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Abstract

We extend Armstrong’s (1996) result on exclusion in multi-dimensional

screening models in two key ways, providing support for the view that this

result is quite generic and applicable to many different markets. First, we

relax the strong technical assumptions he imposed on preferences and con-

sumer types. Second, we extend the result beyond the monopolistic market

structure to generalized oligopoly settings with entry. We also analyse appli-

cations to several quite different settings: credit markets, automobile indus-

try, research grants, the regulation of a monopolist with unknown demand

and cost functions, and involuntary unemployment in the labor market.
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1 Introduction

When considering the problem of screening, where sellers choose a sales mech-

anism and buyers have private information about their types, it is well known that

the techniques used in the multidimensional setting are not as straightforward as

in the one dimensional setting. As a consequence, while we have a host of success-

ful applications with one dimensional types, to date we have only a few scattered

papers that allow for multidimensional types. This is unfortunate because in most

economic applications multidimensional types are needed to capture the basic eco-

nomics of the environment, and the propositions coming from the one dimensional

case do not necessarily generalize to the multidimensional case.1

One of the most celebrated results in the theory of multidimensional screening,

though, comes from Armstrong (1996) where he shows that a monopolist will find

it optimal to not serve some fraction of consumers in equilibrium, even when there

is positive surplus associated with those consumers. In settings where consumers

vary in at least two different ways, monopolists will choose a sales mechanism that

excludes a positive measure of consumers. The intuition behind this result is rather

simple: Consider a situation where the monopolist serves all consumers; if she

increases the price by ε > 0 she earns extra profits of order O(ε) on the consumers

who still buy the product, but will lose only the consumers whose surplus was below

ε. If m > 1 is the dimension of the vector of consumers’ taste characteristics, then

the measure of the set of the lost consumers is O(εm). Therefore, it is profitable to

increase the price and lose some consumers. In principle, this result has, potentially,

profound implications across a wide range of economic settings. The general belief

that heterogeneity of consumer types is likely to be more than unidimensional

in nature, for many different commodities, and that these types are likely to be

private information, underlines the importance of this result.2

However the result itself was derived under a relatively strong set of assump-

tions that could be seen as limiting its applicability, and subsequent research has

identified conditions under which the result does not hold. In particular, in Arm-

strong’s original analysis, he assumed that the utility functions of the agents are

1See Rochet and Stole (2003) and Basov (2005) for surveys of the literature.
2The type of an economic agent is simply her utility function. If one is agnostic about the

preferences and does not want to impose on them any assumptions beyond, perhaps, monotonicity
and convexity then the most natural assumption is that the type is infinite dimensional.
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homogeneous and convex and in their types, and that these types belong to a

strictly convex and compact body of a finite dimensional space. Basov (2005) refers

to the latter as the joint convexity assumption and argues that though convexity

of utility and types and convexity of the types set separately are not restrictive

and can be seen as a choice of parametrization, the joint convexity assumption is

technically restrictive.

These assumptions have no empirical foundation, and are nonstandard. For

instance, the benchmark case of independent types does not satisfy these assump-

tions, because the type space, in this case, is a multidimensional box, which is not

strictly convex. There is, in general, no theoretical justification for a particular

assumption about the curvature of utility functions with respect to types, as op-

posed to, say, quasi-concavity of utility functions with respect to goods. In the

same line, in general, there is no justification, other than analytical tractability,

for type spaces to be convex, and for utility functions to be homogeneous in types.

Both Armstrong (1999b) and Rochet and Stole (2003) found examples outside of

these restrictions where the exclusion set is empty.

As we will argue below these counter-examples constitute knife-edge cases and

are not generic. We will also argue that exclusion is generic under more gen-

eral market structures. i.e. the result is actually quite robust. We then provide

examples where we believe it could also be quite important.

We start with relaxing the joint convexity and homogeneity assumptions, and

show that they are not necessary for the result. Exclusion is generically optimal in

the family of models where types belong to sets of locally finite perimeter (which

is a class of sets that includes all of the examples the authors are aware of in the

literature) and utility functions are smooth and monotone in types. We show that

the examples considered in Armstrong (1999b) and Rochet and Stole (2003) are,

themselves, very special cases. We then go on to show that the exclusion results

can be generalized to the case of an oligopoly and an industry with free entry.

Therefore, the inability of some consumers to purchase the good at acceptable

terms is solely driven by the multi-dimensional nature of private information rather

than by market conditions or nature or distribution of the consumers’ tastes.

To illustrate the generality of the results, we apply them in several quite dif-

ferent settings: credit markets, the automobile industry, and research grants. We

also pay particular attention to two applications: the first being the regulation of
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a monopolist with unknown demand and cost functions, and the second being the

existence of equilibrium involuntary unemployment. The former application picks

up of the analysis in Armstrong (1999b), where he reviews Lewis and Sappington

(1988) and conjectures that exclusion is probably an issue in their analysis. At

the time, Armstrong could not prove the point, due to the lack of a more gen-

eral exclusion result. With our result in hand, we are able to prove Armstrong’s

conjecture. The latter application is a straightforward way of showing that, when

workers have multi-dimensional characteristics, it is generically optimal for em-

ployers (with market power in the labor market) to not hire all workers.

Most generally, we believe that the main result of this paper is that private

information leads to exclusion in any almost any realistic setting. To avoid it

one has either to assume that all allowable preferences lie on a one-dimensional

continuum or construct very specific type distributions and preferences.

The remainder of this paper is organized as follows. In Section 2 we present

the monopoly problem with consumers that have a type-dependent outside option

and the derive conditions under which it is generically optimal to have exclusion.

In Section 3 we generalize the results for the case of oligopoly and a market with

free entry. In Section 4 we discuss how the results can be generalized without the

quasilinearity assumption. Sections 5 and 6 present the application to the regula-

tion of a monopolist with unknown demand and cost functions and to involuntary

unemployment. The Appendix presents some relevant concepts from geometric

measure theory.

2 The Genericity of Exclusion in a Monopolistic

Screening Model

Assume a monopolist faces a continuum of consumers and produces a vector

of n goods x ∈ Rn
+. The cost of production is given by a strictly convex twice

differentiable cost function c(·) : Rn
+ → R. A consumer’s utility is given by:

v(α, x)− t(x)
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where α ∈ Ω is her unobservable type, t(x) is the amount of money transferred

to the monopolist when the consumer purchases x, and v : Ω×Rn → R is a con-

tinuously differentiable function, strictly increasing in both arguments. Moreover,

we will assume that ν(·, x) can be extended by continuity to Ω. We assume that

Ω ⊂ U ⊂ Rm is a Lebesgue measurable set with locally finite perimeter in the

open set U , and that α is distributed according to a density f(·) that is Lipschitz
continuous and with supp(f) = Ω compact.3 Consumers have an outside option of

value s0(α), which is assumed to be continuously differentiable and implementable

and extendable by continuity to Ω.4

The monopolist looks for a selling mechanism that maximizes her profits. The

Taxation Principle (Rochet, 1985) implies that one can, without loss of generality,

assume that the monopolist simply announces a non-linear tariff t(·).
The above considerations can be summarized by the following model. The

monopolist selects a function t : Rn → R to solve

max
t(·)

Z
Ω

(t(x(α))− c(x(α)))f(α)dα

where c(x) is the cost of producing x and x(α) satisfies

⎧⎨⎩ x(α) ∈ argmax
x

v(α, x)− t(x) if max(v(α, x)− t(x)) ≥ s0(α)

x(α) = x0(α) otherwise
, (1)

where x0(α) is the outside option, which implements surplus s0(α).

The cost function c (x) is separable across consumers. Moreover, assume that

there is a finite solution to the problem of maximizing the joint surplus v(α, x)−
c(x) for every consumer α. Let s(α) denote the surplus obtained by type α:

s(α) = max
x
(v(α, x)− t(x)) (2)

The celebrated result of Armstrong (1996) states that if Ω is strictly convex,

v(·, x) : Ω → R is a convex, homogenous of degree one function for all x, and

3See Evans and Gariepy (1992) and Chlebik (2002) for the relevant concepts from geometric
measure theory. For convenience, a brief summary is presented in the appendix.

4For conditions of implementability of a surplus function see Basov (2005).
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s0(α) = 0 for all α, then the measure of the set Ω0 = {α ∈ Ω : s(α) = 0} is
positive. We will replace these assumptions with Assumptions 1 and 2 below.

Assumption 1 For any x ∈ Rn
+, the net utility gain of consumption u(·, x) defined

by

u(·, x) = v(·, x)− s0(·) (3)

is strictly increasing in α.

In the case when the value of the outside option is type independent, Assump-

tion 1 reduces to the standard assumption that the utility is increasing in α.

Let ∂eΩ denote the measure theoretic boundary of Ω. Because Ω has locally

finite perimeter, ∂eΩ =
S∞

i=1Ki ∪N , where Ki is a compact subset of a C1 hyper-

surface Si, for i = 1, 2, ..., andHm−1(N) = 0, whereHm−1 is them−1 dimensional
Hausdorff measure.

Assumption 2 For each i = 1, 2...,

Ki = {α ∈ Ω : gi(α, β) = 0}

where gi : Ω × RJ → R is smooth, β ∈ RJ , J ≥ 1, are parameters and, for all
x ∈ Rn

+ and all i = 1, 2, . . . , there exists β0 ∈ RJ such that

rank

Ã
∇αu(α, x)

∇αgi(α, β0)

!
= 2. (4)

That is, the parameters β determine the underlying set of models that we

consider, and there is one model for which the normal of each Ki and of each level

curve of the utility function are not colinear. As will be clear in the examples

below, Assumption 2 is stronger than what we need: the rank condition has to be

met only at the optimal choices x(α). Also, note that an open set Ω ⊂ Rm with

topological boundary ∂Ω that is locally Lipschitz (that is, ∂Ω is the graph of a

Lipschitz function near each α ∈ ∂Ω) is a set with locally finite perimeter.

Let us consider some examples satisfying Assumptions 1 and 2.

Example 1 Assume that every consumer has an option to buy nothing and pay
nothing, i.e.

s0(α) = u(α, 0).
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In this case Assumption 1 reduces to a weak single-crossing condition:

v(·, x)− v(·, 0)

increases in α for every x. Although usually it is assumed that v(·, 0) = 0 this

need not be so. For example, consider a consumer who has wealth w in her account

and lives for 2 periods. Her second period wealth can take to values wH or wL.

Let p be the probability that w = wH, and let δ ∈ (0, 1) be the discount factor, so
that the private information of the consumer is characterized by a two-dimensional

vector α = (p, δ). The individual’s preferences are given by:

U(c1, c2) = u(c1) + δEu(c2)

where c1 and c2 are the consumption levels in periods one and two respectively.

We will assume that wealth is not storable between periods. An individual may

approach a bank for a loan X. If she does so, she will be asked to repay t(X) is the

next period, provided her wealth is high and default if it is low. If the individual

chooses not to take the credit, her expected utility will be:

U0(p, δ) = u(w) + δ(pu(wH) + (1− p)u(wL))

which is type dependent. Consider the following change of variables:

γ = 1− δ, q = 1− p, α = (γ, q) , x = X, ∆u = u (wH)− u (wH − t (x)) . (5)

Then,

u (α, x) = u (w + x)− u (w)− (1− γ) (1− q)4u, (6)

which is strictly increasing in α. Therefore, this example satisfies Assumption 1.

Define, on (0, 1)2, the functions

g1 (α, 1) = γ − 1, g2 (α, 0) = γ, g3 (α, 1) = q − 1, g4 (α, 1) = q. (7)
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Then,

∇αg1 (α, 1) = (1, 0) , ∇αg2 (α, 0) = (1, 0) , ∇αg3 (α, 1) = (0, 1) , ∇αg4 (α, 0) = (0, 1) .

(8)

Moreover,

∇αu (α, x) = ((1− q)∆u, (1− γ)∆u) , (9)

and, for β0 = 0, 1, i = 1, 2, j = 3, 4,

rank

Ã
∇αu(α, x)

∇αgi(α, β0)

!
= rank

Ã
(1− q)∆u (1− γ)∆u

1 0

!
= 2

rank

Ã
∇αu(α, x)

∇αgj(α, 1

!
= rank

Ã
(1− q)∆u (1− γ)∆u

0 1

!
= 2

. (10)

Therefore, this example also satisfies Assumption 2. Note, however, that in this

example the preferences of the agents are not quasilinear. We will discuss this case

in Section 4.

The above example is a natural setting to discuss unavailability of credit to

some individuals, which is important to justify monetary equilibria in the search

theoretic models of money.5 The next example comes from the theory of industrial

organization.

Example 2 Suppose a monopolist produces cars of high quality. The utility of a
consumer is

u(α, x) = A+
nX
i=1

αixi (11)

where A > 0 can be interpreted as utility of driving a car, and the second term in

(11) is a quality premium. Suppose a consumer has three choices: to buy a car

from the monopolist, to by a car from a competitive fringe, and to buy no car at

all. We will normalize the utility of buying no car at all to be zero. Assume the

competitive fringe serves low quality cars of quality −x0, where x0 ∈ Rn
++ at price

p. That is, the consumers experience disutility from the quality of the cars of the

competitive fringe, and the higher their type, the higher the disutility. The utility

5See, for example, Lagos and Wright (2005).
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of the outside option in this case is given by:

s0(α) = max(0, A− p−
nX
i=1

αix0i)

and is decreasing in α. Therefore, Assumption 1 holds.

Let us redefine a consumer’s utility function by (3). Assumption 1 guarantees

that u(·, x) is increasing and we can reformulate the monopolist’s problem in the

following way: the monopolist selects a function t : Rn → R to solve

max
t(·)

Z
Ω

(t(x(α))− c(x(α)))f(α)dα (12)

where c(x) is the cost of producing a good with quality x and x(α) satisfies⎧⎨⎩ x(α) ∈ argmax
x

(u(α, x)− t(x)) if max(u(α, x)− t(x)) ≥ 0

x(α) = 0 otherwise
. (13)

We use t(·) to denote the the optimal tariff.6

To be able to formulate and prove the main result we have to establish some

technical lemmata. For any Lebesgue measurable set E ⊂ Rm let Lm(E) denote its

Lebesgue measure. Let K(Rm) be the hyperspace of compact sets in Rm, endowed

with the topology induced by the Hausdorff distance dH , given by

dH(A,B) = inf{ε > 0 : A ⊂ Bε, B ⊂ Aε}, (14)

where

Aε =
S
α∈A

Bε(α) (15)

and Bε(α) is the open ball centered at α and with radius ε > 0. Because

lim
ε→0+

Lm(Eε) = Lm(E), lim
ε→0+

Hs(Eε) = Hs(E) (16)

for all s ≥ 0, both Lm and Hs are upper semicontinuous functions in K(Rm) (Beer

(1975)). Hence the following lemma holds.
6See Basov (2005) for the conditions that ensure the existence of a solution.

9



Lemma 1 Let E ∈ K(Rm) be such that Lm(E) = Hs(E) = 0, for some s ≥ 0,
and let (Ek)k≥1 be a sequence in K(Rm) such that Ek → E. Then Lm(Ek) → 0

and Hs(Ek)→ 0.

Proof. Because Lm is a non negative upper semicontinuous set function, we

have

lim inf
Ek→E

Lm(Ek) ≥ 0 = λ(E) ≥ lim sup
Ek→E

Lm(Ek),

so Lm(Ek)→ 0, and analogously for Hs.¥
Lemma 1 establishes continuity of Lebesgue and Hausdorff measures at zero.

It will be used below, when we prove the main result of this Section.

Lemma 2 Under Assumption 1, Lm(Ω0) = 0 implies Ω0 ⊂ ∂Ω.

Proof. If Ω0 * ∂Ω, there is α ∈ Ω0 and an ε > 0 with Bε(α) ⊂ Ω. Then

Lm({β ∈ Ω : β ≤ α} ∩ Bε(α)) > 0. But because s(·) is increasing, {β ∈ Ω : β ≤
α} ∩Bε(α) ⊂ Ω0, contradicting Lm(Ω0) = 0.¥
Lemma 2 states that if the exclusion set has Lebesgue measure zero it should

be part of the topological boundary of the type set. Assumption 1 is crucial for

this result. If it does not hold it is easy to come up with counter-examples even

in the unidimensional case.

Lemma 3 Assume Lm(Ω0) = 0 and Assumption 2 holds. Then Hm−1(Ω0) = 0

for almost all β.

Proof. Let s(·) be the surplus function generated by the optimal tariff via

(2). By Lemma 2, Ω0 ⊂ ∂Ω. Because Hm−1(∂Ω\∂eΩ) = 0, consider Ω0 ∩ ∂eΩ,

which is given by

Ω0 ∩ ∂eΩ =
∞S
i=1

Ω0i ∪ (N ∩ Ω0) (17)

where

Ω0i = {α ∈ Ω : gi(α, β) = 0, s(α) = 0}, (18)

for i = 1, 2, .... For each Ω0i, Assumption 2 and the Transversality Theorem

(see Mas-Colell, Whinston, and Green, 1995, Chapter 17D) imply that

rank

Ã
∇αu(α, x)

∇αgi(α, β)

!
= 2

for almost all β. Therefore, by the Implicit Function Theorem, Ω0i is a manifold of
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dimension of (m−2) for almost all β, so Hm−1(Ω0i) = 0. HenceHm−1(Ω0∩∂eΩ) ≤P∞
i=1Hm−1(Ω0i) +Hm−1(N ∩ Ω0) = 0 for almost all β and we are done.¥
For any a, b ∈ Rm let (a·b) denote the inner product of a and b. The Generalized

Gauss-Green Theorem states that for any Ω with locally finite perimeter in U ⊂
Rm, and any Lipschitz continuous vector field ϕ : U → Rm with compact support

in U there is a unique measure theoretic unit outer normal vΩ(α) such thatZ
Ω

divϕdα =

Z
U

(ϕ · vΩ)dHm−1

where

divϕ =
mX
k=1

∂ϕk

∂αk
(19)

is the divergence of the vector field ϕ. Because of Assumption 1 we have∇αu(α, x) ≥
0 for all α ∈ Ω ⊂ Rm

+ , so it is only a slight strengthening of Assumption 1 to assume

that

sup
(α,x)∈Ω×Rn

+

(α ·∇αu(α, x)) > 0 (20)

Because we can restrict the choices of x to lie in a compact subset X ⊂ Rn
+, since

they will never exceed the efficient levels, it is without loss to assume that u(·, ·) is
bounded on Ω×X. Therefore, we can assume that there exists a number K > 0

such that

u(α, x) ≤ K(α ·∇αu(α, x))

for all (α, x) ∈ Ω×X. The following theorem holds.

Theorem 1 Consider problem (12)-(13) and assume that u(·, ·) is twice continu-
ously differentiable and strictly increasing in both arguments, c(·) is strictly convex
and twice continuously differentiable, Ω is a set with locally finite perimeter in an

open set U ⊂ Rm, f(·) is Lipschitz continuous with supp(f) = Ω compact and

Assumptions 1 and 2 hold. Finally, assume that there exists a number K > 0 such

that

u(α, x) ≤ K(α ·∇αu(α, x))

for all (α, x) ∈ Ω × X. Then, for almost all β, the set of consumers with zero

surplus at the equilibrium has positive measure.

Proof. By way of contradiction, assume that Lm(Ω0) = 0. For any natural
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number k, let πk be the profit obtained by selling to the types in

Ωk = {α ∈ Ω : s(α) ≤ 1
k
}. (21)

Since s(·) and c(·) are non negative, we must have

πk ≤
Z
Ωk

u(α, x(α))f(α)dα (22)

Because there exists K > 0 such that u(α, x) ≤ K(α · ∇αu(α, x)), the envelope

condition implies that

πk ≤
Z
Ωk

K(α ·∇s(α))f(α)dα.

Applying the Generalized Gauss-Green Theorem to ϕ(α) = αs(α)f(α) we get

πn ≤
Z
U

Ks(α)f(α)(α · vΩ(α))dHm−1(α)−
Z
Ωk

Ks(α)div(αf(α))dα.

Because every function above is bounded in Ωk, choose a common upper bound

B. Because s(α) ≤ 1
k
in Ωk, we have

πk ≤
1

k
B(Hm−1(Ωk) + Lm(Ωk)).

Now consider increasing the tariff by 1
k
. The consumers in the set Ωk will exit, and

πk will be lost, but each other consumer will pay 1
k
more. Since the total number

of consumers that exit is bounded by BLm(Ωk), the change in profit is at least

∆π ≥ 1
k
[(1−BLm(Ωk)−B(Hm−1(Ωk) + Lm(Ωk))].

From Lemma 4, for almost all β we have Hm−1(Ω0) = 0, and hence from

Lemma 1 we have Lm(Ωk) → 0 and Hm−1(Ωk) → 0 for almost all β, because of

continuity of s(·) and the compact support of f(·). But then for large k, ∆π must

be positive, contradicting the optimality of the tariff.¥
Therefore, Theorem 1 shows that, generically, the set Ω0 = {α ∈ Ω : s(α) = 0}

has positive measure, generalizing Armstrong’s result. Strictly speaking, Ω0 is the
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set of consumers who have zero surplus, so it is not necessarily the case that a

positive measure of consumers will in fact be excluded. That is, a consumer may

have zero surplus because she does not consume at all or because she pays for her

consumption exactly her opportunity cost. In this latter case she is not excluded

from consumption. The following corollary shows that such consumers represent

a zero measure subset of Ω0. As a consequence, the set of excluded consumers

contains the interior of Ω0 and has positive measure.

Corollary 1 Under the assumptions of Theorem 1 a positive measure of consumers
will be excluded at the equilibrium for almost all β.

Proof. Suppose that a consumer α ∈ Ω0 does consume. Moreover, suppose

that there exists another consumer δ ∈ Ω0 with δ < α. Then, since u is strictly

increasing it must be the case that:

t (α) = u (α, x (α)) > u (α, x (δ)) > u (δ, x (δ)) = t (δ)

But then, u (α, x (δ)) − t (δ) > 0, which contradicts the optimality of the α-type

consumer’s choice. Therefore, if α ∈ Ω0 does consume, then every δ ∈ Ω0 with

δ < α is excluded from consumption. Hence, the set of agents in Ω0 who do

consume has zero measure.¥
Rochet and Stole (2003) provided an example where the exclusion set is empty.7

In their example u : Ω×R+ → R has a form

u(α, x) = (α1 + α2)x

and Ω is a rectangle with sides parallel to the 45 degrees and −45 degrees lines.
They argued that one can shift the rectangle sufficiently far to the right to have an

empty exclusion region. Their result is driven by the fact that they allow only very

special collection of type sets, rectangles with parallel sides. Formally, Assumption

7Another example along similar lines is provided by Deneckere and Severinov (2009). Though
it is a bit more intricate and the authors provide sufficient conditions that ensure full participation
in the case of one quality dimension and two-dimensional characteristics, their condition also does
not hold generically.
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1 fails in this case, since g1(α, β) = α1 + α2 − β = 0 andÃ
∇αu(α, x)

∇αg1(α, β)

!
=

Ã
x x

1 1

!
⇒ rank

Ã
∇αu(α, x)

∇αg1(α, β)

!
= 1.

Note that a very small change in the type set changes that result. Suppose,

for example, that g1(α, β) = α1 + (1 + ε)α2 − β = 0, where ε is a small positive

real number. Then, Assumption 1 holds and Ω0 has positive measure, since, for

all x 6= 0,Ã
∇αu(α, x)

∇αg1(α, β)

!
=

Ã
x x

1 1 + ε

!
⇒ rank

Ã
∇αu(α, x)

∇αg1(α, β)

!
= 2.

Note that our results do not guarantee non-empty exclusion region for every

multidimensional screening problem. They rather assert that any problem for

which the exclusion region is empty can be slightly perturbed is such a way that

for the new problem a positive measure of the consumers will be excluded in equi-

librium. To understand the results intuitively, assume first that in equilibrium all

consumers are served. First, note that at least one consumer should be indiffer-

ent between participating and not participating, since otherwise the tariffs can be

uniformly increasing for everyone by a small amount, increasing the monopolist’s

profits. Now, consider increasing the tariff by ε > 0, then the consumers who

earned surplus below ε will drop out. The measure of such consumers is o(ε),

unless iso-surplus hyper-surfaces happen to be parallel to the boundary of type

space. If condition (4) is violated then iso-surplus hyper-surfaces will be parallel

to the boundary of Ω by construction. We ruled that case out is our analysis.

However, such situation may still occur endogenously, which is the reason why our

result holds for almost all, rather then for all, screening problems. One class of

problems, for which full participation may occur are model with random outside

option. They were first considered by Rochet and Stole (2002) for both monop-

olistic are oligopolistic settings and generalized by Basov and Yin (2010) for the

case of risk averse principal(s). Armstrong and Vickers (2001) considered another

generalization, allowing for multidimensional vertical types. In this type of model

the type consists of a vector of vertical characteristics, α ∈ Ω ⊂ Rm, and a para-

meter γ ∈ [0, 1] capturing horizontal preferences. The type space is given by the
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Cartesian product Ω× [0, 1] and γ is assumed to be distributed independently of

α. The utility of a consumer is given by:

u(α, x; γ) = v(α, x)− tγ, (23)

where t is a commonly known parameter. Let v(α, 0) = 0 then iso-surplus hyper-

surface corresponding to zero quality is tγ =constant which is parallel to the verti-

cal boundary of type space γ = 0. Therefore, in such model there is a possibility of

full participation. The model was also investigated in oligopolistic setting, where

t was interpreted as a transportation cost for the Hotelling model. Conditions for

full participation under different assumptions on dimensionality of α and the mo-

nopolist’s risk preferences were obtained by Armstrong and Vickers (2001), Rochet

and Stole (2002), and Basov and Yin (2010). Let us assume that the boundary of

set Ω is described by and equation

g0(α) = 0 (24)

and embed our problem into a family of problems, for which boundary of the type

space is described by an equation

g(α, γ;β) = 0, (25)

where g(·, β) : Ω× [0, 1]→ R is a smooth function such that

g(α, γ; 0) = g0(α)(g0(α)− b)γ(γ − 1), (26)

for some constant b, i.e. for β = 0 the type space becomes the cylinder over the set

Ω considered by Armstrong and Vickers (2001). Our result is that for almost all β

the exclusion region is non-empty. However, as we saw above, for β = 0 exclusion

region may be empty.

We now consider another class of models, where full participation is possible.

The example will also be interesting, since it will allow us to investigate how the

relative measure of excluded consumers changes with dimension of Ω.
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Example 3 Let consumer’s preferences be given by:

u(α, x, t) =
nX
i=1

αixi, (27)

and the monopolist’s cost be given by

c(x) =
1

2

nX
i=1

x2i . (28)

The type space is intersection of the region between balls with radii a and a + 1

with Rn
+, i.e.

Ω = {α ∈ Rn
+ : a ≤ kαk ≤ a+ 1}, (29)

where k·k denotes the Euclidean norm

kβk =

vuut nX
i=1

β2i . (30)

To solve for the optimal nonlinear tariff with a fixed number of characteristics start

by introducing the consumer surplus by:

s(α) = max(
nX
i=1

αixi − t(x)). (31)

The symmetry of the problem suggests that we look for a solution in a form

s = s(kαk)

In the “separation region” it solves(
1

rn−1
∂
∂r
(rn−1s0(r)) + s0(r)f

0
(r)

f(r)
= n+ 1 + rf 0(r)

f(r)

s0(a+ 1) = a+ 1
, (32)

where we introduced notation r ≡ kαk. To derive system (32) note that from the

envelope theorem

x = ∇s(α). (33)
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The monopolists problem can now be written as

max
s

Z
[α ·∇s(α)− c(∇s(α))− s(α)]dα (34)

s.t. s(·)-convex, s ≥ 0. (35)

(see Rochet and Chone, 1998). Dropping for a moment the convexity constraint,

one obtains the standard calculus of variations problem with free boundary. There-

fore, in the participation region (in the points, where s > 0) one obtains:

nX
i=1

∂

∂αi

∂L

∂si
=

∂L

∂s
(36)

nX
i=1

αi
∂L

∂si
= 0 (37)

(see, Basov (2005)), where si denotes ith partial derivative of surplus and

L = α ·∇s(α)− c(∇s(α))− s(α) (38)

But this is exactly system (32). Let us assume that types are distributed uniformly

on Ω, so the derivative of type distribution vanishes. Then, solving (32) one ob-

tains:8

xi(α) = max(0,
αi

n
(n+ 1− (a+ 1

r
)n)). (39)

Corresponding iso-surplus hyper-surfaces are given by intersection of a sphere

of appropriate dimension with Rn
+ They are parallel to the boundary, hence we have

a possibility of an empty exclusion region. To investigate this possibility further

note that the exclusion region is given by

Ω0 = {α ∈ Ω : kαk ≤ a+ 1
n
√
1 + n

}. (40)

It is non-empty if
a+ 1
n
√
1 + n

> a. (41)

8It is easy to check that the surplus function, corresponding to allocation (39) is convex,
therefore (39) solves the complete problem.
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Note that if n = 1 the exclusion region is empty if and only if a > 1, if n = 2 it is

empty if and only if a > 1/(
√
3− 1) ≈ 1.36, and since

lim
n→∞

1
n
√
1 + n

= 1, (42)

the exclusion region is non-empty for any a > 0 for sufficiently large n. The

relative measure of the excluded consumer’s (the measure of excluded consumers

if we normalize the total measure of consumers to be one for all n) is:

ζ =
(a+ 1)n/(n+ 1)− an

(a+ 1)n − an
. (43)

It is easy to see that as n → ∞ the measure of excluded consumers converges to

zero as 1/n, i.e. exclusion becomes asymptotically less important. This accords

with results obtained by Armstrong (1999a). The convergence, however, is not

monotone. For example, if a = 1.3 the measure of excluded customers first rises

from zero for n = 1 to 11.6% for n = 5, and falls slowly thereafter. For a = 2

maximal exclusion of 8.3% occurs for n = 11 and for a = 0.7 maximal exclusion

of 19.7% of consumers obtains when n = 2.

Note also that though asymptotically higher fraction of consumers gets served

as n →∞, this does not mean that the consumers become better off. Indeed, as

n → ∞ the radius of the exclusion region converges to (a + 1), therefore almost

all served consumers are located near the upper boundary. This means that the

trade-off between efficient provision of quality and minimization of information

rates disappears. The monopolist provides asymptotically efficient quality but is

able to appropriate almost the entire surplus.

3 The Genericity of Exclusion in an Oligopolistic

Screening Model

Consider a framework similar to the one of the previous section but assume

that the market is served by K producers. The production cost is identical among

the producers, who play a one shot-game. A pure strategy of a producer k is a

non-linear tariff, i.e. a measurable mapping tk : Rn
+ → R. Consider a symmetric
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pure strategy Nash equilibrium at which all producers charge the same tariff. We

will argue that at such an equilibrium a positive measure of the consumers are not

served.

Assume that, in equilibrium, producer k charges tariff tk(·) : Rn
+ → R. Then

tk(·) solves

max
tk(·)

Z
Ω

(tk(xk(α))− c(xk(α)))f(α)dα,

subject to:

⎧⎨⎩ x(α) ∈ argmax
x∈Rn

+

v(α, x)− t(x) if max
x∈Rn

+

(v(α, x)− t(x)) ≥ s0 (x)

x(α) = 0 otherwise

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t(x) = min

KX
j=1

tj(xj)

s.t.
KX
j=1

xj = x, xj ≥ 0
, (44)

and

s0(α) = max{s∗0(α), max
x∈Rn

+,x
k=0
(v(α, x)− t−k(x))} (45)

and t−k(x) solves problem (44) subject to an additional constraint xk = 0. Equa-

tion (45) states that the outside option of a consumer seen from the point of view

of producer k is determined by her best opportunity outside the market and the

best bundle she may purchase from the competitors.

Let us define

u(α, xk) = v(α, xk +
KX

j=1,j 6=k
xj(α))−

KX
j=1,j 6=k

tj(xj(α))− s0(α),

where xj(α) is the equilibrium quantity purchased by the consumer of type α

from the producer j and s0(α) is defined by equation (45). Then the problem of
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producer k becomes:

max
tk(·)

Z
Ω

(tk(xk(α))− c(xk(α)))f(α)dα,

subject to:

⎧⎨⎩ xk(α) ∈ argmax
xk∈Rn

+

u(α, xk)− tk(xk) if max
xk∈Rn

+

(u(α, xk)− tk(xk)) ≥ 0

xk(α) = 0 otherwise
(46)

We impose the following form of single-crossing property:

∂2v

∂αi∂xj
≥ 0

for all i, j. Then u(α, xk) is strictly increasing in α for all xk ∈ Rn
+.

Theorem 2 Under the assumptions of Theorem 1 a positive measure of consumers
will be excluded in any symmetric equilibrium of the oligopolistic market.

Proof. Consider oligopolist 1. Given the behavior of her competitors, her

problem is isomorphic to the problem of the monopolist, with appropriately rede-

fined utility. Therefore, Theorem 1 implies that she will find it optimal to exclude

a positive measure of consumers. By symmetry, so will the other oligopolists. Fi-

nally, by symmetry again, each oligopolist will exclude the same set of consumers,

so the intersection the sets of excluded consumers has positive measure.¥
Champsuar and Rochet (1989) note that the profit functions of the oligopolists

can become discontinuous when there are bunching regions. Even though Basov

(2005) shows that bunching in the multidimensional case is not as typical as sug-

gested by Rochet and Chone (1998), existence of an equilibrium is not a trivial

matter in the oligopoly game above. We now show that under some conditions a

symmetric equilibrium exists.

LetM be a bound on the utility function, and note that it is also a bound on the

tariffs, and hence it must be that no producer will ever produce x with c(x) > M .

So it is without loss of generality to restrict attention to tariffs t : C → [0,M ]

where C ⊂ Rm
+ is compact. Assume that producers choose Lipschitz continuous

20



tariffs, so that the strategy space of each producer k is

T k = T = {t : C → [0,M ] s.t. t is Lipschitz continuous}. (47)

Using the sup norm, it follows from the Arzela-Ascoli’s theorem that T is compact.

Assume that when producers choose a symmetric profile (t, ..., t) of tariffs, the

solution to the maximization problem of the consumers is also symmetric: x1 =

· · · = xK . It follows that profits are symmetric: πk(t, ..., t) = π(t, ..., t) for k =

1, ...,K. Hence the game played by the producers, (T × · · · × T, π), is symmetric.

Let P (t, ..., t) = {s ∈ T : π(t, ..., s, ..., t) > π(t, ..., t)} denote a producer’s strict
upper contour set when others choose the same tariff t (we use π(t, ...., s, ..., t) to

denote the profit of a given producer when he/she chooses s and all the others

choose t).

Definition 1 A symmetric game (T × · · · × T, π) is diagonally quasiconcave if

t /∈ coP (t, ..., t) (48)

for each t ∈ T , where co denotes the convex hull of a set.

Definition 2 A symmetric game (T × · · · × T, π) is continuously secure if for

every symmetric profile (t, .., t) that is not an equilibrium there exists a continuous

function

f(t,...,t) : (s, ..., s) 7→ z ∈ T (49)

such that

f(t,...,t)(s, ..., s) ∈ P (s, ..., s), (50)

for each s in an open neighborhood of t.

Applying the argument in Theorem 2.2 in Barelli and Soza (2009) we have:

Lemma 5 A symmetric game (T×· · ·×T, π), where T is compact and convex, has
a symmetric pure strategy Nash equilibrium whenever it is diagonally quasiconcave

and continuously secure.

Proof. See appendix.¥
Theorem 3 Assume that the game played by the producers satisfies the assump-
tions above, so it is a compact, convex, symmetric. Assume further that it is

diagonally quasiconcave game. Then there exists a symmetric pure strategy Nash

equilibrium.
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Proof. We show that, although discontinuous, the game is continuously secure.
For each non equilibrium profile (t, ..., t), there exists a profile (t̄, ..., t̄) with t̄ ∈
P (t, ..., t). Put

f(t,...,t)(s, ..., s) = t̄+ (s− t) (51)

for any s in a neighborhood of t. Then f(t,...,t)(·) is continuous and

f(t,...,t)(s, ..., s)(x) R s(x) (52)

if and only if t̄(x) R t(x), so if consumers choose a given producer offering t̄

at x when all the others offer t, they also choose the same producer when she

offers f(t,...,t)(s, ..., s) and the others offer s. This means that the discontinu-

ities arising due to either Bertrand-like competition or bunching are avoided, and

π(s, ..., f(t,...,t)(s, ..., s), ..., s) is continuous in s, for s close to t. By assumption,

consumers choose

x1(s) = · · · = xK(s) =
x(s)

K
(53)

when faced with the profile (s, ..., s) of tariffs, where x(s) is the optimal solution if

there was only one firm offering tariff s. It follows that π(s, ..., s) is also continuous

in s, so we have f(t,...,t)(s, ..., s) ∈ P (s, ..., s) for every s in a neighborhood of t.¥
The assumption of diagonal quasiconcavity restricts some of the allowed densi-

ties f(·). Alternatively, we can work with the mixed extension of the game, where
quasiconcavity obtains, and use the argument above to conclude that a symmetric

mixed strategy equilibrium exists. Note that the argument in Theorems 1 and 2

remain valid in the mixed extension.

Let us now assume that the number of producers is not fixed but there is a

positive entry cost F > 0. It is easy to see that this problem can be reduced

to the previous one, since equilibrium number of the producers is always finite.

Indeed, with K producers the profits of an oligopolist in a symmetric equilibrium

are bounded by πm/K, where πm are the profits of a monopolist. Therefore, at

equilibrium K ≤ πm/F and a positive measure of the consumers will be excluded

from the market.
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4 The Genericity of Exclusion Without the Qua-

silinearity Hypothesis

In this Section we relax the quasilinearity assumption. It is not difficult to

find economically interesting examples, where the most natural formulation leads

to a consumer’s utility, which is not quasilinear in money. Consider, for example,

the following model of grant allocation (Bardsley and Basov, 2004). Risk averse

institutions compete for grants for completing a research project. A project, if

successful, will result in the provision of a public good whose value to the society

is equal to one. Different institutions have projects that differ in the cost of

completion and the probability of success. The government can choose an up-front

payment and the prize in the case of success and is interested in maximizing the

benefits of the society minus the completion costs. The institutions are assumed

to be politically small, so there expected profits do not enter the government’s

objective. If one denotes the cost of the project c, the probability of success q,

the up-front payment t and the prize for success x, the utility of the institution

conditional on participation in the government’s scheme will be

v(c, a;x, t) = qv(t+ x− c) + (1− q)v(t− c), (54)

which is not quasilinear in the up-front payment. Another example is an insurance

company, which faces customers that differ in their loss probability and the degree

of risk-aversion. The competitive variant of this model was first considered by

Smart (2000) and Villeneuve (2003).

Let Ω ⊂ Rm
+ be a convex, open, bounded set and the utility of consumer of

type α who obtains good of quality x and pays t is

v(α,x, t), (55)

where v is twice continuously differentiable in x and α and continuously differen-

tiable in t . Moreover, we assume that v is strictly increasing in the consumer’s

type and quality and strictly decreasing in the tariff paid. Given a tariff t(x) define
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the consumer’s surplus, s(·) by:

s(α) = max
x

v(α,x, t(x)). (56)

The monopolist selects a function t : Rn → R to solve

max
t(·)

Z
Ω

(t(x(α))− c(x(α)))f(α)dα (57)

where c(x) is the cost of producing a good with quality x and x(α) satisfies⎧⎨⎩ x(α) ∈ argmax
x

(v(α, x, t(x)) if max(u(α, x, t(x)) ≥ s0(α)

x(α) = x0(α) otherwise
, (58)

where x0(α) is the outside option, which implements surplus s0(α).

For any continuous function ϕ(·), let τ(α,x, ϕ(α)) be the unique solution of
the equation

ϕ = v(·, ·, τ) (59)

and let

u(α, x) = τ(α,x, s0(α)) (60)

In the quasilinear case equation (60) reduces to equation (3). Note that, since the

function τ(α,x, ·) is strictly decreasing, and the optimal surplus satisfies s(α) ≥
s0(α) the optimal tariff paid by type α satisfies

t(x(α)) ≤ u(α, x(α)). (61)

Assumptions 1 and 2 should be modified to read:

Assumption 3 For any x ∈ Rn
+, the net utility gain of consumption u(·, x) defined

by (60)is strictly increasing in α.

Note that the preferences described in Example 2 satisfy this assumption.

Assumption 4 For each i = 1, 2...,

Ki = {α ∈ Ω : gi(α, β) = 0},

where gi : Ω × RJ → R is smooth, β ∈ RJ , J ≥ 1, are parameters and, for all
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x ∈ Rn
+ and all i = 1, 2, . . . , there exists β0 ∈ RJ such that

rank

Ã
∇αu(α, x)

∇αgi(α, β0)

!
= 2.

Now one can prove the analogs of lemmata 1 to 4, where Assumptions 1 and 2 are

replaced by Assumptions 3 and 4 respectively. The previous proofs apply verbatim

and are omitted. This observation together with (61) allow us to formulate a

following theorem:

Theorem 4 Consider problem (57)-(58) and assume that v(·, ·) is twice continu-
ously differentiable and strictly increasing in both arguments, c(·) is strictly convex
and twice continuously differentiable, Ω is a set with locally finite perimeter in an

open set U ⊂ Rm, f(·) is Lipschitz continuous with supp(f) = Ω compact and

Assumptions 3 and 4 hold. Finally, assume that there exists a number K > 0 such

that

u(α, x) ≤ K(α ·∇αu(α, x))

for all (α, x) ∈ Ω×X. Then for almost all β the set of consumers with zero surplus
at the equilibrium has positive measure.

Proof. The proof is similar to that of Theorem 1. For any natural number k,
let πk be the profit obtained by selling to the types in

Ωk = {α ∈ Ω : s(α) ≤ 1
k
}. (62)

Since c(·) is non-negative, we must have

πk ≤
Z
Ωk

t(x(α))f(α)dα, (63)

but now formula (61) implies

πk ≤
Z
Ωk

u(α, x(α))f(α)dα. (64)

The rest of the proof is identical to Theorem 1 and is omitted.¥
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5 An Application to the Regulation of a Monop-

olist with Unknown Demand and Cost Func-

tions

Armstrong (1999b) reviews Lewis and Sappington (1988) study of the opti-

mal regulation of a monopolist firm when the firm’s private information is two

dimensional. In this study, a single product monopolist faces a stochastic demand

function given by q (p) = a + θ − p, where p is the product’s price, a is a fixed

parameter and θ is a stochastic component to demand, taking values in an interval£
θ, θ
¤
⊂ R+. The firm’s cost is represented by the function C (q) = (c0 − c) q+K,

where q is the quantity produced, c0 andK are fixed parameters and c is a stochas-

tic component to the cost, taking values in an interval9 [−c,−c] ⊂ R−. The firm

observes both the demand and the cost functions, but the regulator only knows

that α = (θ, c) is distributed according to the strictly positive continuous density

function f (θ, c) on the rectangle Ω =
£
θ, θ
¤
× [−c,−c]. For the sake of feasibility

we assume that a + θ > c0 − c for all α = (θ, c) ∈ Ω, i.e., the highest demand

exceeds marginal costs, for all possible realizations of the stochastic components

of demand and costs.

The regulator wants to maximize social welfare and presents to the monopolist

a menu of contracts {p, T (p)}. If the firm chooses contract (p, T (p)) it sells its

product at price p and receives subsidy T (p) from the regulator.

Therefore, the regulator’s problem is to select a continuous subsidy schedule

T (·) : R+ → R to solve:

max
T (·)

Z
Ω

∙
1

2
(a+ θ − p (α))2 − T (α)

¸
f(α)dα

where p(α) satisfies

9In the original model C (q) = (c0 + c) q + K with c ∈ [c, c] ⊂ R+. We substitute c by its
negative for convenience.
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p (α) ∈

⎧⎪⎨⎪⎩ argmax
p

{(a+ θ − p) (p− c0 + c)

−K + T (p)}
if max{((a+ θ − p) (p− c0 + c)

−K + T (p)} ≥ 0
{a+ θ} otherwise

The first term in the regulator’s objective function, 1
2
(a+ θ − p (α))2, corre-

sponds to the consumer’s surplus while the second term, T (α), is the subsidy cost.

The choice of p (α) by the monopolist depends on whether she can derive nonneg-

ative returns when producing. If that is not possible, she will choose p(α) = a+ θ

and there will be zero demand, i.e., the firm "shuts down".

A fundamental hypothesis in Lewis and Sappington’s analysis is that the pa-

rameter a can be chosen sufficiently large relative to parameters K and c0 so that

a firm will always find it in its interest to produce, even for the very small values

of θ. However, Armstrong (1999b) shows that such a hypothesis cannot be made

when Ω is the square Ω =
£
θ, θ
¤
× [−c,−c] = [0, 1]× [−1, 0] . Furthermore, when Ω

is a strictly convex subset of that square, Armstrong (1999b) uses the optimality

of exclusion theorem in Armstrong (1996) to show that some firms will necessarily

shut down under the optimal regulatory policy, in equilibrium. Armstrong (1999b)

adds “... I believe that the condition that the support be convex is strongly suf-

ficient and that it will be the usual case that exclusion is optimal, even if a is

much larger than the maximum possible marginal cost.” That insight could not

be pursued further due to a lack of a more general result, and Armstrong (1999b)

switched to a discrete-type model in order to check the robustness of the main

conclusions in Lewis and Sappington (1988).

Let us review this problem in the language of the present paper. Consider the

following change of variables. Change p with x and define the following functions:

u (α, x) = (a+ θ − x) (x− c0 + c)−K

t (x) = −T (x)

c (x) = −1
2
(a+ θ − x)2

Then the regulator’s problem can be rewritten as:
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max
t(·)

Z
Ω

(t(x(α))− c(x(α)))f(α)dα,

where x(α) satisfies

x(α) ∈

⎧⎨⎩ argmax
x

u(α, x)− t(x) if max(u(α, x)− t(x)) ≥ 0

{a+ θ} otherwise
(65)

Note that this is essentially the standard problem solved in our original model.

In order to apply Theorem 1, first note that it is sufficient that the conditions

of Assumptions 1 and 2 hold at the agents’s optimal choice of x, given his type α,

i.e., at the equilibrium x (α).

Now notice that u (α, x) is strictly increasing in c, as long as a+θ−x > 0. But

this is always the case for x (α), since a+ θ− x (α) is a demand curve. Moreover,

u (α, x) is strictly increasing in θ, as long as x− c0 + c > 0. This is again the case

for x (α) since this is the difference between price and marginal cost. Therefore,

u (α) is strictly increasing in α for the relevant choice of price.

Define g by:

g1 (α, 0) = θ, g2 (α, 1) = θ − 1, g3 (α,−1) = c+ 1, .g4 (α, 0) = c. (66)

Then we can define
Σ1 = {α ∈ Ω : g1 (α, θ) = 0}
Σ2 =

©
α ∈ Ω : g2

¡
α, θ

¢
= 0

ª
Σ3 = {α ∈ Ω : g3 (α,−c) = 0}
Σ4 = {α ∈ Ω : g4 (α,−c) = 0}

. (67)

Therefore, the boundary of Ω can be expressed as:

∂Ω =
4
∪
i=1

Σi.

Moreover, the gradient of function u is

∇αu(α, x) = (x− c0 + c, a+ θ − x) (68)
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and

∇αgi(α, β) = (1, 0) , i = 1, 2,∇αgj(α, β) = (0, 1) , j = 1, 2. (69)

Therefore, for all possible values of β, for i = 1, 2 and for j = 1, 2,Ã
∇αu(α, x)

∇αgi(α, β)

!
=

Ã
x− c0 + c a+ θ − x

1 0

!
(70)

Ã
∇αu(α, x)

∇αgj(α, β)

!
=

Ã
x− c0 + c a+ θ − x

0 1

!
(71)

In particular, the rank of these matrices is 210. Therefore, Assumptions 1 and

2 are satisfied in this model, as well as all remaining hypothesis of Theorem1.

Hence we may conclude that a set of positive firms will generically be "excluded"

from the regulated market, i.e., will not produce at all. This example confirms

Armstrong’s (1999) conjecture.

6 An Application to Involuntary Unemployment

Consider a firm in an industry that produces n goods captured by a vector

x ∈ Rn
+. The firm hires workers to produces these goods. A worker is characterized

by the cost she bears in order to produce goods x ∈ Rn
+, which is given by the effort

cost function e (α, x). The parameter α ∈ Ω ⊂ Rm is the worker’s unobservable

type distributed on an open, bounded, set Ω ⊂ Rm according to a strictly positive,

continuous density function f(·).
Therefore, if a worker of type α is hired to produce output x and receives wage

ω (x), her utility is ω (x)− c (α, x). If the worker is not hired by the firm, she will

receive a net utility s0 (α), either by working on a different firm, or by receiving

unemployment compensation.

Suppose the firm sells its product for competitive international prices, p (x).

10Indeed, it cannot be the case that x = p = c0 − c = a + θ since the price cannot be, at
the same time, the marginal cost (prefect competitive price) and the price that makes demand
vanish.
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Then, the firm’s problem is to select a wage schedule ω (·) : Rn
+ → R to solve:

max
ω(·)

Z
Ω

[p (x (α))x (α)− ω (x (α))] f(α)dα

where x(α) satisfies

⎧⎨⎩ x(α) ∈ argmax
x∈Rn

+

ω(x)− e(α, x) if max
x∈Rn

+

ω(x)− e(α, x) ≥ s0 (x)

x(α) = 0 otherwise
(72)

Consider the following change in variables: t (x) = −ω (x), v(α, x) = −e(α, x),
c(x) = −p (x)x, then the firm’s problem can be rewritten as:

max
t(·)

Z
Ω

(t(x(α))− c(x(α)))f(α)dα,

where x(α) satisfies:

⎧⎨⎩ x(α) ∈ argmax
x∈Rn

+

v(α, x)− t(x) if max
x∈Rn

+

(v(α, x)− t(x)) ≥ s0 (x)

x(α) = 0 otherwise
(73)

Therefore, the same arguments that have been presented for the monopolist

can also be extended for the hiring decision of the firm. In particular, the firm

will generically find it optimal not to hire a set of positive measure. If the firm is

a monopsonist in the region in the sense that agents can only work at that firm,

then Theorem 1 presents a new explanation for involuntary unemployment. Note

that, according to Theorem 2, the result can be extended to a region with several

firms hiring for the production of goods x ∈ Rn
+, so that there is an oligopsony

for workers, as long as the corresponding industry is the only source of formal

work. This is true even in the case of free entry in that industry, according to the

comment following Theorem 2. Finally, if one includes the category of informal

work (underemployment) as unemployment, the present model suggests that an

informal sector will generically exist in equilibrium.
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This application is, to the knowledge of the authors, the first explanation of

involuntary unemployment based on the adverse selection problem, whereby firms

decide to offer a wage schedule that excludes some less productive workers so they

can require higher output levels from the more productive ones.

7 Conclusions

Armstrong’s (1996) exclusion result applies quite widely to a diverse set of

markets in the economy and, as such, offers a deep insight into the workings of

market economies. In general, outside of the very special cases of perfect compe-

tition, complete and perfect information, or unidimensional private information,

we should expect to see exclusion operating in markets. We have explored, in this

paper, five diverse settings where we believe this result applies: credit markets,

automobiles, research grants, monopoly regulation, and labor markets. Further

applications, and further depth on these applications, seem warranted for future

research. 11

A Appendix

A set Ω ⊂ Rm has finite perimeter in an open set U ⊂ Rm if A∩U is measurable
and there exists a finite Borel measure μ on U and a Borel function v : U →
Sm−1 ∪ {0} ⊂ Rm with Z

Ω

divϕdx =

Z
U

ϕ · vdμ

for every Lipschitz continuous vector field ϕ : U → Rm with compact support U ,

where Sm−1 is them−1 dimensional unit sphere. The perimeter of Ω in U is given
by μ(V ). A set Ω ⊂ Rm is of locally finite perimeter if μ(V ) <∞ for every open

proper subset of U . The measure theoretic boundary of Ω is given by

∂e(Ω) = {x ∈ Rm : 0 < Lm(Ω ∩Bε(x)) < Lm(Bε(x)), ∀ε > 0}
11Another interesting extension is the auction-theoretic setting considered in Monteiro, Svaiter,

and Page, (2001).
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where Lm is the mdimensional Lebesgue measure and Bε(x) is the open ball

centered at x with radius ε > 0. When Ω has locally finite perimeter we have

∂eΩ =
S∞

i=1Ki ∪ N , where Ki is a compact subset of a C1 hypersurface Si, for

i = 1, 2, ..., and Hm−1(N) = 0 where Hm−1 is the m − 1 dimensional Hausdorff
measure, and a C1 hypersurface S ⊂ Rm is a set for which ∂S is the graph of a

smooth function near each x ∈ ∂S. Themeasure theoretic unit outer normal vΩ(x)

of Ω at x is the unique point u ∈ Sm−1 such that θm(O, x) = θm(I, x) = 0, where

O = {y ∈ Ω : (y − x) · u > 0} and I = {y /∈ Ω : (y − x) · u < 0}, and θm(A, x) is

the mdimensional density at x. The reduced boundary ∂∗Ω is the set of points x

for which Ω has a measure theoretic unit outer normal at x. For a set of locally

finite perimeter Ω the three boundaries ∂Ω, ∂eΩ and ∂∗Ω are up to Hm−1 null-sets

the same.

Proof of Lemma 5 Assume to the contrary, and let ∆ be the diagonal in

T × · · · × T . Then for each (t, .., t) ∈ ∆ there exists an open neighborhood Ut as

in the definition of continuous security. The family {V(t,...,t)}(t,...,t)∈∆ with

V(t,...,t) = Ut × · · · × Ut ∩∆ (74)

forms an open cover of the compact set ∆. There is, therefore, a partition of unity

gi : ∆ → [0, 1] subordinated to a finite subcover {Vi} of {V(t,...,t)}(t,...,t)∈∆, which
allows us to define f : ∆→ ∆ as

f(s, ..., s) = (
X
i

gi(s, ...s)fi(s, ..., s), ...,
X
i

gi(s, ...s)fi(s, ..., s)). (75)

Now, f is continuous and must have a fixed point

(z, ...z) = f(z, ...z). (76)

But

f(z, ...z) ∈ coP (z, ..., z)× · · · × coP (z, ..., t), (77)

contradicting diagonal quasiconcavity.¥
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