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Abstract

A stochastic production frontier model is formulated within the generalized production

function framework popularized by Zellner and Revankar (1969) and Zellner and Ryu

(1998). This framework is convenient for parsimonious modeling of a production

function with variable returns to scale specified as a function of output. Two alternatives

for introducing the stochastic inefficiency term and the stochastic error are considered,

one where they are appended to the existing equation for the production relationship and

one where the existing equation is solved for the log of output before the stochastic terms

are added. The latter alternative is novel, but it is needed to preserve the usual definition

of firm efficiency. The two alternative stochastic assumptions are considered in

conjunction with two returns to scale functions, making a total of four models that are

considered. A Bayesian framework for estimating all four models is described. The

techniques are applied to USDA state-level data on agricultural output and four inputs.

Posterior distributions for all parameters, firm efficiencies and the efficiency rankings of

firms are obtained. The sensitivity of the results to the returns to scale specification and to

the stochastic specification is examined.
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1. Introduction

The estimation of stochastic production frontier models is a common procedure for

assessing the efficiency of firms within an industry. Several versions of stochastic

frontier models have been suggested in the literature, designed to accommodate the

varying nature of data and specific characteristics of empirical applications. A typical

model relevant for panel data involving observations on a number of firms over time can

be written as

log log ( , )it it i ity f x z u= β − +        (1)

In this equation ity  denotes output for the i-th firm in the t-th time period, itx  is a

corresponding vector of inputs, β  represents a vector of unknown parameters, and

( , )itf x β  is the deterministic part of the production frontier. It is assumed that the random

errors itu  capture measurement and/or specification error and that they are independent

normal random variables with mean zero and variance 1−ω . Each iz  is assumed to be a

nonnegative random variable that describes the inefficiency of the i-th firm in terms of

the distance of log ity  from the stochastic frontier log ( , )it itf x uβ + . Alternative

distributions that have been suggested in the literature for the iz  include the exponential,

gamma, truncated normal and half-normal distributions. The inefficiency term is assumed

to be constant over time, although this assumption can be relaxed. To measure efficiency

(rather than inefficiency), and to make measurement of efficiency across firms

comparable, it is conventional to use exp( )i izτ = −  to denote the efficiency of the i-th

firm. Since 0 1i≤ τ ≤ , this measure allows us to say that the i-th firm is 100 %iτ  efficient.

Also, it has a natural interpretation as the ratio of mean output conditional on the

inefficiency of the i-th firm ( iz ), to mean output on the frontier (conditional on 0iz = ).

This interpretation is expressed algebraically as

( | ) ( , ) exp( ) [exp( )]
exp( )

( | 0) ( , ) [exp( )]
it i it i it

i i
it i it it

E y z f x z E u
z

E y z f x E u
β −

= = − = τ
= β

       (2)

Reviews by Greene (1997) and Koop and Steel (2001) provide a convenient access to the

extensive literature on stochastic production frontiers and its historical development.
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Greene emphasizes the sampling theory approach while Koop and Steel focus on

Bayesian inference.

In this paper we are concerned with Bayesian estimation of stochastic frontier

models that exhibit variable returns to scale. One way to specify a model with variable

returns to scale is to choose an appropriate form for the function log ( , )itf x β . For

example, a Cobb-Douglas specification is not satisfactory because it exhibits constant

returns to scale. On the other hand, a translog specification for log ( , )itf x β  yields a

returns to scale function that is a linear function of the logs of the inputs; it can exhibit

regions of increasing, constant and decreasing returns to scale. The translog model has

some disadvantages, however. It does not automatically satisfy the regularity conditions

of concavity and monotonicity, functions with several inputs require estimation of a large

number of parameters, and the relationship between the substitutability of the inputs and

the returns to scale may be a complicated undesirable one. An alternative approach

without these problems, and the approach adopted in this paper, is the generalized

production function specification pursued by Zellner and Revankar (1969), Revankar

(1971), Zellner (1971, p.176), and Zellner and Ryu (1998). In this model the production

function is assumed to be homothetic, implying it can be written as

[ ( , )]y g f x∗= β        (3)

where g∗  is a monotonic transformation and ( , )f x β  is a homogeneous function of

degree µ . For the moment, we omit the i and t subscripts and the stochastic inefficiency

and error terms. In the context of equation (3), the returns to scale (RTS) function is

defined as

/
RTS( )

/
dy y

y
df f

=µ        (4)

A ‘generalized production function’ is obtained by specifying functions for RTS( )y  and

( , )f x β , and solving the differential equation in (4) to yield an explicit representation of
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the production relationship in equation (3). For example, Zellner and Revankar (1969)

suggest the RTS function

RTS( )
1

y
y

µ
=

+ θ
       (5)

that leads to the production relationship

log log ( , )y y f x+ θ = β        (6)

If y is scaled such that 1y ≥ , and the inequality restrictions 0θ > , 1µ > + θ  hold, the

RTS is greater than one for low outputs and decreases monotonically as output increases,

leading to a U-shaped average cost curve that has a minimum when RTS( ) 1y = . The

RTS function in (5) achieves this desirable property with the introduction of only one

additional parameter, θ . Also, the production relationship satisfies concavity and

monotonicity regularity conditions as long as ( , )f x β  is chosen to have these properties,

and substitutability of the inputs is governed by the function ( , )f x β .

If functions like (6) are considered desirable for modeling stochastic production

frontiers with variable returns to scale, the next question that must be addressed is the

way in which stochastic inefficiency and error terms are introduced. One possibility is

that adopted by Kumbhakar (1988) and Kumbhakar et al (1991) who append the

stochastic terms to equation (6). This strategy is a natural extension of the assumption

employed in Zellner and Revankar (1969), Zellner (1971) and Zellner and Ryu (1998)

where a single normally distributed error is attached to equation (6). In the panel data

context described earlier Kumbhakar’s strategy leads to the model

log log ( , )it it it i ity y f x z u+ θ = β − +        (7)

One property of this function is that, in contrast to equation (1), the usual assumptions of

homoskedastic iz  and itu  no longer imply that log ity  will be homoskedastic. It is not

possible to find an analytical solution for log ity  from equation (7). Suppose, however, a

numerical solution is available. It will be of the form
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log [ , log ( , ) ]it it i ity g f x z u= θ β − +        (8)

The variance of log ity  from (8) will, in general, depend on ( , )itf x β ; and hence log ity

will be heteroskedastic. The existence of heteroskedasticity complicates the notion of the

frontier. The efficiency measure in equation (2) will no longer be a simple function of iz ,

but will depend on the input levels itx . Specifically, if 1(0, )itu N −ω: , then

( )
1/2

21
( | ) exp log log ( , )

2 2
it

it i it it it i it
it

y
f y z y y f x z u

y
 + θω ω   = − + θ − β + −   π    

     (9)

and the efficiency of the i-th firm can be written as

( ) ( )

( ) ( )

2

2

1 exp log log ( , )
( | ) 2

( | 0) 1 exp log log ( , )
2

it it it it i it it
it i

it i
it it it it it it

y y y f x z u dy
E y z

E y z y y y f x u dy

ω + θ − + θ − β + − 
 =

ω=  + θ − + θ − β − 
 

∫
∫

    (10)

The stochastic assumptions in (7) lead to a complex expression for efficiency involving

integrals for which no closed form solution is apparent. However, despite the complexity

of (10), it is nevertheless possible to use the cost function to find an alternative definition

of inefficiency that is relatively simple. This interpretation was noted by Kumbhakar

(1988); we consider it explicitly later in the paper.

A second way to introduce the stochastic inefficiency and error terms is to view

them as being appended to the numerical solution for log y  from equation (6). If the

solution for log y  is given by log [ , log ( , )]y g f x= θ β , then this model can be written as

log [ , log ( , )]it it i ity g f x z u= θ β − +      (11)

Including the stochastic terms in this way is more natural. Under the usual assumptions

about iz  and itu , log ity  is homoskedastic, and the inefficiency interpretation of iz  given

in equation (2) still holds. Specifications like (11) have been overlooked in the literature,
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probably because of the need to obtain the solution log [ , log ( , )]y g f x= θ β . However, as

we will see, estimation is still possible within the framework of Bayesian inference.

The objectives of this paper are to describe and illustrate Bayesian methodology

for estimating stochastic frontiers like those described in equations (7) and (11). Two

RTS functions are considered, that in equation (5) and one other. These two are a subset

of five functions considered by Zellner and Ryu (1998) in their application to the

transport equipment industry. We compare estimates of the parameters and the firm

efficiencies under the two different RTS specifications and the two different stochastic

specifications. As far as we are aware, Bayesian estimation of functions like (7) has not

appeared in earlier literature, and estimation of functions like (11) has not been attempted

using sampling theory or Bayesian inference. Our strategy for estimation, and the prior

assumptions that we adopt, are modifications of those described in Koop and Steel

(2001), adapted to accommodate the introduction of the RTS function and the different

stochastic assumptions. One particular novelty in our work is the ability to estimate the

parameters β  and θ  in equation (11), even although no analytical expression for g is

available. This problem is overcome by solving for g numerically, within a Markov chain

Monte Carlo algorithm. To ensure similar prior information is used for both functions we

place a prior density function on the RTS when output is unity, and on the level of output

for which average cost is a minimum (RTS 1)= . This prior is used to derive a prior on µ ,

the degree of homogeneity of the function f, and on the parameter in the RTS function.

One of the advantages of the Bayesian approach (also noted by Koop and Steel) is

the ease with which useful inferences can be made about quantities that are quite

complicated, or intractable functions from a sampling theory point of view. For example,

we can provide posterior density functions for making finite-sample inferences about

firm efficiencies, the efficiency ranking of each firm, the output at which average cost is

a minimum and the probability that one firm is more efficient than another. We provide

examples such as these from our application, thus illustrating the flexibility of the

Bayesian approach.

The plan of the paper is as follows. The model and stochastic assumptions are

presented in Section 2. Section 3 contains descriptions of the prior density functions. The



8

conditional posterior density functions and the Markov chain Monte Carlo (MCMC)

algorithms are described in Section 4. The empirical application and results are presented

in Section 5, with concluding remarks being made in Section 6.

2. Models and Assumptions

The two models that we consider can be written as

( )ZR : log log ,it it ity y f x+ θ = β      (12)

( ) ( )2
NR: log log log ,it it ity y f x+ γ = β      (13)

The function ZR is attributable to Zellner and Revankar (1969); it was discussed in the

introduction. The function NR is attributable to Nerlove (1963) and Ringstad (1967). It is

derived from the RTS function

( )RTS
1 2 log

y
y

µ
=

+ γ
     (14)

For this function to decrease monotonically from a point above one to a point below one,

producing a “U-shaped” average cost curve with a minimum at RTS 1= , we require the

units of output to be such that 1y ≥ ; the required parameter restrictions are 1µ >  and

.0>γ

The same function f is assumed for both models, namely a Cobb-Douglas of the

form

( ) 0 1 1 2 2 3 3 4 4 5

1 2 3
0 1 2 3 4 5

4 4 4

log , log log log log log( )

log log log log log( )

it it it it it

it it it
it

it it it

f x x x x x time

x x x
x time

x x x

β = β + β + β + β + β + β

     
= β + β + β + β + µ + β     

     

(15)

where 4321 β+β+β+β=µ  is the degree of homogeneity of the function f with respect to

the inputs 321 ,, xxx  and .4x  The second line in equation (15), where 4β  is replaced by µ ,

is the parameterisation used for estimation. The term log(time) is included to capture

technical change that is assumed to be Hicks neutral. Including both technical change and
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scale effects does raise questions about whether misspecifying one of these functions will

lead to misleading inferences about the other. See, for example, Calem (1990). However,

we believe that including some form of technical change is better than ignoring it.

At this point, it is convenient to give some information about the application, with

further details being provided in Section 5. The data we use are annual USDA state-level

data on agricultural output (y) and the four inputs, materials ),( 1x  capital ),( 2x  land ),( 3x

and labor ).( 4x  A “firm” is taken as a USDA farm production region, of which there are

ten. Because there are more states than production regions, the subscript t is not a simple

time index. It is an index for the values from all states in a given region, over the 26-year

period 1971-1996. Since the number of states in each region varies, we write iTt ,...,2,1=

and ,10,...,2,1=i  where iT  is a multiple of 26. The variable time takes values 1 to 26 for

each state.

The two models, each with two different stochastic assumptions, appear in

equations (16) through (19). We use the abbreviation NR(het) to describe the Nerlove-

Ringstad model with heteroskedastic log y  and the abbreviation NR(hom) to describe the

Nerlove-Ringstad model with homoskedastic .log y  ZR(het) and ZR(hom) are used for

similar descriptions of the Zellner-Revankar models.

( ) ( )2
NR(het): log log log ,it it it i ity y f x z u+ γ = β − +      (16)

( )1 1 4 log ,
NR(hom): log

2
it

it i it

f x
y z u

− + + γ β
= − +

γ
     (17)

Equation (17) is obtained by solving equation (13) for log ity  and then appending the

stochastic terms. Unlike the ZR(hom) model, a closed form solution for log ity  can be

obtained. The second root of the quadratic has been omitted because it violates the

restrictions on the RTS function that imply log 0.ity ≥

ZR(het): log log ( , )it it it i ity y f x z u+ θ = β − +      (18)

ZR(hom): log [ , log ( , )]it it i ity g f x z u= θ β − +      (19)
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In all cases the itu  are assumed to be independent ( )10,N −ω . Several alternatives have

been suggested in the literature for the distribution of iz , including the exponential, half

normal and normal distributions. See Koop et al (1995) for a discussion of Bayesian

estimation of the various alternatives. We follow Koop and Steel (2001) and assume the

iz  are independent drawings from the exponential distribution

( ) 1
exp i

i

z
p z  = − 

λ λ 
     (20)

In addition, iz  and itu  are assumed to be independent.

For the ‘homoskedastic’ functions, exp( )i izτ = −  is taken as the measure of

inefficiency of the i-th firm. For the ‘heteroskedastic’ functions, we consider two

measures of efficiency. The first is given in equation (10) for the ZR model; a similar

expression can be derived for the NR model. We refer to these efficiency measures as

those obtained from the output function. In the application the integrals in these equations

were evaluated numerically for each itx  and for each parameter draw made using an

MCMC algorithm. The second efficiency measure is that noted by Kumbhakar (1988),

and is derived from the cost function. If a firm has knowledge of iz  and itu , and, to

achieve a given level of output ity , it uses input levels that maximize profits, the cost

function for the ZR(het) model can be written as

log
log it it i it

it it
y y z u

C
+ θ

= ψ + + −
µ µ µ

     (21)

where itψ  depends on β  and the input prices. We can interpret exp( / )iz µ  as the

proportional increase in costs necessary for the i-th firm to achieve a given level of

output, relative to the cost for a firm that lies on the frontier. To give this measure an

efficiency interpretation that can be compared with the other efficiency measures, in our

application we report its inverse exp( / )iz− µ . The same result also holds for the NR(het)

model.
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3. Prior Distributions

The parameters requiring prior distributions are 0 1 2 3 5, , , , , ,β β β β µ β λ  and ω  for all

functions, θ  for the ZR models, and γ  for the NR models. Caution needs to be exercised

if improper priors are used for some of these parameters. For the case where [ ]ityE log  is

a linear function of β , Fernández et al (1997) show that, in the absence of panel data,

proper priors on both λ  and ω  are required to obtain proper posterior densities. The

improper prior 1( )p −ω ∝ ω  can be used when panel data are available, but a proper prior

on λ  still needs to be specified. Accordingly, we use 1( )p −ω ∝ ω  as a prior for ω , and

for 1−λ  we use the exponential distribution

( ) ( )1 1expp c c− −
λ λλ = − λ      (22)

Van den Broeck et al (1994) show that this prior density leads to a proper, but relatively

non-informative, prior on the firm efficiencies, with a convenient setting for λc  given by

( )*log τ−=λc  where *τ  is the prior median for the efficiency distribution.

A prior density function for the remaining parameters is obtained by:

1. Specifying proper priors for the RTS at the point 1y =  and the level of

output for which RTS 1= .

2. Transforming these priors to a prior on µ  and γ  (or µ  and θ ).

3. Specifying uniform priors for ( )0 1 2 3 5, , , ,β β β β β .

4. Including the necessary inequality restrictions on all parameters.

Let

r = the logarithm of RTS when 1y = , and

q = the logarithm of output for which RTS 1= .

These parameters can be viewed as governing the magnitude of average cost when output

is low, and how quickly average cost declines to reach its minimum. Ignoring for the

moment inequality restrictions on these quantities, we take for their priors independent

exponential distributions given by
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( ) exp( )q qp q c c q= − (23)

( ) exp( )r rp r c c r= −  (24)

Looking first at the implications of these priors for the parameters of the NR models, we

note, from equation (14), that RTS(1) = µ  and hence logr = µ . The resulting prior for µ

is

NR: 1( ) ( )
r

r
c

cr
p p r +

∂
µ = =

∂µ µ
     (25)

To obtain an expression for q, the value of ylog  for which RTS 1= , we solve

1
1 2 q

µ
=

+ γ
(26)

to obtain ( 1) /2q = µ − γ . Thus,

NR: 2

( 1) ( 1)
( | ) ( ) exp

2 2
q qc cq

p p q
µ − µ − ∂

γ µ = = − 
∂γ γ γ 

     (27)

Equations (25) and (27) define the joint prior ( , )p γ µ  for the NR models.

In the ZR models the expressions relating r and q to µ  and θ  are, from (5),

log
1

r
µ =  + θ 

1
logq

µ − =  θ 
     (28)

leading to a joint prior for ( , )µ θ  given by

[ ]
11

11

(1 )
( , ) ( , ) (1 )

( 1)

qr

qr

cc

r q cc

r r

p p r q c c
q q

−−

++

∂ ∂
∂µ ∂θ + θ θ

µ θ = = µ − + θ
∂ ∂ µ µ −
∂µ ∂θ

     (29)

The iβ  are assigned uniform priors, but several inequality restrictions are imposed

on the parameters. They are:

Both models:      1 2 3 5 1 2 30, 0, 0, 0,β > β > β > β > β + β + β < µ      (30)

NR:     1, 0µ > γ >      (31)
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ZR:     1 , 0µ > + θ θ >      (32)

The restrictions in (30) are designed to make ( , )itf x β  an increasing function of all inputs

and an increasing function of technical change. As mentioned earlier, the restrictions in

(31) and (32) ensure U-shaped average cost curves with a minimum average cost.

To summarize the prior distributions on β , µ , γ  and θ , and in preparation for a

description of the MCMC algorithms used for estimation, it is convenient to introduce

some new notation and to vary slightly some existing notation. Let 0 1 2 3 5( , , , , )′β = β β β β β .

That is, β  contains all the parameters defined in the specification of log ( , )itf x β  in

equation (15), except for 4β  and µ . Also, let itx β  equal the right-hand side of equation

(15) after subtracting from it 4log itxµ . That is,

4log ( , ) logit it itx f x xβ = β −µ       (33)

Let ( , )NR ′φ = µ γ  and ( , )ZR ′φ = µ θ . Also, define ( , )NR NR′ ′δ = β φ  and ( , )ZR ZR′ ′δ = β φ .

Defining NRδ  and ZRδ  is useful for describing the MCMC algorithm for the

homoskedastic models; NRφ  and ZRφ  are useful for describing the algorithm for the

heteroskedastic models. When δ  or φ  appears without a subscript, the equation where it

appears will refer to both the ZR and NR models. Specifically, a generic version of the

homoskedastic models in equations (17) and (19) will be written as

log ( , )it it i ity g x z u= δ − +      (34)

A generic version of the heteroskedastic models in equations (16) and (18) is

( , )it it i ith y x z uφ = β − +      (35)

with 2
4( , ) log (log ) logit NR it it ith y y y xφ = + γ − µ  and 4( , ) log logit ZR it it ith y y y xφ = + θ −µ .

The prior densities for NRφ  and ZRφ  can be summarized as

12

( 1)1
( ) exp ( )

2r

q
NR NRc

c
p I+

µ − µ −
φ ∝ − φ 

γ µ γ 
     (36)
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11

11

(1 )
( ) [ (1 )] ( )

( 1)

qr

qr

cc

ZR ZRcc
p I

−−

++

+ θ θ
φ ∝ µ − + θ φ

µ µ −
     (37)

where ( )NRI φ  and ( )ZRI φ  are indicator functions, equal to unity when the inequality

restrictions in equations (31) and (32), respectively, hold, and zero otherwise. The density

( )p φ  will be used as notation for describing either (36) or (37). The prior densities for

NRδ  and ZRδ  can be summarized as

( ) ( ) ( | )p p Iδ ∝ φ β φ          (38)

where ( | )I β φ  is an indicator function equal to unity when the inequality restrictions in

equation (30) hold. The indicator is expressed as conditional on φ  because the restriction

that 4β  be positive is expressed as 1 2 3β + β + β < µ , making it conditional on µ .

4. Estimation

Given the above models and prior densities, it is now possible to describe

conditional posterior densities for the parameters and the inefficiency terms. Doing so

enables us to set up Gibbs samplers for drawing observations from the joint posterior

densities for all unobservables. These drawings can be used in turn to make inferences

about unknown quantities of interest. The conditional posterior densities are slightly

modified versions of those given in Koop and Steel (2001), adapted to allow for the

nonlinear functions g and h, the priors ( )p δ  and ( )p φ , and the possibly different

numbers of observations on each firm (region). In what follows 10N =  is the number of

firms and 1
N

iiM T== ∑  is the total number of observations. Also, following Koop and

Steel, we use ],|[ cbwfG  to denote a gamma density with slope parameter b and scale

parameter c. That is, )exp(),|( 1 cwwcbwf b
G −∝ − . We use the notation y, x and z to

denote all observations on output, the inputs and the inefficiencies, respectively.

The conditional posterior density for 1−λ  is the same for both the heteroskedastic

and homoskedastic models; it is given by the gamma distribution
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1 1

1
( | , , , , ) | ( 1), ln( )

N

G i
i

p y x z f N z− −

=

  λ δ ω = λ + − τ∗    
∑      (39)

For the remaining conditional posterior densities we first describe those for the

homoskedastic models represented by equation (34), and then point out how they need to

be modified for the heteroskedastic models represented by equation (35).

Model: log ( , )it it i ity g x z u= δ − +

The conditional posterior density for the i-th inefficiency term iz  is a normal distribution

truncated from below at zero with parameters ziµ  and 2
ziσ  given by

1

1 1
( ( , ) log )

iT

zi it it
ti i

g x y
T T=

µ = δ − −
ωλ∑ 2 1

zi
iT

σ =
ω

     (40)

The precision parameter ω  has the following gamma distribution as its conditional

posterior density

( )2

1 1

1
( | , , , , ) , log ( , )

2 2

iTN

G it it i
i t

M
p y x z f y g x z

= =

   ω δ λ = ω − δ +    
    

∑ ∑    (41)

Finally, the conditional posterior density function for δ  is given by

( )2

1 1
( | , , , , ) exp log ( , ) ( )

2

iTN

it it i
i t

p y x z y g x z p
= =

ω 
δ ω λ ∝ − − δ + δ 

 
∑∑      (42)

A Metropolis step was used to draw from this density, since it is not of a recognizable

form. More details are given after we describe the conditional posterior densities for the

heteroskedastic models.

Model: ( , )it it i ith y x z uφ = β − +

The conditional posterior density for the i-th inefficiency term iz  is again a normal

distribution truncated from below at zero, with the same scale parameter 2 1/zi iTσ = ω , but

the location parameter becomes
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( )
1

1 1
( , )

iT

zi it it
ti i

x h y
T T=

µ = β − φ −
ωλ∑      (43)

The conditional posterior density for ω  is the gamma distribution

( )2

1 1

1
( | , , , , ) , ( , )

2 2

iTN

G it it i
i t

M
p y x z f h y x z

= =

   ω δ λ = ω φ − β +    
    

∑ ∑      (44)

For this model it is convenient to replace the conditional posterior density for δ  with two

conditional densities, one for β  and one for φ . The conditional posterior density for β  is

a truncated multivariate normal distribution with truncations given by ( | )I β φ , and

parameters

1( ) ( )X X X h z−′ ′β = + 1 1( )V X X− −
β ′= ω      (45)

where X is an ( 5)M ×  matrix containing the observations itx , and h and z are M –

dimensional vectors containing ( , )ith y φ  and values iz  (suitably repeated), respectively.

The conditional posterior density for φ  is given by

( )2

1 1
( | , , , , , ) | |exp ( , ) ( )

2

iTN

it it i
i t

p y x z J h y x z p
= =

ω 
φ β ω λ ∝ − φ − β + φ 

 
∑ ∑      (46)

where | |J  is the Jacobian of the transformation from itu  to ity . For each of the models

we have

1 1
| | (1 2 log )

iTN

NR it
i t

J y
= =

= + γ∏∏
1 1

| | (1 )
iTN

ZR it
i t

J y
= =

= + θ∏∏      (47)

Like equation (42), the density in equation (46) is not of a recognizable form; a

Metropolis step was used to draw observations on φ  from it.

Implementing the Gibbs Samplers

We now provide more details of how the Gibbs samplers were implemented and

some of the difficulties that were encountered along the way. Each of the four models is

considered in turn. For the NR(hom) model, starting values for δ , the iz  and ω  were

obtained by maximizing the normal likelihood function from equation (17) with the iz



17

treated as fixed effects. To do so it was necessary to set 0β  a priori; different values of

0β  led to the same value for the maximized log-likelihood function. Using trial and error,

we found an approximate setting for 0β  that was as small as possible, without any of the

maximum likelihood estimates for the iz  being negative. Starting the MCMC algorithm

at larger values of 0β  led to a period of 1000 to 2000 draws where the chain had clearly

not converged. After approximately 2000 draws it settled down, yielding draws centered

around a value similar to our ultimate choice for a starting value. Draws were made for
1, ,( 1,2,..., ) and iz i N−λ = ω  from the density functions described in equations (39) to

(41), with the values of the conditioning variables being their starting values or their most

recent draws. To draw the iz  from their truncated normal distributions, we used the

inverse distribution function method described, for example, by Albert and Chib (1996).

For drawing δ  from its conditional posterior density given in equation (42), we used an

independence Metropolis step. At the j-th iteration a candidate value ∗δ  is drawn from a

candidate generating density ( | , , )q y x zδ . The ratio

( 1)

( 1)

( | , , , , ) ( | , , )

( | , , , , ) ( | , , )
j

j

p y x z q y x z

p y x z q y x z

∗
−

∗
−

δ ω λ δ
α =

δ ω λ δ
 (48)

is computed and ∗δ  is accepted as a draw ( )( )j
∗δ = δ  if 1α ≥ ; it is accepted as a draw

with probability  if  1α α < . If ∗δ is rejected, the draw from the previous iteration is taken

as the current draw ( ) ( 1)( )j j −δ = δ . For ( | , , )q y x zδ  we used a truncated multivariate

normal distribution, truncated according to the inequality restrictions in ( ),p δ  and with

parameters  and 1.4 , where  and δ δδ Σ δ Σ  were obtained from maximum likelihood

estimation of the model

(log ) ( , )it i it ity z g x u+ = δ +      (48)

The truncations in ( )p δ  turned out to be relatively mild and so a simple acceptance-

rejection algorithm was satisfactory for drawing from ( | , , )q y x zδ . Note that additional

normalizing constants caused by the truncations cancel in the ratio in (48). Also, there is
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no need to set an a priori value for 0β  when we are conditioning on the iz . Computing a

value of the ratio α  given in equation (48) requires evaluation of ( | , , , , )p y x zδ ω λ  at ∗δ

and ( 1)j −δ . Increasing the spread of the candidate generating density to 1.8 δΣ  did not lead

to any marked difference in the results. For this and the other models, the proper priors

were given parameter settings to make them relatively noninformative. Specifically, we

set 3.6rc = , 0.5qc =  and 0.8∗τ = . The Gibbs’ sampler was used to generate 45000

observations, of which 5000 were discarded for a burn-in. Graphs of the generated

observations did not suggest nonstationarity.

In the first attempt at estimating the ZR(hom) model, we followed a similar

procedure to that just described for the NR(hom) model. However, because an analytical

expression for g was not available, to specify likelihood functions for getting starting

values, and for getting values  and δδ Σ  for the candidate generating density, we used

second-order Taylor series expansions around the mean of itylog  to approximate the

equations log ( , )it ity g x= δ  and (log ) ( , )it i ity z g x+ = δ . However, for drawing from the

conditional densities in equations (40) to (42), and for evaluating the acceptance ratio in

equation (48), ( , )itg x δ  was obtained numerically as the solution for log ity  from the

equation log log ( , )it it ity y f x+ θ = β . This solution must be evaluated for every

observation in the data set, and for all parameter draws and proposed parameter draws.

Such a task is time consuming, but nevertheless practical. Our first attempt at estimating

the ZR(hom) model was judged to be unsuccessful because the Metropolis step got stuck

on three occasions, leading to excessive repetitions of some values of δ . Believing the

problem might be the large concentration of values for θ  near the zero boundary (the

posterior density for θ  has a mode at zero), the model was reparameterized in terms of
0.3α = θ . The posterior density for α  was approximately symmetric. This strategy did

help, but there was still evidence of the algorithm ‘sticking’. Changing the Metropolis

step from an independence step to a random walk proposal for ∗δ  overcame the ‘sticking’

problem, but led to some (possibly excessive) drifting. We finally settled on a mixture of

a random walk step and an independence step, weighted 0.75 and 0.25, respectively. The

use of mixtures for generating proposals has been suggested by Geweke (1999). The
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covariance matrices for the mixture components, and the mean for the independence

component, were obtained from our earlier experiences and from experimentation. The

reparameterization 0.3α = θ  was retained.

The algorithms used for the ZR(het) and NR(het) models were similar to those for

the NR(hom) model. Starting values of the parameters were obtained from maximum

likelihood estimation of equations (16) and (18), with the iz  treated as fixed effects and

the value for 0β  set a priori. Drawing from the conditional posterior densities in

equations (43) to (45) was relatively straightforward. An independence Metropolis step

was used to generate draws on φ  from the density in equation (46). The proposal density

for this step was a normal distribution with mean φ  and covariance matrix 1.4 φΣ  where

φ  and φΣ  were the maximum likelihood estimates and covariance matrix from

estimating ( , )it it i ith y x z uφ = β − + , with β  and iz  set equal to their conditioning values.

To achieve approximate symmetry, the ZR(het) model was reparameterized in terms of
0.5α = θ .

5. The Application

The Economic Research Service (ERS) of the USDA compiles annual indexes of output,

input use, and total factor productivity for the aggregate farm sector and for the

individual states. A discussion of the methods and data used to construct the indexes, and

some insights into farm production, can be found in Ball and Nehring (1998) and Ball et

al (1999). We use state-level indexes for total output and for the inputs materials, capital,

land and labor for the period 1971-1996. The 48 states (Alaska and Hawaii are excluded)

are classified into ten farm production regions. In the context of our study, these ten

regions were treated as firms whose efficiency is being assessed. With 48 states and 26

time periods, we have a total of 1248 observations. The allocation of these observations

to the regions, and the states that make up each region are given in Table 1.

For results, we have chosen to report summary statistics from the posterior

densities of all parameters and to illustrate the flexibility of the Bayesian approach by

graphing posterior densities for a number of quantities of interest. Being able to draw
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finite-sample inferences on various functions of parameters, such as firm efficiencies,

relative efficiency, efficiency rankings, and the level of output for which average cost is a

minimum, is an impelling advantage of Bayesian inference.

Table 2 contains the MCMC-estimated posterior means and standard deviations

for all parameters as well as those for the RTS when 1y = , log y  for which RTS 1=

(labelled as log y∗ ), the standard deviation of itu  (denoted by 1 /2−ω ), the standard

deviation of inefficiency errors iz  (denoted by λ ), and the proportion of the total

variance of the error term that is attributable to the inefficiency errors, 2 2 1/( )−λ λ + ω .

Examining first the results for the kβ , we find that both models yield seemingly similar

estimates, with the elasticity of ( , )f x β  with respect to materials being much greater than

those from the other inputs. Graphs of three of the complete posterior densities for 1β  and

2β  (see Figures 1 and 2) confirm that the models yield similar results for 2β , but show

distinct differences for 1β . The densities for 1β  from the ZR models are more precise and

located further to the left than their NR counterparts. In this and other figures three rather

than four densities were graphed to avoid making the figures too congested; the omitted

densities (usually ZR(het)) have no special characteristics. Overall, one can conclude that

estimation of the kβ  is sensitive to choice of model and stochastic assumptions, but the

sensitivity is not enormous.

For estimation of µ , the homogeneity of the function ( , )f x β , the ZR models

suggests a smaller value, and more precise information about this value, relative to the

results from the NR models (see Figure 3). Also, the heteroskedastic assumptions lead to

larger less precise values than the corresponding homoskedastic assumptions. The

posterior densities for the parameters in the RTS function, γ  and θ , appear in Figures 4

and 5, respectively. These densities are very sensitive to choice of stochastic assumption.

The posterior mean for γ  from the NR(het) model is approximately double that for the

NR(hom) model. The difference in posterior means for θ  in the ZR models is over four

times. The density for θ  from the ZR(hom) model has a sharp mode at zero, while that
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for the ZR(het) model shows some evidence of being bi-modal, with a mode at zero and

an interior mode.

Figure 6 contains posterior densities for log y∗ , the logarithm of output at which

the RTS function is equal to unity. The estimates for this quantity are quite sensitive to

the stochastic assumption, but not sensitive to a choice between the ZR and NR models.

Also, all the posterior densities have long tails to the right. The posterior probability of

log y∗  exceeding the maximum sample value of 6.7655 is 0.89 for both homoskedastic

models, and 0.30 for both heteroskedastic models. The final observation that we make

from Table 2 is the lack of sensitivity of estimation of the proportion of variance

attributable to firm inefficiency; the posterior means and standard deviations are similar

for both models and both stochastic assumptions.

Posterior information on the regional efficiencies appears in Table 3 (posterior

medians and 90% probability intervals), in Tables 4 and 5 (posterior distributions on

efficiency rankings), and in Figures 7, 8 and 9. For the homoskedastic models the

efficiency measure is exp( )iz− . For the heteroskedastic models, posterior results for two

measures are given; the cost function one is taken as exp( / )iz− µ  and the output function

one is that in equation (10), and its NR counterpart, averaged over all observations on a

given region. Although the different measures do lead to different results, overall

conclusions about the relative efficiencies of the different regions is remarkably

insensitive to choice of model and choice of efficiency measure. The regions can be

loosely placed in one of three groups, efficient regions (Northeast, Southeast, Pacific),

inefficient regions (Delta States, Southern Plains) and moderately efficient regions (Lake

States, Cornbelt, Northern Plains, Appalachia, Mountains). The robustness of the results

with respect to model choice and efficiency measure is illustrated in Figures 7 and 8.

These figures contain posterior densities of the efficiencies for one region from each

group, namely, Appalachia (5), Southeast (6) and Delta States (7). For each region, all

four densities have similar locations and shape.

From Table 3 we observe that the lowest median efficiency from all regions is

0.698 and the highest is 0.986. Values drawn from the densities ranged from 0.55 to 1.00.
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The probability distributions for the efficiency rankings that appear in Tables 4 and 5 can

be read in two ways. Each row represents a region and gives the posterior distribution for

the rank of that region. For example, using the NR(hom) model in Table 3, the

probability that region 2 is ranked 5-th is 0.181. Each column represents a rank and gives

the posterior distribution for what region holds that rank. For example, again using the

NR(hom) model, the probability that the most efficient region is region 1 is 0.010; the

probability that the second most efficient region is region 6 is 0.791. The efficiency

rankings suggest the four most efficient regions are 10, 6, 1 and 2 in that order, and the

two least efficient regions are 7 and 8. The rankings of the remaining intermediate

regions are more ambiguous; the probability distributions of these rankings have a greater

spread and are more sensitive to choice of model and inefficiency measure. A similar

conclusion is reached if the posterior medians in Table 3 are used to rank regions. The

ease with which Bayesian inference can be used to provide posterior distributions for

firm rankings, and probability statements about the relative efficiency of different firms,

has also been noted by Atkinson and Dorfman (2001).

Suppose that the efficiency of one region relative to another is of interest. In this

case we can get the posterior density of, for example, 3 4/τ τ . This density is graphed in

Figure 9 for three different efficiency measures. Most of the region covered by the

densities is greater than one, suggesting that region 3 is likely to be more efficient than

region 4. Estimating this probability from the MCMC observations, we obtain values

ranging from to 0.92 to 0.98, depending on the chosen model and efficiency measure.

6. Concluding Remarks

We have demonstrated how Bayesian estimation can be used to make finite-sample

inferences about parameters and firm efficiencies in a stochastic production frontier with

a returns-to-scale function that depends on output. The stochastic errors in earlier studies

of this kind were introduced in a way that facilitates estimation, but no longer retains the

same inefficiency interpretation of the one-sided error. We show how the traditional

inefficiency interpretation can be retained by appending stochastic errors after solving the

deterministic production relationship for the logarithm of output. For the two models we

considered, one analytical solution for log y  was obtainable; the other solution had to be



23

obtained numerically. Solving the equation numerically does increase the computational

burden, but it can be set up straightforwardly within a Markov chain Monte Carlo

algorithm typically used for Bayesian estimation of stochastic frontiers. Bayesian

inference is attractive because of the wide variety of quantities for which posterior

information is readily attainable. In our application to state-level data on farm output and

inputs, we obtain posterior densities on a variety of parameters, on regional efficiencies,

on the output for which average cost is a minimum, on rankings of regional efficiencies,

and on the relative efficiency of two regions. We find the efficiency rankings and

production elasticities are generally not sensitive to the choice of model, but the

homogeneity of the function and the output for which average cost is a minimum are

heavily influenced by model choice. Our study is limited by the choice of only two

returns to scale functions and because we did not consider functions other than the Cobb-

Douglas for the homogeneous part of the function. Future work will consider and

compare other combinations of functional forms.
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Table 1.    USDA ERS Production Regions

Region States Observations

1 Northeast Connecticut, Delaware, Massachusetts,
Maryland, Maine, New Hampshire, New
Jersey, New York, Pennsylvania, Rhode
Island, Vermont

286

2 Lake States Michigan, Minnesota, Wisconsin 78

3 Cornbelt Iowa, Illinois, Indiana, Missouri, Ohio 130

4 Northern Plains Kansas, Nebraska, North Dakota, South
Dakota

104

5 Appalachia Kentucky, North Carolina, Tennessee,
Virginia, West Virginia

130

6 Southeast Alabama, Florida, Georgia, South Carolina 104

7 Delta States Arkansas, Louisiana, Mississippi 78

8 Southern Plains Oklahoma, Texas 52

9 Mountains Arizona, Colorado, Idaho, Montana, New
Mexico, Nevada, Utah, Wyoming

208

10 Pacific California, Oregon, Washington 78
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Table 2.   Posterior Means and Standard Deviations of Parameters

log( )y homoskedastic log( )y  heteroskedastic

NR ZR NR ZR

0β -0.2926 -0.2265 -0.3427 -0.2524
(0.0592) (0.0523) (0.0677) (0.0571)

1β 0.7935 0.7551 0.8251 0.7633
(0.0236) (0.0175) (0.0270) (0.0187)

2β 0.0714 0.0778 0.0592 0.0666
(0.0278) (0.0262) (0.0274) (0.0267)

3β 0.0888 0.0858 0.0976 0.0938
(0.0146) (0.0140) (0.0151) (0.0146)

4β 0.1430 0.1366 0.1489 0.1397
(0.0249) (0.0227) (0.0249) (0.0235)

5β 0.1138 0.1087 0.1180 0.1107
(0.0068) (0.0062) (0.0072) (0.0064)

µ 1.0967 1.0553 1.1308 1.0635
(0.0182) (0.0071) (0.0223) (0.0089)

θ 3( 10 )× 0.0272 0.1253
(0.0293) (0.0642)

γ 0.00585 0.01040
(0.00211) (0.00277)

RTS(1) 1.0967 1.0552 1.1308 1.0634
(0.0182) (0.0071) (0.0223) (0.0088)

1log y ∗ 8.886 8.568 6.4935 6.4747
(2.075) (1.963) (0.9416) (0.9824)

1 /2−ω 0.1594 0.1594 0.1732 0.1620
(.0031) (.0031) (.0052) (.0035)

λ 0.2190 0.2260 0.2396 0.2274
(0.0788) (0.0827) (0.0890) (0.0831)

2 2 1/( )−λ λ + ω 0.615 0.628 0.617 0.624
(0.143) (0.144) (0.145) (0.143)

1  y∗  is the output level where RTS 1=  and average cost is a minimum.
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Table 3.   Medians and 90% Probability Intervals for Regional Efficiencies

log( )y homoskedastic log( )y  heteroskedastic

Output function Cost function Output function

region NR ZR NR ZR NR ZR

1 .924 .923 .929 .935 .925 .931
(.869, .974) (.862, .975) (.865, .976) (.868, .981) (.858, .975) (.862, .980)

2 .821 .809 .832 .825 .830 .820
(.770, .867) (.751, .858) (.776, .877) (.767, .868) (.774, .876) (.762, .865)

3 .804 .790 .817 .808 .816 .804
(.753, .848) (.732, .837) (.762, .860) (.751, .849) (.760, .859) (.746, .847)

4 .775 .766 .782 .778 .780 .773
(.728, .815) (.709, .808) (.731, .822) (.725, .816) (.728, .820) (.719, .811)

5 .799 .798 .805 .807 .800 .799
(.754, .838) (.742, .841) (.754, .843) (.753, .843) (.749, .838) (.745, .836)

6 .950 .950 .946 .950 .945 .948
(.895, .990) (.884, .992) (.886, .987) (.887, .989) (.883, .986) (.883, .989)

7 .732 .732 .736 .741 .730 .731
(.688, .771) (.679, .773) (.686, .774) (.689, .779) (.680, .768) (.679, .770)

8 .702 .691 .709 .703 .706 .699
(.658, .742) (.638, .733) (.662, .748) (.656, .741) (.658, .746) (.651, .738)

9 .789 .794 .788 .797 .780 .788
(.745, .827) (.736, .832) (.738, .824) (.744, .833) (.730, .817) (.734, .824)

10 .986 .983 .986 .986 .986 .986
(.941, .999) (.922, .999) (.935, .999) (.934, .999) (.934, .999) (.932, .999)
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Table 4.  Posterior Distributions for the Efficiency Ranking of Each Region: NR Model1

Rank

region 1 2 3 4 5 6 7 8 9 10

1 (hom) 2 .010 .139 .851
1 (het-c) .013 .221 .766
1 (het-o) .012 .194 .794

2 (hom) .703 .181 .074 .034 .008
2 (het-c) .736 .197 .051 .013 .003
2 (het-o) .738 .205 .044 .010 .002

3 (hom) .160 .413 .252 .147 .028
3 (het-c) .203 .544 .197 .049 .008
3 (het-o) .215 .578 .168 .032 .007

4 (hom) .002 .014 .063 .197 .710 .013
4 (het-c) .001 .011 .086 .323 .574 .005
4 (het-o) .001 .013 .118 .396 .469 .004

5 (hom) .097 .282 .388 .176 .057
5 (het-c) .052 .216 .548 .142 .043
5 (het-o) .039 .183 .580 .155 .043

6 (hom) .066 .791 .143
6 (het-c) .040 .731 .228
6 (het-o) .039 .760 .201

7 (hom) .013 .894 .093
7 (het-c) .006 .879 .114
7 (het-o) .005 .839 .156

8 (hom) .001 .092 .907
8 (het-c) .114 .886
8 (het-o) .155 .844

9 (hom) .038 .110 .223 .445 .184 .001
9 (het-c) .008 .032 .118 .474 .366 .001
9 (het-o) .006 .022 .090 .407 .473 .002

10 (hom) .924 .070 .006
10 (het-c) .946 .048 .006
10 (het-o) .949 .046 .005

1  Blank table entries correspond to probabilities less than 0.0005.
2  “hom” refers to the model with homoskedastic log y ; “het-c” refers to the cost

function measure of efficiency in the model with heteroskedastic log y ; “het-o” refers
to the output function measure of efficiency in the model with heteroskedastic log y .
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Table 5.  Posterior Distributions for the Efficiency Ranking of Each Region: ZR Model1

Rank

region 1 2 3 4 5 6 7 8 9 10

1 (hom) 2 .015 .124 .861
1 (het-c) .023 .248 .730
1 (het-o) .021 .239 .740

2 (hom) .597 .197 .129 .066 .011
2 (het-c) .688 .181 .085 .038 .008
2 (het-o) .699 .189 .074 .032 .007

3 (hom) .075 .207 .269 .381 .068 .001
3 (het-c) .136 .366 .270 .197 .031
3 (het-o) .159 .425 .239 .151 .026

4 (hom) .001 .008 .028 .112 .815 .035
4 (het-c) .001 .008 .039 .148 .783 .021
4 (het-o) .002 .011 .059 .199 .715 .015

5 (hom) .192 .362 .279 .141 .025
5 (het-c) .118 .314 .371 .161 .036
5 (het-o) .097 .272 .417 .167 .047

6 (hom) .092 .780 .128
6 (het-c) .058 .682 .260
6 (het-o) .056 .693 .250

7 (hom) .001 .034 .930 .035
7 (het-c) .001 .021 .932 .046
7 (het-o) .001 .014 .893 .092

8 (hom) .035 .965
8 (het-c) .046 .954
8 (het-o) .092 .908

9 (hom) .134 .226 .295 .299 .046
9 (het-c) .057 .130 .235 .456 .122
9 (het-o) .044 .103 .211 .450 .191 .001

10 (hom) .893 .096 .011
10 (het-c) .920 .070 .010
10 (het-o) .923 .068 .009

1  Blank table entries correspond to probabilities less than 0.0005.
2  “hom” refers to the model with homoskedastic log y ; “het-c” refers to the cost

function measure of efficiency in the model with heteroskedastic log y ; “het-o” refers
to the output function measure of efficiency in the model with heteroskedastic log y .
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Figure 6.    Posterior densities for log y∗
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Figure 7.    Posterior densities for selected efficiencies with log y  homoskedastic
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Figure 8. Posterior densities for selected efficiencies from model NR with log y
heteroskedastic
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Figure 9.    Posterior densities for the efficiency of region 3 relative to region 4.


