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1 INTRODUCTION

Two important stylized facts about human choice behavior are that this

behavior is probabilistic and is affected by social interaction. Probabilistic

choice models are routinely used to explain behavior in psychological ex-

periments, see, for example, Bush and Mosteller (1955). In economics the

probabilistic choice models were introduced by Luce (1959).

In this paper I consider the general form of a probabilistic adaptive behav-

ior, based on social information. First, I consider a broad class of stochastic

behavioral rules. I prove that any stochastic behavioral rule in a social en-

vironment is decomposable into four components: deterministic adjustment,

exogenous experimentation, imitation, and experimentation based on social

information, which I call imitation of scope. Then I deÞne a class of stochas-

tic behavioral rules called local improvement rules. I prove that for these

rules the deterministic part induces a generalized gradient dynamics, that

is an individual adjusts her behavior in the direction of an increase of some

function.
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2 A MODEL OF SOCIAL ADAPTATION

Suppose an individual has to make repeated choices over time from a

set of alternatives Ω ⊂ Rn, which is assumed to be compact, and Σ is a

sigma-algebra on Ω. At time t the individual observes the current choice of

a randomly selected member of a population, y(t). Observations at different

moments of time are assumed to be independent. For any Γ ∈ Σ, deÞne

P ({x(t)}, {y(t)},Γ, t, τ ) to be the transition probability, that is the proba-

bility that the individual who at time t has a history of choices {x(t)} and a

history of observations {y(t)}, will make a choice w ∈ Γ at time t+ τ .

Axiom 1 P ({x(t)}, {y(t)},Γ, t, τ) = P (x, y,Γ, t, τ), where x = x(t), and

y = y (t) .

Axiom 1 says that the transition probabilities are only determined by the

current choice and the current observation. In other words, if the observa-

tion made at time t is randomly selected from a distribution with a density

function fY (y, t), then the process with the transition probability

Q(x,Γ, t, τ) =

Z
Ω

P (x, y,Γ, t, τ )fY (y, t)dy (1)
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will be a Markov process. Axiom 1 is rather weak. Indeed, assume the agent

keeps track about her choices and observations at discrete moments of time,

and remembers only Þnitely many choices and observations. Then one can

always redeÞne the choice space in such a way that Axiom 1 will hold. Hence,

Axiom 1 is essentially a Þnite memory assumption.

Axiom 2 There exists a function p(x, y, z, t, τ) > 0 measurable in z and

twice continuously differentiable in τ such that for any Γ ∈ Σ the transition

probability is given by

P (x, y,Γ, t, τ ) =

Z
Γ

p(x, y, z, t, τ)dz

P (x, y,Ω, t, τ ) = 1.

DeÞne a set

Vδ(x) = {w ∈ Ω : kw − xk < δ},

where k·k denotes the Euclidean norm. Here, and throughout this paper, Xc

denotes the complement of the set X.

Axiom 3 For any δ > 0 and any x ∈ Ω, the transition probability satisÞes
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P (x, y, V cδ (x), t, τ ) = o(τ) and the following limits exist:

lim
τ→0

1

τ
E(x(t+ τ )− x(t)| x(t), y(t))

lim
τ→0

1

τ
V ar(x(t+ τ )− x(t)| x(t), y(t)).

Moreover, for any x ∈ Ω and any neighborhood V (x) the transition prob-

ability P (x, y, V c(x), t, τ) considered as a function of y attains a minimum

at y = x.

Axiom 2 says that the position at time t + τ , conditional on the position x

at time t and observation y at time t, has a strictly positive density function.

To understand the meaning of this assumption, let us introduce the following

concept.

DeÞnition 1 Let λ denote Lebesque measure. A distribution F is called

singular if there exists a Borel set B0 such that:

1. λ(B0) = 0;

2. F (B0) = 1;

3. F ({x}) = 0 for every x ∈ Ω.

If a distribution is not singular it is called regular. Axiom 2 ensures that the

distribution will remain regular at all times if it is at time t = 0. The fact
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that the density is strictly positive ensures existence of steady states of the

corresponding Markov process in the case when the transition probability

does not depend on t. The Þrst part of Axiom 3 says that for any realization

of observations y(t) the stochastic process for x(t) is Khinchine continuous

and is uniquely deÞned by its generator (Kanan (1979)). For example, it

will be satisÞed if conditional on the realization of y(t) the process x(t) is a

Wiener process with drift. The second part is assumed for representational

convenience.

Finally, I will assume:

Axiom 4 p(x, y, z, t) is four times continuously differentiable in x and y

for any t ≥ 0 and any realization of z.

Under Axioms 1-4 it is possible to derive an expression for the generator

of the Markov process with transition probability (1).

Theorem 1 Assume Axioms 1-4 are satisÞed. Then there exists a twice

continuously differentiable vector function µ1(x, t), and matrix-valued func-

tions µ2(x, y, t), Γ1(x, t), and Γ2(x, y, t), such that the matrices Γ1(x, t), and

Γ2(x, y, t) are positive semideÞnite and the generator of the Markov process

with transition probabilities (1) is given by:
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$ = (µ1+

Z
Ω

µ2(y−x)fY dy)∇+
1

2
Tr(Γ1+

Z
Ω

(y−x)TΓ2(y−x)fY dy)D2) (2)

where

∇ = ( ∂
∂x1

, ...,
∂

∂xn
), {D2}ij = ∂2

∂xi∂xj
, (3)

and Tr denotes the trace of a matrix.

Proof. By deÞnition (Rogers and Williams (1994)) the generator of the

Markov process with transition probabilities (1) is deÞned by:

$ = lim
τ→0

P (x,Γ, t, τ)− I
τ

, (4)

where I is the identity operator. It can be shown (Kanan (1979)) that under

the assumptions of the theorem

$ = a(x, t)∇+ C(x, t)D2, (5)

where
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a(x, t) = lim
τ→0

1

τ
E(x(t+ τ )− x(t))

C(x, t) = lim
τ→0

1

τ
V ar(x(t+ τ)− x(t)).

Axiom 3 guarantees that the above limits exist. The law of iterated expec-

tations implies that

a(x, t) =

Z
Ω

µ(x, y, t)fY (y, t)dy, C(x, t) =

Z
Ω

Γ(x, y, t)fY (y, t)dy (6)

where

µ(x, y, t) = lim
τ→0

1

τ

Z
Ω

(z−x)pdz, Γ(x, y, t) = lim
τ→0

1

τ

Z
Ω

(z−x)(z−x)Tpdz (7)

Using Axiom 4 one can write (omitting dependence on time to simplify no-

tation):

µ(x, y) = µ(x, x) + µ0(x, y)(y − x) (8)
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Γij(x, y) = Γij(x, x) +
nX
k=1

Γ0ijk(x, x)(y − x)k +
nX

k,`=1

Γ00ijk`(x, y)(y − x)k(y − x)`

(9)

Axiom 3 implies that

Γ0ijk(x, x) = 0.

DeÞne

µ1(x, t) = µ(x, x), µ2(x, y, t) = µ
0(x, y), (10)

Γ1ij(x) = Γij(x, x), Γ2k`(x, y, t) =
nX

i.j=1

Γ00ijk`(x, y) (11)

Positive semideÞnitness of matrices Γ1 and Γ2 follows from their deÞnition

and Axiom 3. Finally,

$ = (µ1+

Z
Ω

µ2(y−x)fY (y)dy)∇+
1

2
Tr(Γ1+Γ3(z−x)+

Z
Ω

(y−x)TΓ2(y−x)fY (y)dy)D2

(12)

and the theorem is proven.

Theorem 1 allows us to derive an equation for the individual�s choice

density function. Denote this density by f(x, t), then the function f(·, t)

will satisfy the Kolmogorov forward equation for the stochastic process with
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transition probabilities (1). To write this equation we need the following

deÞnition:

DeÞnition 2 Operator $∗ is called an adjoint operator for the operator $

if

1. dom$ = dom$∗ ⊂ C(Ω)

2. For any g1, g2 ∈ dom$

Z
g1(x)$g2(x)dx =

Z
g2(x)$

∗g1(x)dx.

Here dom$ is the domain of the operator $ and C(Ω) denotes the set of the

continuous functions from Ω to R. If the generator of a stochastic process

is $, then the Kolmogorov forward equation has a form (Ito (1992)):

∂f

∂t
= $∗f, (13)

where $∗ is an adjoint operator for $. Hence, the following theorem holds:

Theorem 2 Let the distribution of choices in the population be described by

a continuous density function f(x, 0) at time t = 0. UnderAxioms 1-4, the

time evolution of the function f(x, t) is governed by the partial differential
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equation:

∂f(x, t)

∂t
+ div(µ(x, t)f(x, t)) =

1

2
Tr(D2(Γ(x, t)f(x, t)) (14)

and the boundary condition:

hµ(x, t), n(x)if − 1
2
h∇Tr(Γ(x, t)f), n(x)i = 0 on ∂Ω, (15)

where div denotes divergence of the vector Þeld and, n(x) is a unit vector

normal to the boundary, h·, ·i denotes inner product, and

µ(x, t) = µ1(x, t) +

Z
Ω

µ2(x, y, t)(y − x)fY (y, t)dy, (16)

Γ(x, t) = Γ1(x, t) +

Z
Ω

(y − x)TΓ2(x, y, t)(y − x)fY (y, t)dy (17)

Proof. The boundary condition ensures the conservation of the probability

and follows from Axiom 2. Axiom 2 precludes the possibility of having a

positive probability mass concentrated on the boundary and forces the ßow

of the probability to be zero at each point on the boundary. Take dom$ to be

the set of all twice continuously differentiable functions on Ω satisfying the
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boundary conditions. Then it is straightforward to check (using integration

by parts) that the operator $∗ deÞned by:

$∗h = −div(µ(x, t)h(x, t)) + 1
2
Tr(D2(Γ(x, t)h(x, t))

is an adjoint operator for the operator $.

I will symbolically write system (14)-(17) in a form:

∂f

∂t
= L(f, fY ).

For any twice continuously differentiable function f there exists a unique f

satisfying (14)-(17) and a given initial condition (Ito (1992)).

It is worth noting that writing the Kolmogorov forward equation in the

form (13) rather then (14) allows us to use it for description of cases where the

population choices do not have densities (for example, are discrete). In this

case f should be interpreted as a generalized function (distribution).1 Let =

denote the space of inÞnitely differentiable functions with compact support.

A generalized function is a continuous linear functional on =. Let K be a

linear differential operator deÞned on functions from =, andK∗ be its adjoint

1Although the term distribution is common in the literature I will use the term �gen-
eralized function� to prevent confusion with probability distribution.
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operator. Then the generalized function g is said to solve the differential

equation

Kg = 0

if

g(K∗h) = 0 ∀h ∈ =.

3 BEHAVIORAL INTERPRETATIONOFA

SOCIAL ADAPTATION RULE

To interpret Theorem 2, let us consider a speciÞc behavioral model. The

framework is similar to the general model except that time is assumed to be

discrete, thus t ∈ {0, τ , 2τ , 3τ , ...}, and the behavioral rule is given explicitly

by a stochastic difference equation:

xt+τ − xt = κ(xt, yt, t)τ +B(τ , xt, yt, t)(yt − xt)εt + Λ(xt, t)ξt. (18)
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Here κ(xt, yt, t) = λ(xt, t)+δ(xt, yt, t), where δ(xt, yt) = ν(xt, yt, t)(yt−xt) for

some matrix ν. All functions are assumed to be twice continuously differen-

tiable in x and y, and continuously differentiable in t. The random variables

εt and ξt are assumed to be independently, identically distributed for each

t, independent across time, have a compact support, E(ε) = E(ξ) = 0, and

V ar(ε) = 1, V ar(ξ) = I.

In (18) the Þrst term on the right hand side describes the deterministic

adaptation, the second the direct imitation of choices, the third experimen-

tation based on social information, which I will identify as �imitation of

scope,� and the fourth exogenous experimentation. Direct imitation means

that the agent simply moves towards the observed choice. This interpretation

suggests that νkk ≥ 0 though it is not important for the formal derivation

of the model. Imitation of scope means that the individual opens a search

window the width of which is determined by the degree of disagreement be-

tween her current choice and the observed choice of a randomly selected

agent from the population with density fY (y, t), that is by (yt − xt). The

value of such behavior can be intuitively explained: since the observation

the agent makes is the choice of another boundedly rational agent, there is

no good reason to imitate the observed choice directly. On the other hand,
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the spread of the choices in the population indicates that society as a whole

does not know the optimal choice and, hence, that there may be returns to

experimentation. The third term in (18) embodies the simple version of this

intuition:
¯̄
ykt − xkt

¯̄
increases probabilistically in the population spread for

each k. Nondiagonal coefficients of matrices ν and B can be interpreted as

similarity coefficients. They measure how much the choice of xk is similar to

the choice of x`. Further discussion of the social imitation rules will be given

in Section 4.

I will study the continuous time limit of the stochastic process generated

by (18). To pass to this limit I assume:

Condition 1 There exists a twice continuously differentiable matrix valued

function b : R2n → Rn
2
, such that B(τ , xt, yt, t) = b(xt, yt)

√
τ .

Let f(x, t) denote the density of the individual�s choices at time t. If

K ⊂ Ω is a Borel set, denote by G(∆t, x,K) the probability of getting to the

set K from point x during the time interval ∆t under the dynamics (18).

For any η > 0 let Uη(x) denote an η−neighborhood of the point x. The

following result is well known in the theory of stochastic processes:

Theorem 3 Suppose there are functions ζ(x) and Ξ(x, t) twice continuously

differentiable on the interior of Ω and continuously differentiable on Ω such
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that for any η > 0 :

1. G(∆t, xt, U
c
η) = o(∆t)

2.
R
Uη
(wt − xt)G(∆t, xt, dwt) = ζ(x)∆t+ o(∆t)

3.
R
Uη
(wt − xt)(wt − xt)TG(∆t, xt, dwt) = Ξ(x, t)∆t+ o(∆t).

Then the function f(x, t) is governed by the following partial differential

equation:

∂f

∂t
+ div(ζ(x)f) =

1

2
Tr(D2(Ξ(x, t)f)). (19)

For a proof see Kanan (1979). Applying theorem 3 to the behavioral rule

(18) one obtains the following theorem:

Theorem 4 Assume that the adaptation process satisÞes Condition 1; then

it is governed by:

∂f

∂t
+ div(µ(x, t)f) =

1

2
Tr(D2(Γ(x, t)f)) (20)

where

µ(x, t) = λ(x, t) +

Z
Ω

ν(x, y)(y − x)fY (y, t)dy (21)

and the matrix Γ(x, t) is deÞned by:
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Γ(x, t) =

Z
Ω

b(y − x)(y − x)T bTfY (y, t)dy + ΛTΛ (22)

Proof. The proof of this theorem consists of checking all three hypothesis

of Theorem 3, which can be done directly from the adaptation formula (18).

Comparing (13)-(16) with (19)-(21) one can arrive at the following result.

Theorem 5 Any social adaptation rule can be decomposed into deterministic

adaptation, direct imitation, experimentation and imitation of scope.

4 ANENDOGENOUSMODELOF SOCIAL

ADAPTATION

In this section I assume that there exists a population of individuals that

follow the adaptation process described in Sections 1 and 2. I will assume

that the individuals make their observations and adjustments independently.

Under these assumptions I will be able to give a population interpretation

of the function f(x, t). Then I will show that it is possible to assume that

the observations are drawn from the same population that is engaged in
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adaptation. This will complete my model of social adaptation.

Assume that there is a population of individuals engaged in the adap-

tation process described in Sections 1 and 2, and for any Þnite set of these

individuals their observations and adaptations are independent. Let I de-

note the population. Suppose A ∈ Σ, and consider a sigma-algebra S on ΩI

generated by the sets:

{xi|xi ∈ A} = Ai.

Let µ be a measure on S consistent with the Þnite dimensional distributions of

the individuals� choices. Select N individuals from the population at random

and deÞne the indicator variables:

Xi(t) =


1 if xi(t) ∈ A,

0 if xi(t) /∈ A.

Let B ⊂ ΩI be the set deÞned by:

lim
N→∞

1

N

nX
i=1

Xi(t) 6=
Z
A

f(x, t)dx.

Then there exists an extension µ of measure µ such that B is µ - measurable

and µ(B) = 0. (See Judd 1985 for a detailed discussion). This result allows
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us to interpret f(x, t) as the population density of choices. To be able to

interpret the model with a continuum of agents as the limit of the models

with Þnitely many agents some additional work has to be done. For example,

one can use hyperÞnite discrete models from the nonstandard analysis. These

models have the advantage of simultaneously approximating the function

theory in the Euclidean space and the probability theory of large discrete

models. This argument is developed in Keisler (1984).

Now I want to allow the individuals to make observations from their own

population. For this purpose deÞne fY (x, t) to be a solution to the equation

∂fY
∂t

= L(fY , fY )

with the initial condition fY (x, 0) = f(x, 0). I prove the existence of a

solution to this problem in the Appendix. Since system (14)-(17) has a

unique solution for any fY (x, t), any such choice of fY (x, t) implies that

f(x, t) = fY (x, t) at all t ≥ 0. This implies that the two populations can be

identiÞed. Hence, I will assume below that there is one population with a

density function evolving accordingly to

∂f

∂t
= L(f, f).
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This equation is nonlinear. Hence, it is interesting to investigate the

uniqueness of a steady state for the population density. The following result

holds.

Theorem 6 Suppose the coefficients of a social adaptation rule do not de-

pend on time. Then a steady state of Markov process (2.18) exists. If ∃ δ > 0

such that cTΓ(x)c ≥ δ kck2 for ∀x ∈ Ω, then the steady state is unique.

Proof. Existence follows from Theorem 5 and Axiom 2. If ∃ δ > 0 such

that cTΓ(x)c ≥ δ kck2 for ∀x ∈ Ω then it is easy to check that the Markov

chain (1) is irreducable; hence the steady state is unique.

Uniqueness will not generally hold in the absence of exogenous noise. It is

easy to see that in this case any distribution concentrated at a point x∗ such

that µ1(x
∗) = 0 is a steady state. Since there might be several such points, a

steady state need not be unique. If µ2(x) = 0 then a probability distribution

that assigns arbitrary weights to different critical points of µ1(·) is a steady

state. However, it will not be a steady state if µ2(·) is not zero. Steady

states characterized with continuous densities are also possible. Consider the

following example.

Example. Let µ1(x) = µ2(x) = Γ1(x) = 0 and Γ2(x) = 1. Let the admissi-

ble set be Ω = [−a, a]. It is easy to see that the distribution concentrated
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at any point is a steady state. It is easy to show that f(x) is a density

of a nondegenerate steady state if and only if the following conditions are

satisÞed.

f(x) =
A

(x− w)2 + σ2Z a

−a
f(x)dx = 1

w =

Z a

−a
xf(x)dx

σ2 =

Z a

−a
(x− w)2f(x)dx

Let σ be a positive solution of the equation

2σ =
a

tan−1( a
σ
)
.

Such a solution exists and is unique. Let

A =
σ2

a
, w = 0

f(x) =
σ2

a(x2 + σ2)
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Then f(x) is a steady state density function.

Even though Axioms 1-4 put no restrictions on the coefficients in (18), the

intuitive interpretation of this rule allows us to lay down some restrictions.

For example, interpretation of µ2 as direct imitation allows us to impose

restrictions µ2kk ≥ 0, µ2k` = 0 for k 6= `. Such restrictions may prove very

useful if one attempts to estimate equation (18). In the next subsection I

will argue that an interpretation of (18) as a form of learning allows to put

rather strong restrictions on its deterministic part, µ1.

5 THEDETERMINISTICCOMPONENTOF

A SOCIAL ADAPTATION RULE.

5.1 LOCALLY IMPROVING ADAPTATION RULES

In the previous section I showed that any social adaptation rule can be

decomposed into deterministic adaptation, exogenous experimentation, di-

rect imitation, and imitation of scope. However, no restrictions apart from

some regularity conditions were obtained for the coefficients of the process.

In this section, I will deÞne a class of stochastic adaptation rules called lo-
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cally improving adaptation rules and get for them some restrictions on the

deterministic part of the stochastic process. To do this I will introduce the

notion of a deterministic agent. The deterministic agent adjusts her choices

based only on her current position and does not engage in any kind of exper-

imentation. Intuitively, a rule is locally improving if a deterministic agent

does not have cycles in her choices.

One natural deterministic learning rule is the gradient dynamics, where

the time derivative of choices equals the gradient of some scalar function

which can be naturally interpreted as a utility function. Intuitively, it means

that individuals adjust their choices in the direction of the fastest increase

of utility. The gradient dynamics was thoroughly studied by Arrow and

Hurwicz (1960). Below I will show that a slight generalization of the gradient

dynamics covers all reasonable continuous deterministic learning rules.

In this subsection I will restrict myself to time homogenous stochastic

adaptation rules, that is I will assume that µ1 and Γ1 do not depend on time,

while µ2 and Γ2 may depend on time only through f(y, t). I will show that

under some regularity conditions a time homogenous stochastic behavioral

rule is locally improving if and only if its deterministic part, µ1(x), determines

a generalized gradient dynamics, that is, it always points in the direction of
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an increase of some real-valued function. This function is a natural candidate

for a utility function of the individual. To proceed further I will need some

deÞnitions.

DeÞnition 3 A population is called deterministic if µ2(x, y) = Γ1(x) =

Γ2(x, y) = Γ3(x) = 0.

Theorem 5 and equation (18) imply that the choices of an individual of such

a population are determined according to

dx

dt
= µ1(x). (23)

The evolution of the density of choices in a deterministic population is gov-

erned by the continuity equation:

∂f

∂t
+ div(fµ1) = 0. (24)

The term �continuity equation� comes from ßuids mechanics. If one assumes

that f(x, t) is a density of a moving ßuid at point x at time t and µ1 is its

velocity, then equation (24) simply says that the ßow of ßuid is continuous.

DeÞnition 4 I will say that the choice x1 is revealed-strictly-preferred by

a deterministic agent to the choice x2 (x1 6= x2), denoted x1Rx2, if there
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exist t1 > t2 ≥ 0, such that x(t) is a solution of (23) with x(t1) = x1 and

x(t2) = x2.

This deÞnition says that, assuming the deterministic agent follows a local

improvement rule, choices which are made later can be interpreted as better

choices for a deterministic agent2. However, to interpret later choices as

better choices R should be rationalizable by a preference relation. A suf-

Þcient condition for this is that R satisÞes the Strong Axiom of Revealed

Preferences (Mas-Colell, Whinston, and Green (1995)). To determine the

conditions under which this preference relation is representable by a contin-

uously differentiable utility function, we need the following deÞnition.

DeÞnition 5 A social behavioral rule with the deterministic part µ1(x) is

called a locally improving rule if there exists a continuously differentiable

function U(x) such that

1. ∇U(x) = 0 if and only if µ1(x) = 0;

2. x1Rx2 implies U(x1) > U(x2).

Finally, I will deÞne a generalized gradient dynamics.

2This need not be the case when an agent uses a stochastic algorithm since she might
experiment with choices.

24



DeÞnition 6 A vector Þeld µ1(x) is said to induce a generalized gradient

dynamics if there exists a continuously differentiable function Π(x) such that:

1. µ1(x) = 0 if and only if ∇Π(x) = 0;

2. hµ1(x),∇Π(x)i ≥ 0 for any x ∈ Ω and hµ1(x),∇Π(x)i = 0 implies

µ1(x) = 0.

Here and throughout the dissertation hµ1(x),∇Π(x)i denotes the inner prod-

uct of two vectors. This deÞnition implies that the function Π(x) increases

across the solutions of system (23), and stable steady states of the system

(23) correspond to regular local maxima of the function Π(·).

I will make the following regularity assumption.

Condition 2 The Jacobian matrix Dµ1/Dx has full rank at every point of

Ω.

Now I am ready to state the following theorem.

Theorem 7 Assume Axioms 1-4 and Condition 2 are satisÞed. A social

adaptation rule is a locally improving rule if and only if its deterministic

part µ1(x) induces a generalized gradient dynamics.

Proof. Under Axioms 1-4, Theorem 1 implies that the deterministic part

of a social adaptation rule is well deÞned. Suppose the vector µ1(x) in-
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duces a generalized gradient dynamics, then there exists a continuously dif-

ferentiable function Π(x) such that hµ1(x),∇Π(x)i ≥ 0 for any x ∈ Ω and

hµ1(x),∇Π(x)i = 0 implies µ1(x) = 0. Let x1Rx2. Then there exists a

solution x(t) of system (23) beginning at x2 and ending at x1. Then

Π(x1)− Π(x2) =
Z t1

t2

hµ1(x(t)),∇Π(x(t))idt (25)

Since x2 6= x1 implies that x2 is not a steady state of (23) µ1(x2) 6= 0.

Hence, DeÞnition 5 implies that hµ1(x2),∇Π(x2)i > 0. By continuity,

hµ1(x),∇Π(x)i > 0 in some neighborhood of point x2, and is nonnegative

everywhere, hence Π(x1) > Π(x2). Since Π(x) is continuously differentiable,

take U(x) = Π(x). Then DeÞnition 4 will be satisÞed, hence the social

adaptation rule is a locally improving rule.

Now suppose that a social adaptation rule is a locally improving rule.

Then there exists a continuously differentiable function U(x) such that

1. ∇U(x) = 0 if and only if µ1(x) = 0;

2. x1Rx2 implies U(x1) > U(x2).

DeÞne Π(x) = U(x). Then the function Π(x) is continuously differen-

tiable and satisÞes the Þrst part of the DeÞnition 5. To check the second part

of DeÞnition 5, Þrst, assume that there exists x2 such that hµ1(x2),∇Π(x2)i
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< 0. Then there exists a neighborhood V (x2) of x2 such that hµ1(w),∇Π(w)i

< 0 for any w ∈ V (x2). Let t2 = 0, t1 > 0 and denote x1 = x(t1), where

x(t) is the solution of system (24) with initial condition x(0) = x2. For a

sufficiently small t1 the inclusion x1 ∈ V (x2) will be satisÞed. Then x1Rx2

and U(x1) − U(x2) = Π(x1) − Π(x2) =
R t1
t2
hµ1(x(t)),∇Π(x(t)idt < 0, which

is a contradiction, hence hµ1(x),∇Π(x)i ≥ 0.

Now assume that hµ1(x),∇Π(x)i = 0, but µ1(x) 6= 0. Then, by construc-

tion, ∇Π(x) 6= 0. Then there exists a neighborhood W (x) of point x such

that ∇Π(w) 6= 0 for any w ∈ W (x). Let J(x) denote the Jacoby matrix

Dµ1(x)/Dx. Then there exists w
∗ ∈ W (w) such that hµ1(w),∇Π(w)i =

(w− x)TJ(w∗)∇Π(w). Since matrix J is nondegenerate one can always Þnd

w such that hµ1(w),∇Π(w)i < 0, which was already proven to be impossible.

This completes the proof.

The above theorem restricts the deterministic part of a social adaptation

rule, assuming that in the absence of the stochastic and social components

the adaptation rule corresponds to a gradual increase of some real valued

function which can be interpreted as a utility function. I will summarize the

results obtained so far in a theorem.

Theorem 8 Any time-homogeneous locally improving social adaptation rule
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can be decomposed into the generalized gradient dynamics, exogenous exper-

imentation, direct imitation, and imitation of scope.

The above theorem allows us to parametrize general adaptation rules. Such

a parametrization is useful for estimating these rules. For a discussion of

possible estimation techniques see Basov (2001).

5.2 PREFERENCES

In the preceding subsection I showed that the deterministic part, µ1(x), of

any adaptation rule deÞnes a generalized gradient dynamics. In other words,

there exists a continuously differentiable function Π(·) such that:

1. µ1(x) = 0 if and only if ∇Π(x) = 0;

2. hµ1(x),∇Π(x)i ≥ 0 for any x ∈ Ω and hµ1(x),∇Π(x)i = 0 implies

µ1(x) = 0.

The function Π(·) can be naturally interpreted as the utility function of

an individual. However, the function Π(·) need not be unique. Different

functions satisfying the above conditions need not even be increasing trans-

formations of one another. In this section I will deal with the uniqueness

problem. At a conceptual level, I am asking the question: Given an adapta-

tion rule, what can we conclude about the preferences of an individual? To
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answer this question let us Þrst consider the case when the vector µ1(·) can be

represented as the gradient of a scalar function Π(·). In this case, the func-

tion Π(·) is determined uniquely up to an additive constant. If one interprets

the function Π(·) as a utility function of the individual, then the determin-

istic part of the learning rule describes the gradient dynamics; namely, the

individual will adjust her choices in the direction of the fastest increase of

her utility. This makes the interpretation of Π(·) as a utility function nat-

ural. In general, the vector Þeld µ1(·) cannot be represented as the gradient

of a scalar function. In this case, I will deÞne a utility function Π(·) in a

way such that µ1(·) is a generalized gradient dynamics and the discrepancy

between the gradient of Π(·) and µ1(·) is minimal. Formally, deÞne a set

Ω1 = {x ∈ Ω : µ1(x) 6= 0}, and an arbitrary number M ,3 then Π(·) solves:

min
Π∈C1(Ω)

Z
Ω

kµ1(x)−∇Π(x)k2 dλ (26)

s.t.hµ1(x),∇Π(x)i ≥ 0, Π(x) ≤M on Ω, ∇Π(x) = 0 on Ω/Ω1, (27)

where k·k denotes the Euclidean norm and λ is the Lebesque measure on Ω.

3This number is deÞned for technical reasons which will become clear later.

29



The following theorem holds:

Theorem 9 Assume that µ1(x) induces a generalized gradient dynamics.

A solution to the problem (26)-(27) exists and is unique up to an additive

constant. Moreover, if Π(·) is a solution to (26)-(27) and at some x0 ∈ Ω

either ∇Π(x0) = 0 or hµ1(x0),∇Π(x0)i = 0, then µ1(x0) = 0.

Proof. First, note that Π ∈ C1(Ω) and the fact that Ω is compact implies

that Π ∈ L2(Ω) and ∇Π ∈ L2(Ω). DeÞne

H1(Ω) = {φ : φ ∈ L2(Ω), ∇φ ∈ L2(Ω)} (28)

|φ|H1 =

Z
Ω

(φ2 + k∇φk2). (29)

DeÞne a functional V by the formula:

V (Π) = −
Z
Ω

kµ1(x)−∇Π(x)k2 dλ (30)

Let K = {Π ∈ H1(Ω) : hµ1(x),∇Π(x)i ≥ 0 on Ω1, Π(x) ≤ M on Ω,

∇Π(x) = 0 on Ω/Ω1}.

To prove that the functional V (·) achieves a maximum atK it is sufficient
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to prove that V (·) is coercive and K is nonempty, closed, and convex (see,

e.g., Kinderlehrer and Stampacchia 1980). It is straightforward to see that

the set K satisÞes the above requirements.

Recall that a functional V (·) is called coercive if V (Π) tends to −∞ when

|Π|H1 tends to +∞. For all Π ∈ H1(Ω), denote by Π the mean value of Π

over Ω:

Π =
1

|Ω|
Z
Ω

Π(x)dλ. (31)

By Poincare�s inequality (see, e.g., Kinderlehrer and Stampacchia 1980) there

exists a constantN(Ω) such that for allΠ ∈ H1(Ω), |Π− Π|L2 ≤ N(Ω) |∇Π|L2 .

Since the function Π is assumed to be bounded from above (Π(x) ≤ M on

Ω), this implies that

|Π|H1 → +∞ ⇔ |∇Π|L2 → +∞ . (32)

Now it is straightforward from (30) that V (Π) tends to−∞ when |Π|H1 tends

to +∞, i. e. V (·) is coercive.

To prove the uniqueness note that the function v : Rn → R deÞned as

31



v(z) = −(µ1(x)− z)2 (33)

is strictly concave. Hence, for any α ∈ [0, 1]

v(αz1 + (1− α)z2) ≥ αv(z1) + (1− α)v(z2) (34)

with equality only if α ∈ {0, 1}. Suppose there are two solutions to the

maximization problem, Π1 and Π2 and V (Π1) = V (Π2) = V ∗. Since the set

K is convex, the function

Π1/2 =
Π1 + Π2
2

(35)

is also in K.

V (Π1/2) = −
Z
Ω

v(∇Π1/2)dλ ≥ 1

2

Z
Ω

v(∇Π1)dλ+1
2

Z
Ω

v(∇Π2)dλ = V ∗. (36)

Since V ∗ is deÞned to be the maximum value of the functional V (·) the

inequality (36) is satisÞed as an equality, which implies ∇Π1 = ∇Π2, and,

hence, the function Π(·) is deÞned uniquely up to an additive constant.
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Now suppose that either ∇Π(x0) = 0 or hµ1(x0),∇Π(x0)i = 0 but

µ1(x0) 6= 0. Since µ1(·) induces a generalized gradient dynamics, there exists

a continuously differentiable function Π∗ such that hµ1(x0),∇Π∗(x0)i > 0.

Since the set Ω is compact, Π∗ is bounded, and hence one can always assure

that Π∗(x) ≤ M on Ω with an additive constant. Let x0 ∈ W1 ⊂ W2 ⊂ Ω,

where ⊂ denotes strict inclusion and W1 and W2 are open sets. One can

always construct a function Π∗∗ ∈ K which coincides with εΠ∗ on W1 and

with Π outside W2. For an appropriate choice of ε > 0, W1, and W2, it

will decrease the objective functional given by (30), which contradicts the

hypothesis that Π maximizes V .

The theorem states that the utility function is determined up to an ad-

ditive constant. This means that the difference in utility between any two

choices is well deÞned. This representation is more precise than in con-

ventional utility maximization theory under certainty, where the utility is

deÞned up to a continuous increasing transformation; or under uncertainty,

where the utility is deÞned up to a positive affine transformation. In the

last case, one can choose arbitrarily both the origin and the scale. In the

present case one is still free to choose the origin, but the level is Þxed. This

happens because in my framework the utility function determines not only
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the preference ordering but also the speed of adaptation. Since the speed of

adaptation is observable, the change in the level of utility is observable as

well.

Theorem 8 also states that if the vector Þeld µ1(·) is not identically zero,

then the underlying preferences are not trivial, that is there are at least two

choices with different levels of utility.

6 SOCIAL IMITATION

Learning, and adaptation in general, is often a social process. Equation

(18) expresses this. It can be considered as a numerical rule for adaptation

that utilizes social information. The agents using this rule can be considered

to be procedurally rational; under some conditions this process may converge

to the rational outcome4. The stochastic component of the rule has the virtue

of reducing the probability of getting stuck at a local maximum. Endogenis-

ing the random component by making it a function of others� actions can

facilitate convergence. But this comes at a cost: a population using social

adaptation instead of, say, individual experimentation, may not reach the ra-

4By the rational outcome I mean the choice that maximizes the function Π deÞned in
the Theorem 8. This function can naturally be interpreted as a utility function of the
individual.
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tional outcome. In contrast, there are individual experimentation algorithms

that guarantee the rational outcome will be reached provided noise is reduced

sufficiently slowly. An example of such a rule is �simulated annealing.� For

a discussion of theoretical and computational aspects of simulated anneal-

ing, see Laarhoven (1988). The problem with individual adaptation rules is

that they guarantee convergence to an optimum only if noise is reduced very

slowly, and hence, might perform rather poorly if time is valuable. Social

adaptation speeds up convergence when there is consensus in society about

the optimal choice, due to the fact that information from the entire society

about the payoff structure is used.

In the discussion after equation (18), I identiÞed two types of social adap-

tation, direct imitation and imitation of scope. The Þrst is rather easy to

understand: it simply says that the choice of an agent at time t+1 is a convex

combination of her choice and the choice of a randomly selected member of

the population at time t. Now I discuss imitation of scope. Imitation of scope

necessarily arises as a part of the general adaptation rule as long as the rate

of experimentation is affected by the social information. A possible intuition

behind this is that: if the observed choice is close to the observer�s choice

then there is a good chance they are both close to the optimum. Hence, the
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incentive to experiment with a more distant choice is small. On the other

hand, if the two choices are far apart, then at least one of them is far away

from the optimum. Symmetry implies that the chances are about even that

it is the observer or the observed who is farther from the optimum. In this

case, the incentive to experiment with a choice farther away is higher.

Under imitation of scope, noisy choices may persist in the long-run even if

there is no exogenous experimentation and the objective function is strictly

concave. Intuitively, while the gradient dynamics shrinks the population

variance, each act of experimentation injects a noise into the system, and

leads to an increase in the population variance. Under some conditions these

two effects can exactly balance each other. This may have profound economic

implications. For example, low-powered incentives and compensation for

luck rather than effort can be explained by this behavior. For a detailed

discussion see Basov (2001). It is also important to mention that due to the

social imitation, the equation for the population choice density function is

nonlinear. One of the consequences of this nonlinearity, possibility of multiple

steady states, was discussed earlier in this paper.
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6.1 DOES THEOPTIMALADAPTATIONRULE EX-

IST?

In this subsection, I consider the question of whether there exists an adap-

tation rule which behaves sufficiently well in all environments. To put the

question more formally: Is there an adaptation rule which, given any payoff

function and any initial distribution, will lead to a rational outcome in the

steady state? A weaker version of this question would be: is there an adap-

tation rule that for any payoff function will result in a stationary distribution

that assigns small probability to being far from the global maximum? If the

answer to at least one of these questions were �yes,� then one might expect

that such an adaptation rule would have been selected by evolution, since the

individuals who had been genetically programmed or indoctrinated to follow

such a rule would have achieved high payoffs in a wide variety of environ-

ments. This would have allowed us to specify a priori the coefficients of the

adaptation rule and make sharper predictions about the economic outcomes

than is possible for a general adaptation rule.

The answer to the both of these questions is �no,� however. More pre-

cisely, I am going to prove that, no matter what adaptation rule is used, in
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some environment it will be weakly out-performed by just making random

choices from the set of alternatives.

Theorem 10 Given any stationary adaptation rule speciÞed by the matrices

Γ1, Γ2, µ2 ∈ C2(Ω× Ω), there exists a payoff function Π(x) such that

1. µ1(x) = ∇Π(x)

2. the uniform distribution on Ω is a steady state of the adaptation rule,

deÞned by Γ1, Γ2, µ2 and µ1.

Proof. DeÞne the matrix Γ(x) and the vector m(x) by the formulae

Γ(x, t) = Γ1 +
1

|Ω|
Z
Ω

(y − x)TΓ2(y − x)dy (37)

m(x) =
1

|Ω|
Z
Ω

µ2(y − x)dy (38)

DeÞne Π(x) to be a solution to the boundary problem:

∆Π(x) =
1

2
Tr(D2Γ(x))− div[m(x)] (39)

< ∇Π(x), n > = < ∇TrΓ(z, x)−m(x), n >, (40)
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where

∆ =
nX
i=1

∂2

∂x2i
(41)

is the Laplace operator.

The system (39)-(40) deÞnes Π(x) as a solution to the von-Neumann

boundary problem for the Poisson equation. Since the compatibility condi-

tion

1

2

Z
Ω

(Tr(D2Γ(z, x))−div[m(x)]dx =
Z
∂Ω

< ∇TrΓ(z, x)−m(x), n > dx (42)

is satisÞed, the solution to this problem exists and is unique up to an additive

constant. It is straightforward to check that if Π(x) is deÞned in this way

then

f =
1

|Ω| (43)

is a steady state of the stochastic adaptation rule deÞned by Γ1, Γ2, µ2 and

µ1.
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The above result suggests that any adaptation rule can fail in some envi-

ronment. We might think of the adaptation rule as genetically transmitted

and changing only due to mutations and natural selection, where tastes (rep-

resented by Π(x) here) may vary signiÞcantly due to exogenous forces from

generation to generation. In this case, the previous result suggests that a

broad range of learning rules would be present in the population in the long

run. This would result in rather diverse social behaviors, and this diversity

should not be expected to go away with time.

7 DISCUSSION

Bounded rationality and learning models provide important insights which

allow one to understand better both some regularities observed in the lab-

oratory and real economic phenomena. Anderson, Goeree and Holt (1998)

argued that a model of rent seeking based on boundedly rational behavior

describes reality better than the conventional model. Maskin and Tirole

(1999) and Tirole (1999) suggest that bounded rationality might prove to

be important in providing the foundations for incomplete contracts. For a

discussion of the interaction between bounded rationality, reciprocity, and
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the structure of the optimal contracts see Basov (2001).

8 APPENDIX

This Appendix is devoted to the proof of the existence result needed in

Section 3. A continuous solution of the system

∂f(x, t)

∂t
+ div(µ(x, t)f(x, t)) =

1

2
Tr(D2(Γ(x, t)f(x, t)) (44)

hµ(x, t), n(x)if − 1
2
h∇Tr(Γ(x, t)f), n(x)i = 0 on ∂Ω, (45)

µ(x, t) = µ1(x, t) +

Z
Ω

µ2(x, y, t)(y − x)f(y, t)dy, (46)

Γ(x, t) = Γ1(x, t) +

Z
Ω

(y − x)TΓ2(x, y, t)(y − x)f(y, t)dy (47)

exists for any (x, t) ∈ Ω× [0, τ ] for any positive τ and any twice differentiable

initial condition f(x, 0) = g(x). For the choice set Ω, denote by C(Ω) the

Banach space of the functions continuous on Ω with the sup norm. DeÞne

the operator T : C(Ω) → C(Ω) in the following way. For any continuous
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density function f(x, t), use (47)-(48) to evaluate the matrix Γ(x, t) and

vector µ(x, t), and plug them in (45)-(46). Let Tf be the solution of (45)-

(46) with the initial condition f(x, 0) = g(x). The existence of a solution for

the problem (45)-(48) is then reduced to the existence of the Þxed point of

the operator T . The proof of the existence of the Þxed point is based on the

Schauder Fixed Point Theorem (see Stokey and Lucas 1993).

Note, Þrst, that the set of continuous probability distribution functions

F is closed and convex. Let K be such that the maximum of the kµ1(x)k and

kΓ1(x, t)k onΩ×[0, τ ], as well as maximum of the kµ2(x, y)kand kΓ2(x, y, t)kon

Ω×Ω× [0, τ ], is less then K. DeÞne d = supζ,z∈Ω kζ − ξk to be the diameter

of the set Ω. Since the set Ω is compact, d is Þnite. Then there exist pos-

itive constants C1(K,d, τ) and C2(K,d) such that kTf(x)k ≤ C2(K, d) and

kTfj(x)k ≤ C1(K,d, τ) for all j. Here Tfj(x) denotes the partial derivative

of Tf(x) with respect to xj. For a proof see Ladyzhenskaia, Solonnikov, and

Uralceva (1968). The Þrst of these inequalities proves that the family T (F )

is uniformly bounded, while the second, together with the formula for Þnite

differences, proves its equicontinuity.

It remains to prove that the operator T is continuous. Consider T to

be a composition of two operators: operator A that transforms a probability
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density function into the matrix valued function Γ(x, t) and the vector valued

function µ(x, t) according to (47)-(48), and operator B that transforms them

into the solution (45)-(46) with the initial condition f(x, 0) = g(x). (The

existence of f given µ and Γ was discussed in Section 3). Then T = BA. Op-

erator A is obviously continuous. The continuity of operator B follows from

the fact that solution of the initial-boundary problem for the diffusion equa-

tion depends continuously on its coefficients (Ladyzhenskaia, Solonnikov, and

Uralceva 1968). Thus all the conditions of the Shauder Fixed Point Theorem

are satisÞed and hence system (45)-(48) has a solution.
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