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COMPUTABLE BOUNDS FOR EXTREME EVENT
PROBABILITIES IN STOCHASTIC ECONOMIC

MODELS

JOHN STACHURSKI

Abstract. The paper introduces a multiplicative drift condition

for evaluating stochastic economic models. The drift condition is

shown to permit computation of quantitative bounds for extreme

event probabilities in terms of the model primitives. By way of

illustration, the technique is applied to a simple threshold autore-

gression model of exchange rates.

1. Introduction

We consider a stochastic economic model which generates a sequence

of state variables (Xt)
∞
t=0 taking values in S ⊂ Rn. Let the (marginal)

distribution of Xt be denoted by ψt, which is a probability distribution

on S. We derive a uniform bound on the tails of each ψt given suitable

conditions on the primitives. In addition, when ψt converges to some

limiting distribution ψ∗ as t → ∞, we derive similar bounds on the

tails of ψ∗.

These tail bounds can be regarded as bounds on probabilities of ex-

treme events. Extreme events are thought of as those which occur only

infrequently, but potentially have large impact. A classic example is

large movements in share prices. For example, the stock market crash

on 19th October 1987 saw the Dow Jones index drop by 23% in one

day, wiping out nearly US$1 trillion in market capitalization. The fi-

nancial crisis that engulfed many Asian economies in the middle of

The author thanks Vance Martin and Lawrence Uren for helpful comments.
1



2 JOHN STACHURSKI

1997 likewise led to huge percentage changes in the exchange rates of

several Asian currencies, with far-reaching economic consequences.

The potential impact of such events in financial markets has led to

considerable research on extreme event probabilities. The standard

methodology is Extreme Value Theory, which bounds the tails of the

running maximum Mt := max{X0, . . . , Xt} generated by an indepen-

dent and identically distributed sequence (Xt)
∞
t=0. Unfortunately, the

IID assumptions precludes application of this theory to dynamic eco-

nomic models, which typically involve at least some degree of correla-

tion. In this paper we permit all finite orders of correlation in (Xt)
∞
t=0,

and study not the running maximum but rather the state variables

themselves, as well as any ergodic limit they might converge to.

The methodology is based on a new multiplicative drift condition (MDC)

for Markov chains. Our MDC complements the more standard additive

drift conditions, used extensively in the existing literature to establish

stability and stationarity of stochastic processes.1 It is the source of

the computable tail bounds derived in the paper.

Previously, Borovkov (1998, Theorem 3.1) also studied bounds on the

tails of the stationary distributions of Markov chains. His bounds are

not directly comparable with those given here. The main difference is in

the conditions on the primitives used to derive the bounds. The condi-

tions used here exploit the MDC discussed above. This drift technique

is intended to fit the kind of equilibrium structure typically available in

economic models. For example, in our exchange rate application, the

drift is due to arbitrage, which pushes the expected value of the rate

towards its purchasing power parity equilibrium.

Our results have many applications for the modeling of financial vari-

ables. For example, heavy tails have been observed in many kinds

1See, for example, Meyn and Tweedie (1993), or Borovkov (1998).
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of market returns data.2 The property of having heavy tails is often

linked informally with “chaotic” or highly nonlinear behavior in the

model which describes motion of the system. One of the contribu-

tions of this paper is to show that a large class of highly nonlinear and

discontinuous models in fact generate marginal and stationary distri-

butions with exponentially decreasing tails. These models therefore

cannot represent time series which empirically are observed to feature

heavy tails.

Another potential application of this research is when the state variable

is itself a distribution. For example, it often happens that in macroe-

conomic dynamics one wishes to study a situation where each entity

in a given economic model has a vector of endogenously evolving at-

tributes, such as income, wealth, asset holdings, human capital, wage

rate, and so on. The state of the economy is given by the distribution

of these attributes across the population. In this case, the size of the

distribution tails provides a measure of dispersion.

Section 2 formulates the problem. Section 3 sets out the multiplicative

drift condition and derives some of its immediate consequences. Sec-

tion 4 gives a number of applications which illustrate the method. The

proofs are in Section 5.

2. Formulation of the Problem

Consider a process evolving in state space S, a Borel subset of Rn. The

law of motion is given by

(1) Xt+1 = h(Xt, ξt+1), X0 ≡ x0 ∈ S given, (ξt)
∞
t=0 IID.

The variables Xt all take values in S, the shocks ξt take values in Z, a

Borel subset of Rk, and h is a measurable function mapping S×Z → S.

2A classic early reference is Mandelbrot (1963). For a more recent overview see

Rachev (2001).
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The shocks are generated on probability space (Ω,F ,P), and E is the

expectations operator corresponding to P.

In time series modeling and macroeconomic dynamics it is common to

deal with seemingly more complex models than (1). For example, Xt+1

might depend on Xt, . . . , Xt−j for some j, and the shocks might them-

selves be correlated of some finite order. However, such models can

always be rewritten in the form of (1) by suitably expanding the num-

ber of state variables. As a result, in all of what follows we concentrate

only on models with this simple first order representation (1).

As a matter of notation, for topological space T , we let B(T ) denote the

Borel sets, and P(T ) denote the probability measures on (T,B(T )).

The common distribution of ξt is denoted by ϕ ∈ P(Z), while that of

Xt is denoted by ψt ∈ P(S). Also, 1B is the indicator function of B.

Thus, for example, E1B ◦Xt = ψt(B) holds for every B ∈ B(S).

A common measure of convergence for elements of P(T ) is via the

total variation distance. For elements µ and ν in P(T ) we define

‖µ− ν‖TV = sup
B∈B(T )

|µ(B)− ν(B)|.

For (µn)∞n=0 ⊂ P(T ) and µ ∈ P(T ) we say that µn converges to µ

in total variation if ‖µ − ν‖TV → 0 as n → ∞. If (Xn)∞n=0 and X

are T -valued random variables, we say that Xn → X in total variation

if the distribution of Xn converges in total variation to that of X (as

elements of P(T )).3

We also define stationary distributions and ergodicity. A probability

ψ∗ ∈ P(S) is called stationary for (1) iff∫ [∫
1{z : h(x, z) ∈ B}ϕ(dz)

]
ψ∗(dx) = ψ∗(B), ∀B ∈ B(S).

3It is well-known and easy to check that convergence in total variation is stronger

than convergence in distribution in the usual sense. See, for example, Stokey, Lucas

and Prescott (1989, Chapters 10–11).
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If the current (i.e., time t) distribution is ψ∗, then the left hand side

gives the probability that Xt+1 ∈ B. Thus, if ψ∗ satisfies this equation,

then this probability is ψ∗(B), which is the same as it is today. Since

this holds for all B, we have ψt = ψt+1 = ψ∗.

The process (1) is called ergodic if there exists a unique stationary

distribution ψ∗ ∈ P(S) for (1), independent of x0, and, in addition,

ψt converges to ψ∗ in total variation. It is geometrically ergodic if,

moreover, ‖ψt − ψ∗‖TV = O(%t) for some % < 1.

3. A Multiplicative Drift Condition

Our main results are derived from the following multiplicative drift

condition. The first lemma gives an immediate implication of the con-

dition. The second result develops connections between the drift con-

dition and geometric ergodicity.

Condition 3.1. There exists a measurable function w mapping S →
[1,∞) and constants β ∈ [0,∞) and α ∈ (0, 1) such that∫

w[h(x, z)]ϕ(dz) ≤ β[w(x)]α for all x ∈ S.

Most of the interesting consequences of this condition are derived from

the following lemma. Its proof and those of all other results are deferred

to Section 5.

Lemma 3.1. Let (Xt)
∞
t=0 be the sequence defined inductively by (1).

If h and ϕ satisfy Condition 3.1, then supt∈N Ew(Xt) ≤ w(x0)β
1

1−α .

If, moreover, w is bounded on compact sets, and if X is an S-valued

random variable such that Xt → X in total variation, then Ew(X) ≤
w(x0)β

1
1−α also holds.

Extreme event bounds can be constructed from the results in Lemma 3.1

via Chebychev’s inequality. For example, suppose that ψ is the distri-

bution of random variable X, and that Ew(X) =
∫
wdψ <∞, where,
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for the sake of concreteness, we take w(x) = e‖x‖. Then Chebychev’s

inequality implies that

(2) P{‖X‖ > r} = P{e‖X‖ > er} ≤ Ee‖X‖e−r,

so finiteness of Ew(X) = Ee‖X‖ gives P{‖X‖ > r} = O(e−r).

We now specialize (1) to the common case where the shock ξt is addi-

tive. Precisely, the state space S = Rn, ξt also takes values in S, and

h(x, z) = g(x) + z, where g : S → S is a measurable function. Thus,

(3) Xt+1 = g(Xt) + ξt+1, X0 ≡ x0 ∈ S.

If w has a “Lyapunov function” shape, then Condition 3.1 also has

stability implications. To state the precise result, we need the notion

of a norm-like function. Here, a measurable real-valued function w is

called norm-like if the sublevel sets {x ∈ S : w(x) ≤ a} are bounded,

∀a ∈ R.4

Theorem 3.1. Let (Xt)
∞
t=0 be the sequence defined inductively by (3). If

Condition 3.1 holds for norm-like w, and, in addition, the distribution

ϕ of ξt admits a density representation which is continuous and strictly

positive on S, then (Xt)
∞
t=0 is geometrically ergodic.

4. Applications

We begin this section by consider the Markov chain (Xt)
∞
t=0 generated

by the additive shock model (3). A number of general results are given,

followed by an application to exchange rate dynamics. The first result

uses a growth condition on the function g to establish an exponentially

decreasing bound on the tail of ψt.

4In more general topological spaces, the sublevel sets of norm-like functions are

required to have compact closure.
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Proposition 4.1. Let Br := {x ∈ S : ‖x‖ ≤ r}, and let (Xt)
∞
t=0 be

the sequence defined inductively by (3). If g satisfies the constraint

(4) ‖g(x)‖ ≤ c+ γ‖x‖, ∀x ∈ S

for c ∈ [0,∞) and γ ∈ (0, 1), then for all t ∈ N and all r > 0 we have

(5) ψt (S \Br) = P{‖Xt‖ > r} ≤
[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ

e‖x0‖−r.

The growth condition (4) permits g to be discontinuous and highly

nonlinear. It is equivalent to the statement that there exists a hyper-

sphere B ⊂ S = Rn centered on the origin such that ‖g(x)‖ is bounded

for x ∈ B, and on the complement of B the map g is contracting, in

the sense that ∃γ ∈ (0, 1) such that ‖g(x)‖ ≤ γ‖x‖ for all x ∈ S \ B.

Similar restrictions have been used elsewhere in economics and finance.

See, for example, Duffie and Singleton (1993).

The second application adds sufficient mixing to imply geometric er-

godicity. It is then shown that ψ∗, the stationary distribution of the

state variable and the long-run equilibrium of the system, also inherits

a similar tail bound.

Proposition 4.2. Let (Xt)
∞
t=0 be the sequence defined inductively by

(3). If, in addition to the hypotheses of Proposition 4.1, the distri-

bution ϕ of ξt admits a density representation which is continuous,

strictly positive on S, and satisfies
∫
e‖z‖ϕ(z)dz < ∞, then (Xt)

∞
t=0 is

geometrically ergodic, and the stationary distribution ψ∗ satisfies

(6) ψ∗ (S \Br) ≤
[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ

e−r.

As above, we are using the notation Br := {x ∈ S : ‖x‖ ≤ r}. Note

that, in contrast to the previous bound in (5), this bound does not

depend on x0.

As an example, consider the (self-exciting) threshold autoregression

model, which has recently found many applications in macroeconomic
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modeling.5 It has the form

(7) Xt+1 =
K∑

k=1

(AkXt + bk)1{Xt ∈ Bk}+ ξt+1,

where (Bk)
K
k=1 ⊂ B(S) is a partition of S = Rn, each Ak is an n × n

matrix, and each bk is an n × 1 vector. The structure of the model

is such that when the state is in the region Bk, the state variable

follows the regime x 7→ Akx + bk. This structure allows for significant

nonlinearities.

Without any loss of generality, suppose that the first 1, . . . , J ele-

ments of the partition (Bk)
K
k=1 are unbounded, and the remaining

J + 1, . . . , K are bounded. Let B be the union of the bounded el-

ements BJ+1, . . . , BK . Evidently g is bounded on bounded sets, so

a := supx∈B ‖g(x)‖ is finite. Finally, set b := sup1≤k≤J ‖bk‖, and

% := max1≤k≤J %k, where %k is the spectral radius of Ak.

Proposition 4.3. If % < 1, and if the distribution of ξt is multivari-

ate normal, then all of the conditions of Propositions 4.1 and 4.2 are

satisfied. In particular, (Xt)
∞
t=0 is geometrically ergodic, and the tail

bounds (5) and (6) both hold when c := a+ b and γ := %.

To illustrate this result, consider Taylor’s (2001) study of exchange

rate dynamics and purchasing power parity (PPP). He uses a threshold

autoregression of the form

(8) Xt+1 =


−θ + π(Xt + θ) + ξt+1, if Xt < −θ;

Xt + ξt+1, if − θ ≤ Xt ≤ θ;

θ + π(Xt − θ) + ξt+1, if Xt > θ.

Here X represents the proportional deviation of the real exchange rate

from PPP. The idea of the model is that trade frictions result in a

“band of inaction,” given here by [−θ, θ]. In this band, transaction

costs imply that no arbitrage is possible. Outside [−θ, θ] there is drift

5See, for example, Hansen (2001), or Taylor (2001).
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back towards the band, assuming that π ∈ [0, 1). The shock ξt is

N(0, σ2).

Using the notation preceding Proposition 4.3, we can set B = [−θ, θ],
whence a = supx∈B |g(x)| = θ, and b = sup{|(1− π)θ|, |(−π + 1)θ|} =

(1− π)θ, so that c = a + b = (2− π)θ. Also, % is the slope coefficient

π. Applying these constants to Proposition 4.3 gives the equilibrium

extreme value bound

(9) ψ∗ (S \Br) ≤
[
e(2−π)θ

∫
e‖z‖ϕ(dz)

] 1
1−π

e−r,

where ψ∗ is the stationary distribution associated with the (geometri-

cally ergodic) process (8).

5. Proofs

It is convenient to introduce some additional notation. Let (Ft)
∞
t=0 be

any filtration to which (ξt)
∞
t=0 is adapted. Also, if w is a measurable

real valued function on the state space S which is either nonnegative

or bounded, then we set Mw(x) := Ew[h(x, ξt)] =
∫

Z
w[h(x, z)]ϕ(dz).

The interpretation is that Mw(x) is the expectation of w(Xt+1) when

Xt = x. In fact we have E[w(Xt+1) |Ft] = Mw(Xt). The intuition is

clear and a formal proof is not difficult.6

Proof of Lemma 3.1. Pick any t ∈ N. From the drift condition we get

Mw ◦Xt ≤ β(w ◦Xt)
α holds a.s. on Ω.

∴ E [w ◦Xt+1 |Ft] ≤ β(w ◦Xt)
α.

∴ Ew ◦Xt+1 ≤ β · E [(w ◦Xt)
α].

∴ Ew ◦Xt+1 ≤ β(Ew ◦Xt)
α (∵ Jensen’s inequality).

Setting yt := lnEw ◦Xt, it is easy to see that

yt ≤ y0 +
ln β

1− α
.

6See, for example, Taylor (1997, p. 225).
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(10) ∴ Ew ◦Xt ≤ w(x0)β
1

1−α .

Since t is arbitrary the proof is done.

Now let Xt → X in total variation, and let ψ∗ ∈ P(S) be the distri-

bution of X. By the above argument we have Ew ◦ Xt ≤ J for all t,

where J is the constant on the right hand side of (10). Convergence in

total variation implies that for every bounded measurable h : S → R
we have

∫
hdψt →

∫
hdψ∗. So let sn be the indicator function of the

ball of radius n, and let hn := sn · w, which is bounded by hypothesis.

Then∫
w dψ∗ = lim

n

∫
hn dψ

∗ (∵ Monotone Convergence Theorem)

= lim
n

lim
t

∫
hn dψt (∵ hn is bounded and measurable)

≤ lim
n

lim
t

∫
w dψt ≤ J.

�

Proof of Theorem 3.1. To establish geometric ergodicity we use the

conditions of Theorem 15.0.1 in Meyn and Tweedie (1993). Precisely,

the Markov chain (Xt)
∞
t=0 generated on S by (3) and starting at initial

state X0 ≡ x ∈ S is geometrically ergodic whenever it is irreducible,

aperiodic, and there exists a r > 1 and a petite set C ⊂ S such that

(11) sup
x∈C

E rτx
C <∞, where τx

C := min{t ≥ 1 : Xt ∈ C}.

The random variable τx
C is called the return time to C. The superscript

x indicates its dependence on the initial condition x. Clearly τx
C is a

stopping time with respect to (Ft)
∞
t=0.

For definitions of irreducibility and aperiodicity see Meyn and Tweedie

(1993, §§4.2.1 and §§5.4.3 respectively). We omit formal statement of

these definitions and their verification, but a sufficient condition for a

Markov chain to be irreducible and aperiodic is that any set B ∈ B(S)
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of positive Lebesgue measure can be reached in one step from any x ∈ S
with positive probability, which is to say that∫

1{g(x) + z ∈ B}ϕ(z)dz =

∫
B−g(x)

ϕ(z)dz > 0.

This is immediate from the assumption that ϕ > 0 almost everywhere.

We also omit the definition of petite sets (see Meyn and Tweedie, 1993,

§§5.5.2), but for a set C ∈ B(S) to be petite it is sufficient that there

exists a measurable function f : S → [0,∞) with
∫

S
f > 0 and

(12) x ∈ C implies ϕ(y − g(x)) ≥ f(y), ∀y ∈ S.

Let C be any bounded set, and let δ := infx,y∈C×C ϕ(y − g(x)). If C

has positive measure, and if δ > 0, then we can take f := δ1C , because

if x ∈ C then by the definition of δ we have ϕ(y − g(x)) ≥ f(y) =

δ1C(y).7 But δ > 0 must always hold for bounded C, because if C is

bounded then it must be contained in some ball of size L, so that when

(x, y) ∈ C × C we have

‖y− g(x)‖ ≤ ‖y‖+ ‖g(x)‖ ≤ ‖y‖+ c+ γ‖x‖ ≤ c+ (1 + γ)L =: M.

Thus δ = infx,y∈C×C ϕ(y − g(x)) ≥ inf‖z‖≤M ϕ(z), which is strictly

positive because ϕ is strictly positive and continuous. We conclude

that all bounded sets of positive measure are petite.

Thus, it remains only to verify condition (11) for some r > 0 and some

bounded set C with positive measure. Evidently it is sufficient to prove

(13) ∃λ < 1 and N <∞ s.t. P{τx
C ≥ t} ≤ Nλt, ∀x ∈ C,

because then

sup
x∈C

E rτx
C ≤ sup

x∈C

∑
t

rtP{τx
C ≥ t} ≤ N

∑
t

rtλt,

which is finite whenever r ∈ (1, 1/λ).

7Consider the two cases y ∈ C and y /∈ C.
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To establish (13), let α and β be as in Condition 3.1, and let d be any

number such that d > max{β
1

1−α , 1}, and that C := {x ∈ S : w(x) ≤
d} has positive measure. Note that C is bounded, in view of the fact

that w is norm-like. Let λ := βdα−1. Note that λ < 1. Note also that

(14) if x /∈ C, then βw(x)α ≤ λw(x),

because x /∈ C implies w(x) > d, and so βw(x)α−1 ≤ βdα−1 = λ.

Note finally that if for such λ and C we define Yt := w◦Xt·1{τx
C ≥ t+1},

then

(15) E[Yt+1 |Ft] ≤ λYt.

This is because

E[Yt+1 |Ft] = E[w ◦Xt+1 · 1{τx
C ≥ t+ 2} |Ft]

≤ E[w ◦Xt+1 · 1{τx
C ≥ t+ 1} |Ft]

= E[w ◦Xt+1 |Ft] · 1{τx
C ≥ t+ 1} (∵ τx

C is a stopping time)

= [Mw ◦Xt] · 1{τx
C ≥ t+ 1}

≤ β(w ◦Xt)
α · 1{τx

C ≥ t+ 1},

and since τx
C ≥ t+ 1 implies that Xt /∈ C, (14) now gives

(16) E[Yt+1 |Ft] ≤ λ · w ◦Xt · 1{τx
C ≥ t+ 1},

which is (15).

We are now ready to complete the proof. Pick any x ∈ C. Since

τx
C ≥ t + 1 implies that Xt /∈ C, which in turn gives w ◦ Xt > d > 1,

we have

(17) P{τx
C ≥ t+ 1} ≤ E [w ◦Xt · 1{τx

C ≥ t+ 1}] = EYt.

Moreover, taking expectations of both hand sides of (15) gives EYt+1 ≤
λEYt, which in turn gives EYt ≤ λtEY0. Since τx

C ≥ 1 is true by defi-

nition, this becomes EYt ≤ λtw(x) ≤ λtd, where the second inequality

follows from the fact that x ∈ C. From (17), then

P{τx
C ≥ t+ 1} ≤ λtd = Nλt+1,
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where N := d/λ. This proves (13), and hence the theorem. �

Proof of Proposition 4.1. If
∫
e‖z‖ϕ(dz) = ∞ then the bound is trivial.

Suppose instead that it is finite. We claim that Condition 3.1 is satisfied

for w(x) := e‖x‖, β := ec
∫
e‖z‖ϕ(dz) and α := γ. To show this we must

prove that ∫
exp(‖g(x) + z‖)ϕ(dz) ≤ βeα‖x‖.

By the growth condition on g we have

‖g(x) + z‖ ≤ ‖g(x)‖+ ‖z‖ ≤ c+ γ‖x‖+ ‖z‖.

∴
∫

exp(‖g(x) + z‖)ϕ(dz) ≤ ec

∫
e‖z‖ϕ(dz)eγ‖x‖ = βeα‖x‖.

As a result, we can apply Lemma 3.1, which gives

(18) sup
t

E e‖Xt‖ ≤
[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ

e‖x0‖.

The bound (5) now follows from the Chebychev bound (2). �

Proof of Proposition 4.2. In the proof of Proposition 4.1 we already es-

tablished that Condition 3.1 holds for w(x) = e‖x‖, β := ec
∫
e‖z‖ϕ(dz)

and α := γ. Clearly w is norm-like. As a result, all of the conditions

of Theorem 3.1 are satisfied, and the process is geometrically ergodic.

Regarding (6), Lemma 3.1 and the Chebychev bound (2) give

(19) ψ∗ (S \Br) ≤
[
ec

∫
e‖z‖ϕ(dz)

] 1
1−γ

e‖x0‖−r.

Since this bound holds for all x0 we can minimize over x0 ∈ S. Doing

so gives (6). �

Proof of Proposition 4.3. We need to verify the conditions of Proposi-

tions 4.1 and 4.2. The only one which is not clear is that (4) holds for
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c = a + b and γ = %, where here g(x) =
∑K

k=1(Akx + bk)1Bk
(x). For

x /∈ B we have

‖g(x)‖ =

∥∥∥∥∥
J∑

k=1

(Akx+ bk)1Bk
(x)

∥∥∥∥∥
≤ sup

1≤k≤J
‖Akx+ bk‖ ≤ sup

1≤k≤J
‖Akx‖+ sup

1≤k≤J
‖bk‖ ≤ γ‖x‖+ b.

As a result, whether x ∈ B or x ∈ S \B we have

‖g(x)‖ ≤ a+ γ‖x‖+ b = c+ γ‖x‖.

�
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