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Abstract

A stochastic production frontier model is formulated within the generalized production
function framework popularized by Zellner and Revankar (1969) and Zellner and Ryu
(1998). This framework is convenient for parsimonious modeling of a production
function with variable returns to scale specified as a function of output. Two aternatives
for introducing the stochastic inefficiency term and the stochastic error are considered,
one where they are appended to the existing equation for the production relationship and
one where the existing equation is solved for the log of output before the stochastic terms
are added. The latter alternative is novel, but it is needed to preserve the usua definition
of firm efficiency. The two dternative stochastic assumptions are considered in
conjunction with two returns to scale functions, making a total of four models that are
considered. A Bayesian framework for estimating al four models is described. The
techniques are applied to USDA state-level data on agricultural output and four inputs.
Posterior distributions for all parameters, firm efficiencies and the efficiency rankings of
firms are obtained. The sensitivity of the results to the returns to scale specification and to

the stochastic specification is examined.



1. I ntroduction

The estimation of stochastic production frontier models is a common procedure for
assessing the efficiency of firms within an industry. Several versions of stochastic
frontier models have been suggested in the literature, designed to accommodate the
varying nature of data and specific characteristics of empirical applications. A typical
model relevant for panel data involving observations on a number of firms over time can

be written as
IOthzlogf(Xit’b)' Z+uit (1)

In this equation Yy, denotes output for the i-th firm in the t-th time period, X, is a

corresponding vector of inputs, b represents a vector of unknown parameters, and
f (x,,b) isthe deterministic part of the production frontier. It is assumed that the random
errors u, capture measurement and/or specification error and that they are independent
normal random variables with mean zero and variance w'*. Each z is assumed to be a
nonnegative random variable that describes the inefficiency of the i-th firm in terms of
the distance of logy, from the stochastic frontier logf (x,,b)+u,. Alternative
distributions that have been suggested in the literature for the z include the exponential,

gamma, truncated normal and half-normal distributions. The inefficiency term is assumed
to be constant over time, although this assumption can be relaxed. To measure efficiency

(rather than inefficiency), and to make measurement of efficiency across firms

comparable, it is conventional to use t, =exp(- z) to denote the efficiency of the i-th
firm. Since O£ t, £1, this measure allows usto say that the i-th firm is 100t,% efficient.
Also, it has a natural interpretation as the ratio of mean output conditional on the
inefficiency of the i-th firm (z ), to mean output on the frontier (conditional on z =0).
This interpretation is expressed algebraicaly as

E(vil 2)  _ f(X..b) exp(- z) E[exp(u,)] _
E(y. 1z =0) f(x,,0) Elexp(u,)]

exp(- 7) =t, 2

Reviews by Greene (1997) and Koop and Steel (2001) provide a convenient access to the

extensive literature on stochastic production frontiers and its historical development.



Greene emphasizes the sampling theory approach while Koop and Steel focus on

Bayesian inference.

In this paper we are concerned with Bayesian estimation of stochastic frontier
models that exhibit variable returns to scale. One way to specify a model with variable
returns to scale is to choose an appropriate form for the function log f (x,,b). For
example, a Cobb-Douglas specification is not satisfactory because it exhibits constant
returns to scale. On the other hand, a trandog specification for log f (x,,b) yields a
returns to scale function that is a linear function of the logs of the inputs; it can exhibit
regions of increasing, constant and decreasing returns to scale. The trandog model has
some disadvantages, however. It does not automatically satisfy the regularity conditions
of concavity and monotonicity, functions with several inputs require estimation of alarge
number of parameters, and the relationship between the substitutability of the inputs and
the returns to scale may be a complicated undesirable one. An alternative approach
without these problems, and the approach adopted in this paper, is the generalized
production function specification pursued by Zellner and Revankar (1969), Revankar
(1971), Zellner (1971, p.176), and Zellner and Ryu (1998). In this model the production
function is assumed to be homothetic, implying it can be written as

y=g'[f(x,0)] ©)

where g* is a monotonic transformation and f (x,b) is a homogeneous function of
degree m. For the moment, we omit the i and t subscripts and the stochastic inefficiency

and error terms. In the context of equation (3), the returns to scale (RTS) function is
defined as

dy/y
RTS(y) =m—=-2L 4
(y) & 7 f (4)

A ‘generalized production function’ is obtained by specifying functions for RTS(y) and
f (x,b), and solving the differential equation in (4) to yield an explicit representation of



the production relationship in equation (3). For example, Zdlner and Revankar (1969)
suggest the RTS function

m

RTS(y) =—— ©)
1+qy
that leads to the production relationship
logy +qy =log f (x,b) (6)

If yis scaled such that y3 1, and the inequality restrictions >0, m>1+q hold, the
RTS is greater than one for low outputs and decreases monotonically as output increases,
leading to a U-shaped average cost curve that has a minimum when RTS(y)=1. The
RTS function in (5) achieves this desirable property with the introduction of only one

additional parameter, . Also, the production relationship satisfies concavity and

monotonicity regularity conditions as long as f (x,b) is chosen to have these properties,

and subgtitutability of the inputs is governed by the function f (x,b).

If functions like (6) are considered desirable for modeling stochastic production
frontiers with variable returns to scale, the next question that must be addressed is the
way in which stochastic inefficiency and error terms are introduced. One possibility is
that adopted by Kumbhakar (1988) and Kumbhakar et a (1991) who append the
stochastic terms to equation (6). This strategy is a natural extension of the assumption
employed in Zellner and Revankar (1969), Zellner (1971) and Zellner and Ryu (1998)
where a single normally distributed error is attached to equation (6). In the panel data
context described earlier Kumbhakar’ s strategy |eads to the model

logy, +qy, =log f(x,b)- z +u, (7)

One property of this function is that, in contrast to equation (1), the usual assumptions of
homoskedastic z and u, no longer imply that logy, will be homoskedastic. It is not
possible to find an analytical solution for logy, from equation (7). Suppose, however, a

numerical solution is available. It will be of the form



logy, = glg log f (x,,b)- 7 +u,] (8)

The variance of logy, from (8) will, in general, depend on f (x,,b); and hence logy,
will be heteroskedastic. The existence of heteroskedasticity complicates the notion of the

frontier. The efficiency measure in equation (2) will no longer be a simple function of z,
but will depend on the input levels x, . Specificaly, if u, [ N(O,w "), then
aaw 3’ a+qy, 0

- .
G €y ;expi-g(lowﬁqmt-logf(x“b)u-un)zﬁ ©)
it

f(ylz)=
and the efficiency of the i-th firm can be written as

N\ ] W 20
Eylz) O W)eml- 5 (logy,+ay, -log fx,b)+z - u ) yay,

E(yit |Z‘ :O) dl-l'qyit)exp{l' V_ZV(IOQ Yit +qyit B |Og f()gt’b) - uit)zt\lglth

(10)

The stochastic assumptions in (7) lead to a complex expression for efficiency involving
integrals for which no closed form solution is apparent. However, despite the complexity
of (10), it is nevertheless possible to use the cost function to find an alternative definition
of inefficiency that is relatively simple. This interpretation was noted by Kumbhakar
(1988); we consider it explicitly later in the paper.

A second way to introduce the stochastic inefficiency and error terms is to view

them as being appended to the numerical solution for logy from equation (6). If the

solution for logy isgivenby logy =g[q,log f (x,b)], then this model can be written as

Iog Yie = g[q Iog f(xiwb)] -7 +uit (11)

Including the stochastic terms in this way is more natural. Under the usual assumptions
about z and u,, logy, is homoskedastic, and the inefficiency interpretation of z given

in equation (2) still holds. Specifications like (11) have been overlooked in the literature,



probably because of the need to obtain the solution logy = g[q,log f (x,b)] . However, as

we will see, estimation is till possible within the framework of Bayesian inference.

The objectives of this paper are to describe and illustrate Bayesian methodology
for estimating stochastic frontiers like those described in equations (7) and (11). Two
RTS functions are considered, that in equation (5) and one other. These two are a subset
of five functions considered by Zelner and Ryu (1998) in their application to the
transport equipment industry. We compare estimates of the parameters and the firm
efficiencies under the two different RTS specifications and the two different stochastic
specifications. As far as we are aware, Bayesian estimation of functions like (7) has not
appeared in earlier literature, and estimation of functions like (11) has not been attempted
using sampling theory or Bayesian inference. Our strategy for estimation, and the prior
assumptions that we adopt, are modifications of those described in Koop and Steel
(2001), adapted to accommodate the introduction of the RTS function and the different
stochastic assumptions. One particular novelty in our work is the ability to estimate the
parameters b and q in equation (11), even athough no analytical expression for g is
available. This problem is overcome by solving for g numericaly, within a Markov chain
Monte Carlo algorithm. To ensure similar prior information is used for both functions we
place a prior density function on the RTS when output is unity, and on the level of output

for which average cost isaminimum (RTS=1) . Thisprior is used to derive a prior on m,

the degree of homogeneity of the function f, and on the parameter in the RTS function.

One of the advantages of the Bayesian approach (also noted by Koop and Stedl) is
the ease with which useful inferences can be made about quantities that are quite
complicated, or intractable functions from a sampling theory point of view. For example,
we can provide posterior density functions for making finite-sample inferences about
firm efficiencies, the efficiency ranking of each firm, the output at which average cost is
a minimum and the probability that one firm is more efficient than another. We provide
examples such as these from our application, thus illustrating the flexibility of the
Bayesian approach.

The plan of the paper is as follows. The model and stochastic assumptions are

presented in Section 2. Section 3 contains descriptions of the prior density functions. The



conditional posterior density functions and the Markov chain Monte Carlo (MCMC)
algorithms are described in Section 4. The empirical application and results are presented

in Section 5, with concluding remarks being made in Section 6.

2.  Modelsand Assumptions

The two models that we consider can be written as
ZR: log y, +qy, =log f (x,.,b) (12)

NR: logy, +9(logy,)” =log f (x,b) (13)

The function ZR is attributable to Zellner and Revankar (1969); it was discussed in the
introduction. The function NR is attributable to Nerlove (1963) and Ringstad (1967). It is
derived from the RTS function

m

RTS(y) ) 1+2glogy

(14)

For this function to decrease monotonically from a point above one to a point below one,

producing a “U-shaped” average cost curve with a minimum at RTS=1, we require the

units of output to be such that y3 1; the required parameter restrictions are m>1 and
g>0.

The same function f is assumed for both models, namely a Cobb-Douglas of the

form

log f (x,.b) =b, +b,log x, +b,log %, +b,log x, +b, log ¥, +b, log(time)

=D, +b, 109 o 2+ b, log oot 2+ b, log g2 2+ mlog x,, +by log(time)
eXit g eXit g eXit g

(15)
where m=Db, +b, +b, +b, isthe degree of homogeneity of the function f with respect to

theinputs x;, x,, %, and x,. The second line in equation (15), where b, isreplaced by m,

is the parameterisation used for estimation. The term log(time) is included to capture
technical change that is assumed to be Hicks neutral. Including both technical change and



scale effects does rai se questions about whether misspecifying one of these functions will
lead to misleading inferences about the other. See, for example, Calem (1990). However,

we believe that including some form of technical change is better than ignoring it.

At this point, it is convenient to give some information about the application, with
further details being provided in Section 5. The data we use are annual USDA state-level
data on agricultural output (y) and the four inputs, materials (x;), capital (x,), land (x;),
and labor (x,). A “firm” is taken as a USDA farm production region, of which there are

ten. Because there are more states than production regions, the subscript t is not a smple

time index. It is an index for the values from al states in a given region, over the 26-year

period 1971-1996. Since the number of states in each region varies, we write t =12,...,T,

and i =1,2,...10, where T, is amultiple of 26. The variable time takes values 1 to 26 for

each state.

The two models, each with two different stochastic assumptions, appear in
equations (16) through (19). We use the abbreviation NR(het) to describe the Nerlove-
Ringstad model with heteroskedastic logy and the abbreviation NR(hom) to describe the

Nerlove-Ringstad model with homoskedastic log y. ZR(het) and ZR(hom) are used for

similar descriptions of the Zellner-Revankar models.

NR(het): logy, +g(logy, )" =log f (x,.b)- 7 +u, (16)

- 1+,1+4glog f (x,,b)

NR(hom): logy, = 2

-4 tU (17)

Equation (17) is obtained by solving equation (13) for logy, and then appending the
stochastic terms. Unlike the ZR(hom) model, a closed form solution for logy, can be
obtained. The second root of the quadratic has been omitted because it violates the

restrictions on the RTS function that imply logy, 2 O.

ZR(het): logy, +qy, =log f (x,,b)- z +u, (18)

ZR(hom): logy, =olg log f (x,b)] - 2 +u, (19)
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In all casesthe u;, are assumed to be independent N(O,w‘l). Several dternatives have

been suggested in the literature for the distribution of z, including the exponential, half
normal and normal distributions. See Koop et al (1995) for a discussion of Bayesian

estimation of the various aternatives. We follow Koop and Steel (2001) and assume the

z, are independent drawings from the exponential distribution

p(z)=

1 ol 2y
TP T )

In addition, z and u,, are assumed to be independent.

For the ‘homoskedastic’ functions, t, =exp(- z) is taken as the measure of

inefficiency of the i-th firm. For the ‘heteroskedastic’ functions, we consider two
measures of efficiency. The first is given in equation (10) for the ZR model; a similar
expression can be derived for the NR model. We refer to these efficiency measures as

those obtained from the output function. In the application the integrals in these equations
were evaluated numerically for each x, and for each parameter draw made using an
MCMC agorithm. The second efficiency measure is that noted by Kumbhakar (1988),
and is derived from the cost function. If a firm has knowledge of z and u,, and, to
achieve a given level of output vy, , it uses input levels that maximize profits, the cost
function for the ZR(het) model can be written as

logy, +Q¥, , Z _ U 1)
m m m

logC, =y +

where y,, depends on b and the input prices. We can interpret exp(z/m) as the
proportional increase in costs necessary for the i-th firm to achieve a given level of
output, relative to the cost for a firm that lies on the frontier. To give this measure an

efficiency interpretation that can be compared with the other efficiency measures, in our
application we report itsinverse exp(- z /m). The same result also holds for the NR(het)
moddl.
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3.  Prior Distributions

The parameters requiring prior distributions are b,,b,,b,,b;,mb.,| and w for al
functions, g for the ZR models, and g for the NR models. Caution needs to be exercised
if improper priors are used for some of these parameters. For the case where E[Iog yit] is
alinear function of b, Fernandez et al (1997) show that, in the absence of panel data,
proper priors on both | and w are required to obtain proper posterior densities. The
improper prior p(w) u w* can be used when panel data are available, but a proper prior
on | still needs to be specified. Accordingly, we use p(w) uw* as a prior for w, and

for | "' we use the exponential distribution
p(l '1) =c, exp(-cll ‘1) (22)

Van den Broeck et a (1994) show that this prior density leads to a proper, but relatively

non-informative, prior on the firm efficiencies, with a convenient setting for ¢, given by

¢, = - log(t *) where t * isthe prior median for the efficiency distribution.

A prior density function for the remaining parameters is obtained by:

1. Specifying proper priorsfor the RTS at the point y =1 and the level of
output for which RTS=1.
2. Transforming these priorsto aprior on mand g (or mand Q).
3. Specifying uniform priorsfor (b,,b,,b,,b,,by).
4. Including the necessary inequality restrictions on all parameters.
Let
r =the logarithm of RTSwhen y=1, and
g =thelogarithm of output for which RTS=1.

These parameters can be viewed as governing the magnitude of average cost when output
is low, and how quickly average cost declines to reach its minimum. Ignoring for the
moment inequality restrictions on these quantities, we take for their priors independent

exponential distributions given by
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p(9) = ¢, exp(- c,q) (23)

p(r) =c, exp(-c.r) (24)

Looking first at the implications of these priors for the parameters of the NR models, we
note, from equation (14), that RTS(1) =m and hence r =logm. The resulting prior for m

IS
C
NR: = (29)
To obtain an expression for g, the value of log y for which RTS=1, we solve
AL (26)
1+2gq
toobtain q=(m- 1)/2g. Thus,
1 m1 j c(mDj
NR: p(glm = p(q)‘ q‘- o exp) - (27)
29 | 29
Equations (25) and (27) define the joint prior p(g,m) for the NR models.
In the ZR models the expressions relating r and g to mand q are, from (5),
&mp an- 1o
r =loge——-=x= =loge——= (28)
Ye1+a5 19T
leading to ajoint prior for (mq) given by
Ir I
ﬂm ﬂ'q ( )C quq 1
p(ma = p(r,a) =CCy M A+ 0)| o (29)
m m [ ] l( m- :ch 1
fim 9q

The b, are assigned uniform priors, but several inequality restrictions are imposed
on the parameters. They are:

Bothmodels: b, >0, b,>0, b,>0, b, >0, b, +b,+b;<m (30)

NR: m>1, g>0 (31)
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ZR: m>1+q, q>0 (32
The restrictions in (30) are designed to make f (x,,b) an increasing function of all inputs

and an increasing function of technical change. As mentioned earlier, the restrictions in

(31) and (32) ensure U-shaped average cost curves with a minimum average cost.

To summarize the prior distributionson b, m, g and q, and in preparation for a
description of the MCMC algorithms used for estimation, it is convenient to introduce

some new notation and to vary dightly some existing notation. Let b =(h,,b,,b,,b; b, )¢
That is, b contains all the parameters defined in the specification of log f (x,,b) in
equation (15), except for b, and m. Also, let x,b egua the right-hand side of equation

(15) after subtracting from it mlogx,, . That is,

Xitb = Iog f ()gt ’b) - mlog Xait (33)

Let f g =(M@) and f,,=(m,q)¢. Also, define d,, =(b¢f, ;)¢ and d,, =(b¢f ;).
Defining dz and d,, is useful for describing the MCMC agorithm for the
homoskedastic models; f,, and f,, are useful for describing the algorithm for the
heteroskedastic models. When d or f appears without a subscript, the equation where it

appears will refer to both the ZR and NR models. Specifically, a generic version of the
homoskedastic models in equations (17) and (19) will be written as

log ¥, = 9(%.,d) - 7 +u, (34)
A generic version of the heteroskedastic models in equations (16) and (18) is
h(y,.f) =xb- z +u, (35)
with h(y.f ) =logy, +g(logy,)” - mlogx,, and h(y,,f =) =logy, +qy, - mlog X, .
The prior densitiesfor f , and f ,; can be summarized as

m-1

C, (M Dy
d v (f 36
Zg g(NR) ( )

i
P(f \r) 1 exp : -
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! L+ g’
p(f ) u[M- (1+0)] F(m chﬂ'(f zr) (37)

where I(f ) and 1(f,) are indicator functions, equal to unity when the inequality
restrictions in equations (31) and (32), respectively, hold, and zero otherwise. The density
p(f) will be used as notation for describing either (36) or (37). The prior densities for

d,r ad d,; can be summarized as

p(d) u p(fF)I b |f) (38)

where | (b|f) is an indicator function equal to unity when the inequality restrictions in

equation (30) hold. The indicator is expressed as conditional on f because the restriction

that b, be positive is expressed as b, +b, +b, <m, making it conditional on m.

4. Estimation

Given the above models and prior densties, it is now possible to describe
conditional posterior densities for the parameters and the inefficiency terms. Doing so
enables us to set up Gibbs samplers for drawing observations from the joint posterior
densities for al unobservables. These drawings can be used in turn to make inferences
about unknown quantities of interest. The conditional posterior densities are dlightly
modified versions of those given in Koop and Stedl (2001), adapted to allow for the
nonlinear functions g and h, the priors p(d) and p(f), and the possibly different
numbers of observations on each firm (region). In what follows N =10 is the number of
firmsand M = é_i'il'l'i is the total number of observations. Also, following Koop and
Sted, we use f;[w|b,c] to denote a gamma density with slope parameter b and scale
parameter ¢. That is, fo(w|b,c) u w” exp(- cw). We use the notation y, x and z to
denote al observations on output, the inputs and the inefficiencies, respectively.

The conditional posterior density for | ** is the same for both the heteroskedastic
and homoskedastic models; it is given by the gamma distribution
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pl Iy, x z,d,w = feé TN +D), gg Z- |n(t*)% (39)
e i=1

For the remaining conditional posterior densities we first describe those for the
homoskedastic models represented by equation (34), and then point out how they need to
be modified for the heteroskedastic models represented by equation (35).

Mode: logy, = g(x,,d)- z +u,

The conditional posterior density for the i-th inefficiency term z is anormal distribution

truncated from below at zero with parameters m, and s? given by

:lg(( d)- | )_i SZ:L (40)
my Tglgxu 0g i Twi a

The precision parameter w has the following gamma distribution as its conditional

posterior density

7

e |laMp &l § au
Pl ¥ x 2.1) = fo | -+ 58 a (logy, - g%, d)+2z)" 5 (41)
e @ 8212 Al

Finally, the conditional posterior density function for d is given by

0=

wd g

p(d |y, X, Zw, ) expi Zaa (logy, - g0x.d)+ z)zgp(d) (42)
i=1 t=1

A Metropolis step was used to draw from this density, since it is not of a recognizable
form. More details are given after we describe the conditional posterior densities for the
heteroskedastic models.

Modd h(ynif) :X|tb_ Z +uit

The conditional posterior density for the i-th inefficiency term z is again a normal
distribution truncated from below at zero, with the same scale parameter s =1/wT,, but

the location parameter becomes
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0_—

(xb- (Y F)) - == 43)

n}i - 1 -I-IW|

1
T

—
1

The conditional posterior density for w is the gamma distribution

ol N 2 60
pwl % % zd,1)= Gew aéwo 82aa(h(y.t,f) xb+2)’ gl (44)

i=1 t=1

For this modél it is convenient to replace the conditional posterior density for d with two

conditional densities, one for b and onefor f . The conditional posterior density for b is
a truncated multivariate normal distribution with truncations given by I(b|f), and

parameters
b=(XX)'Xqh+ 2) V, =w H(XK) (45)

where X is an (M " 5) matrix containing the observations x,,and hand zare M —
dimensional vectors containing h(y,,f) and values z (suitably repeated), respectively.

The conditional posterior density for f isgiven by

1w
p(f Iy,X,Z,b,W,I)u|J|exp:' >

& & (n(y,.f)- xb+ z)zg of)  (46)

i=1t=1

where | J | is the Jacobian of the transformation from u, to vy, . For each of the models

we have
N I N I
| Iw [=O O @L+2glogy,) I 1=O0O@+ay,) (47)
i=1 t=1 i=l t=1

Like equation (42), the density in equation (46) is not of a recognizable form; a

Metropolis step was used to draw observationson f from it.

Implementing the Gibbs Samplers

We now provide more details of how the Gibbs samplers were implemented and

some of the difficulties that were encountered along the way. Each of the four models is

considered in turn. For the NR(hom) model, starting values for d, the z and w were

obtained by maximizing the normal likelihood function from equation (17) with the z
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treated as fixed effects. To do so it was necessary to set b, a priori; different values of
b, led to the same value for the maximized log-likelihood function. Using trial and error,
we found an approximate setting for b, that was as small as possible, without any of the
maximum likelihood estimates for the z being negative. Starting the MCMC algorithm

at larger values of b, led to a period of 1000 to 2000 draws where the chain had clearly

not converged. After approximately 2000 draws it settled down, yielding draws centered
around a value similar to our ultimate choice for a starting value. Draws were made for

| *,z,(i=1,2,..,N)andw from the density functions described in equations (39) to
(41), with the values of the conditioning variables being their starting values or their most
recent draws. To draw the z from their truncated normal distributions, we used the
inverse distribution function method described, for example, by Albert and Chib (1996).
For drawing d from its conditional posterior density given in equation (42), we used an

independence Metropolis step. At the j-th iteration a candidate value d' is drawn from a
candidate generating density q(d|y, x, 2) . Theratio

g p(d ] y.x,zwl)a(d , Y. % 2)
Py 1y, % zw ) a(d |y, % 2)

(48)

is computed and d is accepted as a draw d; =d) if a31;itis accepted as a draw
with probability a if a<1.If d isrejected, the draw from the previous iteration is taken
as the current draw (d,;, =d; ). For q(d|y, x 2 we used a truncated multivariate
normal distribution, truncated according to the inequality restrictions in p(d), and with

parameters d and 1.4S,, whered and S, were obtained from maximum likelihood

estimation of the model

(logy, +7) =9g(x. d +u, (49)
The truncations in  p(d) turned out to be relatively mild and so a simple acceptance-

rejection algorithm was satisfactory for drawing from q(d|y, x 2). Note that additional

normalizing constants caused by the truncations cancel in the ratio in (48). Also, there is
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no need to set an apriori value for b, when we are conditioning on the z . Computing a
value of theratio a given in equation (48) requires evaluation of p(d|y, x,z,w,1) a d

and d;_ ,, . Increasing the spread of the candidate generating density to 1.8S; did not lead

J
to any marked difference in the results. For this and the other models, the proper priors

were given parameter settings to make them relatively noninformative. Specificaly, we
st ¢ =36, ¢,=05 ad t" =0.8. The Gibbs sampler was used to generate 45000
observations, of which 5000 were discarded for a burn-in. Graphs of the generated

observations did not suggest nonstationarity.

In the first attempt at estimating the ZR(hom) model, we followed a smilar
procedure to that just described for the NR(hom) model. However, because an anaytical

expression for g was not available, to specify likelihood functions for getting starting

vaues, and for getting values d and S, for the candidate generating density, we used
second-order Taylor series expansions around the mean of logy, to approximate the

equations logy, =g(x,,d) and (logy, +z)=9(Xx,.d). However, for drawing from the
conditional densities in equations (40) to (42), and for evaluating the acceptance ratio in

equation (48), g(x,,d) was obtained numerically as the solution for logy, from the

equation logy, +qy, =logf (x,,b). This solution must be evaluated for every
observation in the data set, and for all parameter draws and proposed parameter draws.
Such atask is time consuming, but nevertheless practical. Our first attempt at estimating
the ZR(hom) model was judged to be unsuccessful because the Metropolis step got stuck
on three occasions, leading to excessive repetitions of some values of d. Believing the
problem might be the large concentration of values for g near the zero boundary (the
posterior density for q has a mode at zero), the model was reparameterized in terms of
a =q"*. The posterior density for a was approximately symmetric. This strategy did
help, but there was still evidence of the algorithm ‘sticking’. Changing the Metropolis
step from an independence step to a random walk proposal for d* overcame the ‘ sticking’
problem, but led to some (possibly excessive) drifting. We finally settled on a mixture of
arandom walk step and an independence step, weighted 0.75 and 0.25, respectively. The
use of mixtures for generating proposals has been suggested by Geweke (1999). The
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covariance matrices for the mixture components, and the mean for the independence

component, were obtained from our earlier experiences and from experimentation. The

reparameterization a = g** was retained.

The algorithms used for the ZR(het) and NR(het) models were similar to those for

the NR(hom) model. Starting values of the parameters were obtained from maximum

likelihood estimation of equations (16) and (18), with the z treated as fixed effects and

the value for b, set a priori. Drawing from the conditional posterior densities in

equations (43) to (45) was relatively straightforward. An independence Metropolis step
was used to generate drawson f from the density in equation (46). The proposa density

for this step was a normal distribution with mean f and covariance matrix 1.4S, where
f and S, were the maximum likelihood estimates and covariance matrix from

estimating h(y,,f)=xb- z +u,,with b and z set equa to their conditioning values.
To achieve approximate symmetry, the ZR(het) model was reparameterized in terms of

a=q".

5.  TheApplication

The Economic Research Service (ERS) of the USDA compiles annual indexes of output,
input use, and total factor productivity for the aggregate farm sector and for the
individual states. A discussion of the methods and data used to construct the indexes, and
some insights into farm production, can be found in Ball and Nehring (1998) and Ball et
al (1999). We use state-level indexes for total output and for the inputs materials, capital,
land and labor for the period 1971-1996. The 48 states (Alaska and Hawaii are excluded)
are classified into ten farm production regions. In the context of our study, these ten
regions were treated as firms whose efficiency is being assessed. With 48 states and 26
time periods, we have a total of 1248 observations. The allocation of these observations

to the regions, and the states that make up each region are given in Table 1.

For results, we have chosen to report summary statistics from the posterior
densities of all parameters and to illustrate the flexibility of the Bayesian approach by
graphing posterior densities for a number of quantities of interest. Being able to draw
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finite-sample inferences on various functions of parameters, such as firm efficiencies,
relative efficiency, efficiency rankings, and the level of output for which average cost isa

minimum, is an impelling advantage of Bayesian inference.

Table 2 contains the MCMC-estimated posterior means and standard deviations
for all parameters as well as those for the RTS when y=1, logy for which RTS=1

(labelled as logy*), the standard deviation of u, (denoted by w'?), the standard
deviation of inefficiency errors z (denoted by | ), and the proportion of the total
variance of the error term that is attributable to the inefficiency errors, 1%/(1*+w?).
Examining first the results for the b, , we find that both models yield seemingly similar
estimates, with the elasticity of f (x,b) with respect to materials being much greater than
those from the other inputs. Graphs of three of the complete posterior densities for b, and
b, (see Figures 1 and 2) confirm that the models yield similar results for b, , but show

distinct differences for b,. The densitiesfor b, from the ZR models are more precise and
located further to the left than their NR counterparts. In this and other figures three rather
than four densities were graphed to avoid making the figures too congested; the omitted
densities (usually ZR(het)) have no specia characteristics. Overall, one can conclude that
estimation of the b, is sensitive to choice of model and stochastic assumptions, but the

sengitivity is not enormous.

For estimation of m, the homogeneity of the function f (x,b), the ZR models
suggests a smaller value, and more precise information about this value, relative to the
results from the NR models (see Figure 3). Also, the heteroskedastic assumptions lead to
larger less precise values than the corresponding homoskedastic assumptions. The
posterior densities for the parameters in the RTS function, g and q, appear in Figures 4
and 5, respectively. These densities are very sensitive to choice of stochastic assumption.

The posterior mean for g from the NR(het) model is approximately double that for the

NR(hom) model. The difference in posterior means for g in the ZR models is over four

times. The density for g from the ZR(hom) model has a sharp mode at zero, while that
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for the ZR(het) model shows some evidence of being bi-modal, with a mode at zero and
an interior mode.

Figure 6 contains posterior densities for logy’, the logarithm of output at which
the RTS function is equal to unity. The estimates for this quantity are quite sensitive to
the stochastic assumption, but not sensitive to a choice between the ZR and NR models.
Also, al the posterior densities have long tails to the right. The posterior probability of

logy” exceeding the maximum sample value of 6.7655 is 0.89 for both homoskedastic
models, and 0.30 for both heteroskedastic models. The final observation that we make
from Table 2 is the lack of sengtivity of estimation of the proportion of variance
attributable to firm inefficiency; the posterior means and standard deviations are similar

for both models and both stochastic assumptions.

Posterior information on the regional efficiencies appears in Table 3 (posterior
medians and 90% probability intervals), in Tables 4 and 5 (posterior distributions on
efficiency rankings), and in Figures 7, 8 and 9. For the homoskedastic models the
efficiency measure is exp(- z) . For the heteroskedastic models, posterior results for two

measures are given; the cost function one istaken as exp(- z /m) and the output function

one is that in equation (10), and its NR counterpart, averaged over all observations on a
given region. Although the different measures do lead to different results, overall
conclusions about the relative efficiencies of the different regions is remarkably
insensitive to choice of model and choice of efficiency measure. The regions can be
loosely placed in one of three groups, efficient regions (Northeast, Southeast, Pacific),
inefficient regions (Delta States, Southern Plains) and moderately efficient regions (Lake
States, Cornbelt, Northern Plains, Appalachia, Mountains). The robustness of the results
with respect to model choice and efficiency measure is illustrated in Figures 7 and 8.
These figures contain posterior densities of the efficiencies for one region from each
group, namely, Appaachia (5), Southeast (6) and Delta States (7). For each region, all
four densities have similar locations and shape.

From Table 3 we observe that the lowest median efficiency from all regions is
0.698 and the highest is 0.986. Values drawn from the densities ranged from 0.55 to 1.00.
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The probability distributions for the efficiency rankings that appear in Tables 4 and 5 can
be read in two ways. Each row represents a region and gives the posterior distribution for
the rank of that region. For example, using the NR(hom) modd in Table 3, the
probability that region 2 is ranked 5-th is 0.181. Each column represents a rank and gives
the posterior distribution for what region holds that rank. For example, again using the
NR(hom) model, the probability that the most efficient region is region 1 is 0.010; the
probability that the second most efficient region is region 6 is 0.791. The efficiency
rankings suggest the four most efficient regions are 10, 6, 1 and 2 in that order, and the
two least efficient regions are 7 and 8. The rankings of the remaining intermediate
regions are more ambiguous; the probability distributions of these rankings have a greater
spread and are more sensitive to choice of model and inefficiency measure. A similar
conclusion is reached if the posterior medians in Table 3 are used to rank regions. The
ease with which Bayesian inference can be used to provide posterior distributions for
firm rankings, and probability statements about the relative efficiency of different firms,
has also been noted by Atkinson and Dorfman (2001).

Suppose that the efficiency of one region relative to another is of interest. In this
case we can get the posterior density of, for example, t,/t,. This density is graphed in
Figure 9 for three different efficiency measures. Most of the region covered by the
densities is greater than one, suggesting that region 3 is likely to be more efficient than
region 4. Estimating this probability from the MCMC observations, we obtain values

ranging from to 0.92 to 0.98, depending on the chosen model and efficiency measure.

6. Concluding Remarks

We have demonstrated how Bayesian estimation can be used to make finite-sample
inferences about parameters and firm efficiencies in a stochastic production frontier with
a returns-to-scale function that depends on output. The stochastic errors in earlier studies
of this kind were introduced in a way that facilitates estimation, but no longer retains the
same inefficiency interpretation of the one-sided error. We show how the traditional
inefficiency interpretation can be retained by appending stochastic errors after solving the
deterministic production relationship for the logarithm of output. For the two models we

considered, one analytical solution for logy was obtainable; the other solution had to be



23

obtained numerically. Solving the equation numerically does increase the computational
burden, but it can be set up straightforwardly within a Markov chain Monte Carlo
algorithm typically used for Bayesian estimation of stochastic frontiers. Bayesian
inference is attractive because of the wide variety of quantities for which posterior
information is readily attainable. In our application to state-level data on farm output and
Inputs, we obtain posterior densities on a variety of parameters, on regional efficiencies,
on the output for which average cost is a minimum, on rankings of regional efficiencies,
and on the relative efficiency of two regions. We find the efficiency rankings and
production elasticities are generally not sensitive to the choice of model, but the
homogeneity of the function and the output for which average cost is a minimum are
heavily influenced by model choice. Our study is limited by the choice of only two
returns to scale functions and because we did not consider functions other than the Cobb-
Douglas for the homogeneous part of the function. Future work will consider and

compare other combinations of functional forms.
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Tablel. USDA ERS Production Regions
Region States Observations
1 Northeast Connecticut, Delaware, Massachusetts, 286
Maryland, Maine, New Hampshire, New
Jersey, New Y ork, Pennsylvania, Rhode
Idand, Vermont
2 Lake States Michigan, Minnesota, Wisconsin 78
Cornbelt lowa, Illinois, Indiana, Missouri, Ohio 130
4 Northern Plains  Kansas, Nebraska, North Dakota, South 104
Dakota
5 Appaachia Kentucky, North Carolina, Tennessee, 130
Virginia, West Virginia
6 Southeast Alabama, Florida, Georgia, South Carolina 104
7 Delta States Arkansas, Louisiana, Mississippi 78
8 Southern Plains  Oklahoma, Texas 52
9 Mountains Arizona, Colorado, Idaho, Montana, New 208
Mexico, Nevada, Utah, Wyoming
10 Pacific Cadlifornia, Oregon, Washington 78
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Table2. Posterior Means and Standard Deviations of Parameters

q( 10°)

RTS(1)

log y**

-1/2

127012 +wY)

log(y) homoskedastic log(y) heteroskedastic
NR ZR NR ZR

-0.2926 -0.2265 -0.3427 -0.2524
(0.0592) (0.0523) (0.0677) (0.0571)
0.7935 0.7551 0.8251 0.7633
(0.0236) (0.0175) (0.0270) (0.0187)
0.0714 0.0778 0.0592 0.0666
(0.0278) (0.0262) (0.0274) (0.0267)
0.0888 0.0858 0.0976 0.0938
(0.0146) (0.0140) (0.0151) (0.0146)
0.1430 0.1366 0.1489 0.1397
(0.0249) (0.0227) (0.0249) (0.0235)
0.1138 0.1087 0.1180 0.1107
(0.0068) (0.0062) (0.0072) (0.0064)
1.0967 1.0553 1.1308 1.0635
(0.0182) (0.00712) (0.0223) (0.0089)
0.0272 0.1253
(0.0293) (0.0642)

0.00585 0.01040

(0.00211) (0.00277)

1.0967 1.0552 1.1308 1.0634
(0.0182) (0.00712) (0.0223) (0.0088)
8.886 8.568 6.4935 6.4747
(2.075) (1.963) (0.9416) (0.9824)
0.1594 0.1594 0.1732 0.1620
(.0031) (.0031) (.0052) (.0035)
0.2190 0.2260 0.2396 0.2274
(0.0788) (0.0827) (0.0890) (0.0831)
0.615 0.628 0.617 0.624
(0.143) (0.144) (0.145) (0.143)

1

y* isthe output level where RTS=1 and average cost is a minimum.
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Table 3. Medians and 90% Probability Intervals for Regional Efficiencies
log(y) homoskedastic log(y) heteroskedagtic
Output function Cost function Output function

region NR ZR NR ZR NR ZR

1 924 923 929 935 925 931
(.869, .974)  (.862,.975) (.865,.976)  (.868,.981) (.858,.975)  (.862, .980)

2 821 .809 832 825 830 820
(.770, .867)  (.751, .858) (.776, .877)  (.767, .868) (.774, .876)  (.762, .865)

3 804 790 817 .808 816 804
(753, .848)  (.732,.837) (.762,.860)  (.751, .849) (.760, .859)  (.746, .847)

4 T75 .766 782 778 .780 773
(.728, .815)  (.709, .808) (731,.822) (.725,.816)  (.728,.820)  (.719, .811)

5 799 .798 805 807 .800 799
(754, .838)  (.742,.841) (754, .843) (753, .843) (.749, .838)  (.745, .836)

6 950 950 946 950 945 948
(.895,.990) (.884,.992) (.886,.987)  (.887,.989) (.883,.986)  (.883,.989)

7 732 732 .736 741 730 731
(688, .771)  (.679,.773) (686, .774)  (.689, .779) (.680,.768)  (.679, .770)

8 702 691 .709 .703 .706 699
(.658,.742)  (.638,.733) (.662,.748)  (.656,.741) (.658,.746)  (.651, .738)

9 789 794 .788 797 .780 .788
(.745, .827)  (.736, .832) (.738,.824) (744, .833) (.730, .817)  (.734,.824)

10 .986 .983 .986 .986 .986 .986
(1941, .999) (922, .999) (.935,.999)  (.934,.999) (1934,.999)  (.932,.999)
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Table 4. Posterior Distributions for the Efficiency Ranking of Each Region: NR Model*
Rank
region 1 2 3 4 5 6 7 8 9 10

1 (hom) 2 010 .139 851

1 (het-c) 013 221 .766

1 (het-0) 012 194 794

2 (hom) 703 .181 .074 .034 .008

2 (het-c) 736 197 051 .013 .003

2 (het-0) 738 205 .044 .010 .002

3 (hom) 160 413 252 147 .028

3 (het-c) 203 544 197 .049 .008

3 (het-0) 215 578 .168 .032 .007

4 (hom) 002 014 063 .197 .710 .013

4 (het-c) 001 011 086 .323 574 .005

4 (het-0) .001 013 .118 .396 .469 .004

5 (hom) 097 282 388 176 .057

5 (het-c) 052 216 548 .142 .043

5 (het-0) 039 183 580 .155 .043

6 (hom) 066 791 .143

6 (het-c) 040 731 228

6 (het-0) 039 .760 .201

7 (hom) 013 894 .093
7 (het-c) 006 879 .114
7 (het-0) 005 839 .156
8 (hom) 001 .092 .907
8 (het-c) 114 886
8 (het-0) 655 844
9 (hom) 038 110 .223 445 184 .001

9 (het-c) 008 .032 118 474 366 .001

9 (het-0) 006 .022 .090 .407 473 .002

10 (hom) 924 070 .006
10 (het-c) 946 .048 .006
10 (het-0) 949 046 .005

! Blank table entries correspond to probabilities less than 0.0005.

2 “hom” refers to the model with homoskedastic logy ; “het-c” refers to the cost
function measure of efficiency in the model with heteroskedastic logy ; “het-0” refers

to the output function measure of efficiency in the model with heteroskedastic logy .
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Table 5. Posterior Distributions for the Efficiency Ranking of Each Region: ZR Model *

Rank

region 1 2 3 4 5 6 7 8 9 10
1 (hom) 2 015 124 861

1 (het-c) 023 248 .730

1 (het-0) 021 239 .740

2 (hom) 597 197 129 066 .011

2 (het-c) 688 181 .085 .038 .008

2 (het-0) 699 189 .074 .032 .007

3 (hom) 075 207 .269 .381 .068 .001

3 (het-c) A36 366 270 197 .031

3 (het-0) 159 425 239 151 .026

4 (hom) .001 .008 .028 .112 .815 .035

4 (het-c) .001 .008 .039 .148 .783 .021

4 (het-0) 002 011 .059 199 .715 .015

5 (hom) 192 362 279 141 .025

5 (het-c) 18 314 371 161 .036

5 (het-0) 097 272 417 167 .047

6 (hom) 092 780 .128

6 (het-c) 058 682 .260

6 (het-0) 056 693 .250

7 (hom) 001 034 930 .035
7 (het-c) 001 021 932 .046
7 (het-0) 001 014 .893 .092
8 (hom) 035 .965
8 (het-c) 046 954
8 (het-0) .092 .908
9 (hom) A34 226 295 299 .046

9 (het-c) 057 130 .235 456 .122

9 (het-0) 044 103 211 450 .191 .001

10 (hom) 893 .09 .011

10 (het-c) 920 .070 .010
10 (het-0) 923 .068 .009

! Blank table entries correspond to probabilities less than 0.0005.

2 “hom” refers to the model with homoskedastic logy ; “het-c” refers to the cost
function measure of efficiency in the model with heteroskedastic logy ; “het-0” refers

to the output function measure of efficiency in the model with heteroskedastic logy .
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