) kt = Atf(h(kt−1)) + (1− δ)kt−1,

where δ ∈ (0, 1] is the depreciation rate. The agent has period utility

u and discount factor β. He or she chooses h to solve

(26) max
h∈Π

E

{
∞∑

t=0

βtu(cht )

}
,

where cht := kt − h(kt). Let u be bounded for simplicity.14 Let u and f

both be nonnegative, differentiable, strictly increasing, with u strictly

concave, limc→0 u
′(c) = ∞ and f(0) = 0. In this case it is known that

a solution h to (26) exists. Under standard conditions we also have

0 < h(k) < k for every k ∈ S.15 Suppose this is the case.

Consider the optimal dynamics for k on S := (0,∞), which are given by

the random sequence (25) under the optimal policy h. Since h(k) > 0

for all k ∈ S and f ′ > 0 we have f(h(k)) > 0 for all k ∈ S. Using this

fact one can verify the conditions of Lemma 6.1, and (18) gives us

(27) pt(x, y) = ψ

{
y − (1− δ)x

(1 + γ)tf(h(x))

}
1

(1 + γ)tf(h(x))

when y > (1− δ)x and zero otherwise.

Now let’s illustrate Assumption 4.1, which imposes Harris recurrence.

Example 6.4. Consider again the stochastic growth model in Exam-

ples 6.3 and 6.6. Take γ = 0, so that pt = p is stationary. It has been

shown (Nishimura and Stachurski, 2005) that this model is positive

14This is assumed here only for simplicity. As is well-known, many specific
models with unbounded utility can also be treated by dynamic programming on
the basis of assumptions constraining maximal growth rates under the stochastic
production function relative to the precise utility specification.

15For example, this is true when f is concave. Even when concavity fails, rea-
sonable sufficient conditions exist. See, for example, Nishimura, Rudnicki and
Stachurski (2005, Proposition 3.1).
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Harris under the hypotheses of those two examples whenever the usual

Inada conditions hold. Hence Assumption 4.1 is satisfied.

Example 6.5. Consider the STAR model of Example 6.1. Recall that

a collection of random variables (Xt)t≥0 taking values in S is called

tight whenever, for each ε > 0, there is a compact subset K of S such

that supt≥0 P{Xt /∈ K} ≤ ε. Recall also that p is called (weak) Feller

if x 7→
∫
h(y)p(x, y)dy is continuous and bounded on S whenever h

is. It can easily be deduced from Meyn and Tweedie (1993), Theorems

6.0.1(iii), 9.0.2 and 12.1.2(ii) that if S is a subset of Rk which contains

an open set, if p is Feller and irreducible with respect to the restriction

of Lebesgue measure to S, and if the Markov chain (Xt)t≥0 generated

by p is tight for all the initial conditions X0 ≡ x0 ∈ S, then p is positive

Harris.

Returning to the STAR model, it is easy to show that if ψ is standard

normal, for example, then p defined in (22) is irreducible with respect to

Lebesgue measure on R. Since G is assumed continuous, p is also Feller.

We now verify tightness under the hypotheses α := max{|β1|, |β′1|} < 1

and E|Wt| <∞.

Simple algebra shows that there is a finite constant L such that

(28) |g(x)| ≤ α|x|+ L, ∀x ∈ S.

∴ Et−1|Xt| = Et−1|g(Xt−1) + σWt| ≤ α|Xt−1|+ L+ σ

∫
|z|ψ(dz).

∴ E|Xt| ≤ αE|Xt−1|+ L′, L′ := L+ σ

∫
|z|ψ(dz).

Iterating this inequality backwards in time to t = 0 we get

E|Xt| ≤ αt|x0|+
L′

1− α
.

∴ sup
t≥0

E|Xt| ≤ |x0|+
L′

1− α
.

Chebychev’s inequality now gives

P{|Xt| ≥ n} ≤ n−1

(
|x0|+

L′

1− α

)
, ∀n ∈ N.

Evidently (Xt) is tight, and the STAR model is positive Harris.
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Now let’s turn to Assumption 4.2. A special but important case is

where S is an open subset of R. For this case it is easy to see that

Assumption 4.2 is satisfied whenever pt(x, y) is differentiable in y for

each (x, y) ∈ S × S, and

(29) ∀y ∈ S, ∃Ky ∈ R s.t.

∣∣∣∣∂pt(x, y)

∂y

∣∣∣∣ ≤ Ky, ∀x ∈ S.

Example 6.6. Consider the stochastic growth model of Example 6.3.

Let lnWt ∼ N(0, 1), and, for simplicity, let δ = 1. Notice that pt is

neither bounded nor uniformly continuous on S×S = (0,∞)×(0,∞).16

However, Assumption 4.2 holds, as can easily be verified via (29). In

fact, the representation (27) and some simple calculus shows that∣∣∣∣∂pt(x, y)

∂y

∣∣∣∣ ≤ Ky :=
1√

2πy2
, ∀x ∈ S.

Example 6.7. In the nonlinear autoregression (21), it is clear from

(22) that Assumption 4.2 holds whenever ψ is differentiable on R and

ψ′ is bounded.

Next we illustrate Assumption 5.1.

Example 6.8. In the STAR model Xt = g(Xt−1) +Wt, where

g(x) := (β0 + β1x)(1−G(x)) + (β′0 + β′1x)G(x), Wt ∼ N(0, σ2),

Assumption 5.1 is satisfied with α = max{|β1|, |β′1|}, L = max{|β0|, |β′0|},
K = (2πσ2)−1/2 and % = (2σ2)−1.

Finally, an application of Theorem 5.3 is given.

Proposition 6.1. Consider the model (19), where Σt(x) is positive

definite for all t and x. Let (pt)t≥1 be the corresponding density kernels,

defined by (20). Let ψx
t be the density of the random term Σt(x)Wt. Let

T ∈ N be fixed, and let ϕn
T be the TSLA of ϕT . If there exist constants

K ≥ 0 and % > 0 such that ψx
t satisfies ψx

t (z) ≤ K exp(−%‖z‖), for all

x ∈ S, t ∈ N and z ∈ Z, then

(30) IMSE (ϕn
T ) ≤ K2

n

2πk/2

Γ(k/2)(2%)k
(k − 1)!

16In fact, pt may not be continuous when f is non-concave.
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If ψx
t satisfies ψx

t (z) ≤ K exp(−%‖z‖2), for all x ∈ S, t ∈ N and z ∈ Z,

then

(31) IMSE (ϕn
T ) ≤ K2

n

(
π

2%

)k/2

.

The conditions in the proposition are just small tail assumptions for

the distribution ψ of Wt. The will be satisfied if, for example, Σt(x) is

a constant and ψ is Gaussian.

7. Proofs

Proof of Theorem 4.1. The following proof draws on ideas in Devroye

and Lugosi (2001, § 9.4) concerning concentration of measure inequal-

ities. A discussion of McDairmid’s inequality can be found there.

For the proof, fix n ∈ N, and let Sn be the n-fold cartesian product

of S with itself, a typical element of which is x = (x1, . . . , xn). Let

X1
T−1, . . . , X

n
T−1 be IID draws from ϕT . By McDairmid’s inequality, if

g is a measurable function from Sn to R such that

sup |g(x)− g(x′)| ≤ c,

where the supremum is over all pairs x, x′ in Sn which differ on at most

one coordinate, then

P{|g(XT−1)− Eg(XT−1)| ≥ ε} ≤ 2 exp

(
−2ε2

nc2

)
,

where g(XT−1) := g(X1
T−1, . . . , X

n
T−1). Setting

g(x) = g(x1, . . . , xn) =

∫ ∣∣∣∣∣ 1n
n∑

m=1

pT (xm, y)− ϕT (y)

∣∣∣∣∣ dy
gives g(XT−1) = ‖ϕn

T − ϕT‖. Pick any x, x′ ∈ Sn such that x and x′

differ only at the k-th coordinate. In this case |g(x) − g(x′)| is given

by the expression∣∣∣∣∣
∫ ∣∣∣∣∣ 1n

n∑
m=1

pT (xm, y)− ϕT (y)

∣∣∣∣∣ dy −
∫ ∣∣∣∣∣ 1n

n∑
m=1

pT (x′m, y)− ϕT (y)

∣∣∣∣∣ dy
∣∣∣∣∣ ,
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which is bounded above by∫ ∣∣∣∣∣ 1n
n∑

m=1

pT (xm, y)−
1

n

n∑
m=1

pT (x′m, y)

∣∣∣∣∣ dy
=

1

n

∫
|pT (xk, y)− pT (x′k, y)|dy.

∴ |g(x)− g(x′)| ≤ 1

n

∫
|pT (xk, y)− pT (x′k, y)|dy ≤

2

n
.

∴ P{|g(XT−1)− Eg(XT−1)| ≥ ε} ≤ 2 exp

(
−nε2

2

)
.

∴ P{| ‖ϕn
T − ϕT‖ − E‖ϕn

T − ϕT‖ | ≥ ε} ≤ 2 exp

(
−nε2

2

)
.

It now follows from the Borel-Cantelli Lemma that

lim
n→∞

| ‖ϕn
T − ϕT‖ − E‖ϕn

T − ϕT‖ | → 0 almost surely.

Thus, limn→∞ ‖ϕn
T−ϕT‖ → 0 almost surely whenever E‖ϕn

T−ϕT‖ → 0.

In other words, convergence in expectation implies almost sure conver-

gence. That convergence in expectation always holds was shown in

Glynn and Henderson (2001, Theorem 4). �

Next is the proof of Theorem 4.2. By Schéffe’s Lemma, ‖ϕn
∞−ϕ∞‖ → 0

whenever ϕn
∞ → ϕ∞ pointwise. Moreover, by the LLN in Meyn and

Tweedie (1993, Theorem 17.1.7), we know that at each point y ∈ S

the look-ahead estimator ϕn
∞(y) converges to the true density ϕ∞(y)

on the complement of a set Ey with P(Ey) = 0. However, since S

may be uncountable, we cannot conclude that ϕn
∞ → ϕ∞ pointwise

with probability one. Thus, to show almost sure L1 convergence, some

degree of regularity is imposed on the density kernel p to help control

the uncountable family of P-null sets {Ey : y ∈ S}. This is the purpose

of Assumption 4.2.

Lemma 7.1. Let Bδ(y) := {y′ : d(y, y′) < δ}. If Assumption 4.2 holds

then ϕ∞ is continuous on S, and ϕn
∞ is continuous on S uniformly in

n, in the sense that for all ε > 0 and all y ∈ S there is a δ > 0 such

that

(32) y′ ∈ Bδ(y) =⇒ sup
n∈N

|ϕn
∞(y)− ϕn

∞(y′)| ≤ ε.
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Proof. Regarding the first statement, fix ε > 0 and y ∈ S. Choose

δ > 0 as in Assumption 4.2. Then for y′ ∈ Bδ(y),

|ϕ∞(y)− ϕ∞(y′)| =
∣∣∣∣∫ p(x, y)ϕ∞(x)dx−

∫
p(x, y′)ϕ∞(x)dx

∣∣∣∣
≤

∫
|p(x, y)− p(x, y′)|ϕ∞(x)dx ≤ ε.

Regarding (32), the same argument yields a δ > 0 such that for y′ ∈
Bδ(y) we have

|ϕn
∞(y)− ϕn

∞(y′)| ≤ 1

n

n∑
t=1

|p(Xt, y)− p(Xt, y
′)| ≤ 1

n

n∑
t=1

ε.

�

Proof of Theorem 4.2. As discussed above, it is sufficient to show that

ϕn
∞ converges to ϕ∞ pointwise for all paths ω in some set E ∈ F with

P(E) = 1. So let A be a countable dense subset of S, and note by the

LLN that for each a ∈ A there is a corresponding set Ea ⊂ Ω with

P(Ea) = 1 and ϕn
∞(a) → ϕ∞(a) on Ea. Let E := ∩a∈AEa. Clearly

P(E) = 1. We claim that for every path ω ∈ E we have ϕn
∞ → ϕ∞ as

n → ∞ pointwise. To see this, fix any such path, any y ∈ S and any

ε > 0. By Lemma7.1 we can take a δ > 0 such that |ϕ∞(y)−ϕ∞(y′)| <
ε for all y′ ∈ Bδ(y), and, in addition, (32) holds. Choose a ∈ A∩Bδ(y).

By the triangle inequality, |ϕn
∞(y)− ϕ∞(y)| is less than

|ϕn
∞(y)− ϕn

∞(a)|+ |ϕn
∞(a)− ϕ∞(a)|+ |ϕ∞(a)− ϕ∞(y)|

∴ |ϕn
∞(y)− ϕ∞(y)| ≤ 2ε+ |ϕn

∞(a)− ϕ∞(a)|,

where ε does not depend on n. Because we are considering a path in

E, taking limits gives

lim
n→∞

|ϕn
∞(y)− ϕ∞(y)| ≤ 2ε.

Since ε is arbitrary the proof is done. �
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Proof of Theorem 5.1. By Fubini’s Theorem, the Cauchy-Schwartz in-

equality and independence of the sequence X1
T−1, . . . , X

n
T−1 we get

E‖ϕn
T − ϕT‖ =

∫
E|ϕn

T (y)− ϕT (y)|dy

≤
∫ √

Var(ϕn
T (y))dy

≤
√

1

n

∫ √
Var(pT (Xm

T−1, y)dy

≤
√

1

n

∫ √
EpT (Xm

T−1, y)
2dy.

Since pT is continuous and S is compact, there is aK <∞ with pT ≤ K

everywhere on S × S, and hence the bound

E‖ϕn
T − ϕT‖ ≤

√
1

n
Kµ(S).

holds for all n ∈ N. �

Next we turn to the proof of Theorem 5.2. The proof involves several

lemmata.

Lemma 7.2. If Assumption 5.1 holds and X0 is a fixed constant x0 ∈
S, then E exp(r‖Xt‖) <∞ for all r > 0 and all t ∈ N.

Proof. By (i) of Assumption 5.1, we have, for all t ∈ N,

‖Xt‖ ≤ α‖Xt−1‖+ L+ ‖Wt‖.

∴ r‖Xt‖ ≤ rαt‖x0‖+
t−1∑
i=0

rαi(L+ ‖Wt−i‖).

∴ exp(r‖Xt‖) ≤ exp(rαt‖x0‖)
t−1∏
i=0

exp(rαiL)
t−1∏
i=0

exp(rαi‖Wt−i‖)).

∴ E exp(r‖Xt‖) ≤ exp(rαt‖x0‖)
t−1∏
i=0

exp(rαiL)
t−1∏
i=0

E exp(rαi‖Wt−i‖)).

From (ii) of Assumption 5.1 the expectation E exp(a‖Wt‖)) is finite for

any a > 0, so the right hand side of the last inequality is finite. �

Lemma 7.3. If (ii) of Assumption 5.1 holds, then there exists a posi-

tive constant N such that ψ(z) ≤ N exp(−‖z‖) for all z ∈ S.
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Proof. Let M := {z : ‖z‖ ≤ 1/%}. For z /∈ M we have %‖z‖ > 1, and

hence %‖z‖2 > ‖z‖. Therefore,

K exp(−%‖z‖2) ≤ K exp(−‖z‖), ∀z /∈M.

Now set K0 := supz∈M K exp(−%‖z‖2 + ‖z‖), so that

K exp(−%‖z‖2) ≤ K0 exp(−‖z‖), ∀z ∈M.

Now setting N := max{K0, K} and applying (ii) of Assumption 5.1

provides a constant with the desired property. �

Proof of Theorem 5.2. The proof of Theorem 5.1 provides the bound

E‖ϕn
T − ϕT‖ ≤

√
1

n

∫ √
EpT (Xm

T−1, y)
2dy.

We must verify that the integral is finite. To this end, observe that

Lemma 7.3 yields an N <∞ with

p(Xm
T−1, y)

2 = ψ(g(Xm
T−1)− y)2 ≤ N2 exp(−2‖g(Xm

T−1)− y‖).

But

exp(−2‖g(Xm
T−1)− y‖) ≤ exp(−2‖y‖+ 2‖g(Xm

T−1)‖).

∴
√

Ep(Xm
T−1, y)

2 ≤ N
√

E exp(−2‖y‖+ 2‖g(Xm
T−1)‖)

≤ N exp(−‖y‖)
√

E exp(2‖g(Xm
T−1)‖)

≤ N exp(−‖y‖)
√

E exp(2α‖Xm
T−1‖+ 2L)

≤ N exp(−‖y‖) exp(L)
√

E exp(2α‖Xm
T−1‖).

As a result,

E‖ϕn
T − ϕT‖ ≤

√
1

n
N

∫
exp(−‖y‖)dy exp(L)

√
E exp(2α‖Xm

T−1‖).

Here the expectation on the right is finite from Lemma 7.2. �

Proof of Theorem 5.3. Since the TSLA is unbiased and {X1
T−1, . . . , X

n
T−1}

are independent, we have

IMSE (ϕn
T ) =

∫
E[ϕn

T (y)− ϕT (y)]2 dy

=

∫
Var(ϕn

T (y)) dy =
1

n

∫
Var(pT (Xm

T−1, y)) dy.
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But evidently∫
Var pT (Xm

T−1, y) dy ≤
∫

EpT (Xm
T−1, y)

2 dy = E
∫
pT (Xm

T−1, y)
2 dy.

(33) ∴ IMSE (ϕn
T ) ≤ 1

n
E

∫
pT (Xm

T−1, y)
2 dy.

The result (17) now follows. �

Proof of Proposition 6.1. We apply (17). Under the first condition we

have∫
pT (x, y)2 dy =

∫
ψx

t [y − gT (x)]2dy

≤
∫
K2 exp(−2%‖y − gT (x)‖)dy =

∫
K2 exp(−2%‖z‖)dz.

Direct integration gives∫
exp(−2%‖x‖)dx =

2πk/2

Γ(k/2)(2%)k
(k − 1)! ,

from which (30) now follows. The proof for the second case is essentially

identical, this time using∫
exp(−2%‖x‖2)dx =

(
π

2%

)k/2

.

�
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