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Abstract

Two kinds of theories of boundedly rational behavior are possible. Static

theories focus on stationary behavior and do not include any explicit mech-

anism for temporal change. Dynamic theories, on the other hand, explicitly

model the fine-grain adjustments made by the subjects in response to their

recent experiences. The main contribution of this paper is to argue that the

restrictions usually imposed on the distribution of choices in the static ap-

proach are generically not supported by a dynamic adjustment mechanism.

The genericity here is understood both in the measure theoretic and in the

topological sense.



1 INTRODUCTION

There is a growing empirical evidence that calls into question the util-

ity maximization paradigm. For a description of systematic errors made

by experimental subjects, see Arkes and Hammond (1986), Hogarth (1980),

Kahneman, Slovic, and Tversky (1982), Nisbett and Ross (1980), and the

survey papers by Payne, Bettman, and Johnson (1992) and by Pitz and

Sachs (1984). On the basis of this and similar evidence, Conlisk (1996) con-

vincingly argued for the incorporation of bounded rationality in economic

models.

Some early attempts to incorporate boundedly rational decision making

in economics were made by Alchian (1950), Simon (1957), and Nelson and

Winter (1982) among others. But a universal model of boundedly rational

behavior still does not exist. The existing models can be divided into two

classes: static and dynamic.

In static models individuals choose the better alternatives more frequently

than the inferior ones. They were introduced in economics by Luce (1959).

It is typical in this type of models to impose some intuitive restrictions on

the choice probabilities and study the probability distributions that satisfy

these restrictions. Such probabilistic choice models have already found their
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application in economics. See, for example, McKelvey, Palfrey (1995, 1998),

Chen, Friedman, Thisse (1997), Anderson, Goeree, and Halt (1998), Offer-

man, Schram, Sonnemans (1998), and Anderson, Goeree, and Halt (2001).

In dynamic models individuals are assumed to adjust their choices over

time in the directions that appear beneficial. The dynamic approach origi-

nated in the work of Bush and Mosteller (1955), was introduced in economics

by Arrow and Hurwicz (1960), and is represented, for example, by papers of

Foster and Young (1990), Fudenberg and Harris (1992), Kandori, Mailath,

Rob (1993), Young (1993), Friedman and Yellin (1997), Anderson, Goeree,

and Holt (1999), and Friedman (2000).

The distinctive feature of this type of models is an attempt to capture

the fine-grain adjustments made by the individuals on the basis of their

current experiences. On a very general level, such adjustments produce a

stochastic process on the choice set. The probability distribution of choices

of a static model can be naturally viewed as the steady state distribution of

the stochastic process arising from a dynamic model. For a study of a broad

class of dynamic adjustment processes, see Basov (2001).

This paper studies the connections between the properties of the static

and the dynamic models. Many dynamic models assume that the process of
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choice adjustment leads to better choices on average. For the purposes of

this paper, I will formalize this idea using the notion of a locally improving

adjustment process.

Let us call an adjustment process locally improving (LI) if the vector

of the expected adjustment points into a direction of the increase of the

utility. In particular, I will consider a broad class of locally improving Markov

processes, I call them PDS processes, for which the deterministic part of the

generator is linked to the gradient of the utility by a constant symmetric

positively definite linear transformation. A restrictive assumption here is

that the coefficients of the linear transformation a constant, i. e. they do not

vary over the choice space. This assumption is, however, not too restrictive

provided the choice space is sufficiently small. Since the results of the paper

do not depend on the size of the choice space, this assumption does not drive

the results.

A question I will address is: Can the restrictions usually imposed on the

probability distribution of choices by the static approach be supported by a

generic locally improving adjustment process of this kind? In other words,

does the steady state density of a generic locally improving process satisfy

the usual axioms of the static approach? To address this question let us
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start by introducing two important concepts: payoff monotonicity (PM) and

Independence of Irrelevant Alternatives (IIA).

An adjustment process is PM if for any admissible choice set the density

of the steady state distribution at x1 is greater than the density of the steady

state distribution at x2 if and only if x1 is preferred to x2. An adjustment

process satisfies IIA if the ratio of the steady state probability densities at

any two feasible points do not depend on what other choices are available.

As we will see below, under some mild regularity assumptions the steady

state of each dynamic adjustment process is unique. This, together with the

requirement that the restrictions on the steady state density should hold for

any admissible choice set, implies that the payoff monotonicity and the IIA

characterize the process rather then a particular distribution.

The first main finding of the paper is the following:

(T1) any PM process is LI.

This result is rather intuitive. It claims that for the long-run choice

probabilities to be increasing in the payoffs for any choice set the expected

adjustment vector should point into a direction of the increase of the utility

function. The second main finding of the paper is less intuitive. It states

that:
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(T2) a generic PDS process,(i.e. a process for which the deterministic

part of the generator is linked to the gradient of the utility by a symmetric

positively definite linear transformation), is neither PM nor IIA. Moreover,

a generic PDS process that satisfies IIA is not PM.

The lack of the payoff monotonicity means that given a generic adjust-

ment process one can find a choice set, a pair of choices in it, and a pair of

equimeasurable neighborhoods of these choice, such that choices in a neigh-

borhood of the one with a higher payoff are chosen less often in the steady

state. The violation of IIA means that given a generic adjustment process

one can find a pair of choice sets and a pair of choices that belong to the inter-

section of these choice sets such that the ratio of the steady state probability

densities of the choices depends on the choice set.

Genericity in the above statement can be interpreted both in the measure

theoretic and the topological sense. Genericity in the measure theoretic sense

means that a property in question does not hold only on a set of dynamic

adjustment processes of measure zero. Genericity in the topological sense

means that the property in question is violated for a nowhere dense set

of dynamic adjustment processes. Note, that the measure theoretic and

the topological genericity are not implied by each other. For a discussion
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see, for example, Oxtoby (1980). In fact, the statement I prove is even

stronger. I prove that the set of the PM (IIA) processes can be embedded as

a submanifold of a lower dimension into an appropriate subset of LI processes.

The same comments about the meaning of genericity as above apply to the

second part of the claim. I also show that any PM process is LI, while there

is no connection between the LI property and the IIA.

These findings suggest that the usual restrictions on the probability den-

sity in the static approach are too strong. They are not supported by a

generic dynamic adjustment process. If interpreted from an evolutionary

perspective they imply that the adjustment rule the human beings evolved

to use with probability one is neither PM nor IIA. Moreover, it is not close to

any PM or IIA adjustment rule. Therefore, an explicit modelling of the dy-

namic adjustment process is important when describing boundedly rational

behavior.

This paper is organized as follows. Section 2 describes a broad class of

stochastic adjustment processes. In Section 3 I define the main concepts of

the paper. Section 4 contains the main results. It states the connections

between the concepts defined in Section 3. Section 5 contains the proofs.

Section 6 concludes.
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2 AMODEL OF INDIVIDUAL BEHAVIOR

Let us assume that an individual repeatedly faces with a problem of

choosing an alternative from an open, bounded set Ω ⊂ Rn with a smooth

boundary. I will refer to such sets as admissible. She adjusts her choices

gradually in response to her recent experiences. The adjustment rule pro-

duces a stochastic process on the choice set. The expected adjustment vector

can be interpreted as an attempt to increase the individual’s utility, while

the difference between actual and expected adjustment be interpreted as ex-

perimentation. I will assume that the stochastic process is Markov and that

it possesses a generator. The first assumption is essentially a finite memory

assumption, while the last one is purely technical in nature and is made to

allow us to employ the continuous time technique.

To build a formal model of adjustment, assume that Σ is a sigma-algebra

on Ω, and for any Γ ∈ Σ, define P (x(t),Γ, τ) to be the transition probability,

that is the probability that the individual who at time t made a choice x(t),

will make a choice w ∈ Γ at time t + τ . Note that P does not depend on t

explicitly, since the process is assumed to be Markov.
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Assumption The following limit exists

$ = lim
τ→0

P (x,Γ, τ)− I

τ
, (1)

where I is the identity operator.

Operator $ is known as the generator of the Markov process (Rogers and

Williams, 1994). It can be shown that

$ = µ(x)∇+ Γ(x)D2, (2)

where

µ(x) = lim
τ→0

1

τ
E(x(t+ τ)− x(t)) (3)

Γ(x) = lim
τ→0

1

τ
V ar(x(t+ τ)− x(t)) (4)

(see, for example, Kanan, 1979). Vector µ captures the deterministic trend

in the adjustment rule, while matrix Γ is the covariance matrix of the exper-

imentation errors. The Markov process is completely characterized by vector

µ and matrix Γ. I sometimes refer to it as process (µ,Γ).

Assume that Σ is Borel sigma algebra. The definition of Γ implies that it
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is positively semi-definite. I will assume that it is positively definite. From

an economic perspective, it means that the experimentation has a full range.

Then, if the initial distribution of choices can be characterized by a density

function it can also be characterized by a density function at any t > 0 and

the evolution of the density is determined by the following system:

∂f

∂t
+ div(µ(x)f) =

1

2

nX
i,j=1

∂2(Γij(x)f)

∂xi∂xj
, (5)

nX
i=1

(
1

2

nX
j=1

∂(Γij(x)f)

∂xj
− µi(x)f)ni(x) = 0 on ∂Ω, (6)

where n(x) is the unit vector normal to the boundary of the choice set ∂Ω

(Ito, 1992). In the rest of the paper I will assume that matrix Γ does not

depend on x. The assumption is made for the sake of simplicity only and

does not seriously affect the results. The preferences of the individual are

given by a twice continuously differentiable utility function U(·).
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3 DEFINITION OF SOME CLASSES OF

ADJUSTMENT PROCESSES

In this Section I am going to define the main classes of Markov adjustment

processes studied in the paper. Let us start with defining the concept of a

locally improving process.

Definition 1 A Markov adjustment process is called locally improving (LI)

if

hµ(x),∇U(x)i ≥ 0 for ∀x ∈ Ω. (7)

Here and throughout the paper h·, ·i denotes the inner product of two

vectors. In words, a process is LI if the vector of the expected adjustment

of the choice, µ, points into a direction of an increase of the utility. The

space of all LI processes is a functional space of an infinite dimension. Next,

I define two finite-dimensional subsets of LI.

Definition 2 Markov adjustment process (µ,Γ ) is called PD (PDS) if

µ(x) = B∇U,
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where B is a (symmetric) positively definite matrix with constant coefficients.

Note that PDS ⊂ PD ⊂ LI and sets PDS and PD are finite dimensional.

The dimension of PDS is n(n+1), while that of PD is n2+n(n+1)/2. Hence,

both of them can be embedded into space Rk with an appropriate k endowed

with the Lebesque measure and be considered as measure spaces.

The concept of a locally improving process is a dynamic concept. Next I

am going to define two concepts: payoff monotonicity and independence of

irrelevant alternatives. One can naturally think of them as static concepts,

since they put restrictions on the steady state density function. However,

demanding that these restrictions should hold for any choices space, they

can be made the properties of the process. To ensure the soundness of this

procedure we need a result from the theory of the stochastic processes. To

formulate the result let us assume that fs,Ω(x) is the stationary solution of

the system (5)-(6) normalized by

Z
Ω

fs,Ω(x)dx = 1,

when the choice set is Ω. It is also known as the steady state density of the

Markov process.
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Lemma 1Assume matrix Γ is positively definite. There exists a unique twice

continuously differentiable stationary normalized solution of system (5)-(6).

Moreover, it is positive everywhere on Ω and asymptotically stable.

For a proof, see Ito (1992). The result states that the steady state density

is well defined and is determined by the process rather than by the initial

conditions. This allows us to give the following definition.

Definition 3 A Markov adjustment process is called payoff monotone (PM)

if for any choice set Ω ⊂ Rn and any x1, x2 ∈ Ω

(fs,Ω(x1) ≥ fs,Ω(x2))⇔ (U(x1) ≥ U(x2)). (8)

In words, a Markov adjustment process is PM if for any sufficiently small

ε > 0 the steady state probability that the choice is in the ε− ball centered

at the point x1 is higher then the probability that it is in the ε− ball centered

at point x2 if and only if alternative x1 is preferred to alternative x2. Note,

that the payoff monotonicity refers to the process rather than to a particular

steady state distribution because the latter depends on Ω, while the payoff

monotonicity requires (8) to hold for any Ω.

Another important restriction often imposed in the static approach is IIA.
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Definition 4 A Markov adjustment process satisfies independence of ir-

relevant alternatives (IIA) if for any two choice sets Ω1 and Ω2 and any

x ∈ Ω1 ∩ Ω2

fs,Ω1(x) = fs,Ω2(x). (9)

Again, Lemma 1 allows us to talk about IIA processes rather then the distri-

butions satisfying IIA. In words, IIA states that the ratio of the steady state

probability densities of two choices does not depend on what other choices

are available. My next task is to investigate the connections between the

PM, the IIA, and the LI (PD, PDS).

4 THE MAIN RESULTS

In this Section I study the connections between the LI, the PM and the

IIA and formulate the main results of the paper. I formulate two Theorems.

Theorem 1 states that any PM process is LI. Formally, the following result

is true.

Theorem 1 Assume that

1.

∀x ∈ Ω (µ(x) = 0)⇔ (∇U(x) = 0)
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2. Set of UC of the critical points of the utility defined by

UC = {x ∈ Ω : ∇U(x) = 0}

is finite. Then PM ⊂ LI.

The first assumption states that there is no deterministic adjustment at

the critical points of the utility. The second is a regularity assumption. It

will always hold if the utility function is analytical. Theorem 1 states that LI

is necessary for the process to be PM. It is, however, not sufficient. Moreover,

a typical LI process is not PM. To formalize this idea I will restrict attention

to the finite-dimensional subclasses of LI, PD and PDS. Theorem 2 states

that a typical PD (PDS) process is neither PM nor IIA. Moreover, a typical

process that is both PDS and IIA is not PM.

Theorem 2 Let assumptions of Theorem 1 hold and also assume that the

Hessian of the utility has full rank. Then for any n > 1

1. PD ∩ PM can be embedded in PD as a submanifold of a lower dimen-

sion

2. PDS ∩ PM can be embedded in PDS as a submanifold of a lower

dimension
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3. PM ⊂ IIA

4. PDS ∩ PM can be embedded in PDS ∩ IIA as a submanifold of a lower

dimension

5. Moreover, if for any non-degenerate constant matrix C there exist i,

k such that

∂2U

∂x0i∂x
0
k

6= 0,

where

x0 = Cx,

then PDS ∩ IIA can be embedded in PDS as a submanifold of a lower di-

mension.

The assumption in part 5 of the Theorem states that the utility is not

additively separable and does not become additively separable after a non-

degenerate linear transformation.

The main message of these Theorems is that the assumptions of the prob-

ability density of choices in the static approach are unlikely to hold. Hence,

an explicit modelling of the dynamic adjustment process is needed. In do-

ing so it may be useful to restrict attention to LI processes, or even to its

finite-dimensional subclasses (for example, PD or PDS). However, doing so
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does not guarantee good properties for the steady state distribution. The

next Section provides a proof of these Theorems, which proceeds through a

sequence of lemmata that are of an independent interest.

5 PROOF OF THE MAIN RESULTS

In this Section I develop a sequence of lemmata that eventually lead to

the proof of Theorems of the previous Section. I start with a characterization

of the steady state distributions for the PM processes. Below I assume that

the assumptions of Theorem 1 always hold without stating them explicitly.

Lemma 2 AMarkov process is payoffmonotone if and only if for any Ω there

exists a strictly increasing continuously differentiable function gΩ : U(Ω) →

R+/{0} such that

fs,Ω(x) = gΩ(U(x)). (10)

Proof. Consider a rational continuous preference relation º defined by

(x º y)⇔ (U(x) ≥ U(y)). (11)

The payoff monotonicity implies that fs,Ω(·) is a utility function that repre-
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sents preferences relation º, which is also represented by U(·). Hence, there

exists continuous strictly increasing function gΩ : U(Ω)→ R such that

fs,Ω(x) = gΩ(U(x)). (12)

According to Lemma 1, fs,Ω(·) is positive on Ω, hence gΩ(·) > 0.

To prove that gΩ(·) is differentiable let us consider U, U + δU ∈ U(Ω)

and δU 6= 0. Then ∃x, x+ δx ∈ Ω such that

U(x) = U, U(x+ δx) = U + δU. (13)

Note that, since set UC is finite, it is always possible to select x in such a way

that∇U(x) 6= 0, which in turn allows to select δx such that hδx,∇U(x)i 6= 0.

Continuity of U(·) implies that

(δU → 0)⇔ (δx→ 0). (14)

Let δx = a kδxk , where a is unit vector pointing in the direction δx. Then

lim
δU→0

gΩ(U + δU)− gΩ(U)

δU
=
h∇fs,Ω, ai
h∇U, ai . (15)
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Equation (15) asserts that the limit on the left hand side exists, hence the

function gΩ(·) is differentiable. Moreover, the derivative is continuous. Since

the left hand side of (15) does not depend on a, so is the right hand side.

Therefore, ∇fs,Ω is proportional to∇U with the coefficient of proportionality

g0Ω(U(x)).

Q. E. D.

Next, I am going to characterize the PM adjustment processes. As we

will see, the payoff monotonicity implies some connection between the deter-

ministic part of the adjustment process, µ, and its stochastic part, Γ. As a

corollary, I will prove that any payoff monotone adjustment process is locally

improving. The reverse, however, is not true. Moreover, I will describe a

broad class of locally improving processes such that a generic process of this

class is not payoff monotone.

Lemma 3 Consider Markov process (µ,Γ) and assume that for ∀x ∈ Ω

(µ(x) = 0)⇔ (∇U(x) = 0). (16)

The process is payoff monotone if and only if there exists a continuous func-
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tion c : U(Ω)→ R+/{0} such that

µ = c(U)Γ∇U. (17)

Moreover, if the Hessian of U has full rank c(·) is differentiable.

Condition (16) states that is there is no deterministic adjustment at the

critical points of the utility function. That is, all such points would be steady

states of the deterministic dynamics.

Proof. Suppose (17) holds. Define

ξ(z) = 2

zZ
0

c(y)dy. (18)

Then it is easy to check that

fs,Ω(x) =
exp(ξ(U(x)))Z

Ω

exp(ξ(U(y)))dy
(19)

is a normalized stationary solution of (5)-(6). According to Lemma 1, it is the

unique normalized stationary solution. According to (18), ξ0(·) = c(·) > 0.

Hence,

(fs,Ω(x1) ≥ fs,Ω(x2))⇔ (U(x1) ≥ U(x2)) (20)
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so the adjustment process is payoff monotone.

Now, suppose that the adjustment process is payoff monotone. Then,

according to Lemma 2, there exists a continuously differentiable strictly in-

creasing function gΩ : R→ R+/{0} such that

fs,Ω(x) = gΩ(U(x)). (21)

Define vector

κ = gΩ(U(x))µ(x)− g0Ω(U(x))
2

Γ∇U(x). (22)

Then (5)-(6) implies that vector κ satisfies

divκ = 0 on Ω, (23)

hκ, ni = 0 on ∂Ω. (24)

Moreover, definition of payoffmonotonicity implies that (23)-(24) should hold

for any Ω. Hence, κ = 0. Now (22) implies that

g0Ω(U(x))
2gΩ(U(x))

=
hµ(x),∇U(x)i

h∇U(x),Γ∇U(x)i (25)
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provided that ∇U(x) 6= 0. The right hand side of (24) does not depend on

Ω, hence the left hand side should also not depend on Ω. Introduce

c(z) =
g0Ω(z)
2gΩ(z)

. (26)

Since set UC is finite, for any z ∈ U(Ω) the exists x ∈ Ω such that U(x) = z

and ∇U(x) 6= 0. Hence, c(·) is defined on U(Ω). According to Lemma 2,

c(·) ≥ 0 and according to (16) and (25) c(·) 6= 0. Hence, c(·) > 0. Finally,

putting κ = 0 in (22) and using the definition of c(·) we get

µ(x) = c(U(x))Γ∇U(x). (27)

Proof of differentiability of c(·) is similar to the proof of differentiability of

gΩ(·) in Lemma 2 and is omitted.

Q.E.D.

An easy corollary of Lemma 3 is that any payoff monotone process is

locally improving.

Corollary 1 If Markov process (µ,Γ) is payoff monotone and (16) holds it

is locally improving.
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Proof. According to Lemma 3, we can write

µ(x) = c(U(x))Γ∇U(x). (28)

for some positive real valued function c(·). Therefore,

hµ(x),∇U(x)i = c(U(x))h∇U(x),Γ∇U(x)i ≥ 0. (29)

Hence, the process is locally improving.

Q. E. D.

This completes the proof of Theorem 1. The reverse to the Corollary 1,

however, is not true. Indeed, consider the following example.

Example 1. Assume that the choices made by the individual follow the

stochastic process:

dx = ∇U(x)dt+ ΛdW. (30)

Here U(·) is twice continuously differentiable function, which is interpreted

as a utility function of the individual, Λ is n × n matrix of full rank and

W = (W1, ...,Wn) is a vector of independent standard Wiener processes. Note

22



that the probability density of choices generated by process (30) is governed

by (5)-(6) with and µ and Γ given by

µ(x) = ∇U(x)

Γ = ΛTΛ.

Note that (16) trivially holds for this process. The first term in (30) cor-

responds to the gradient dynamics and says that the individuals adjust their

choices in the direction of the maximal increase of their utility. The sec-

ond term states that this adjustment is subject to a random error or experi-

mentation. These errors are uncorrelated in time, though correlation among

different components of x is permitted and is given by the matrix Γ = ΛTΛ.

Let us assume n = 2, and put

U(x1, x2) = u1(x1) + u2(x2),

Λ =
σ1 0

0 σ2

.

Then

fs,Ω(x) = CΩ exp(
u1(x1)

σ21
+

u2(x2)

σ22
).
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Consider two choice vectors x = (x1, x2) and y = (y1, y2). Assume u(x1) =

u(x2) = 5, u(y1) = 4, u(y2) = 8, σ21 = 1, σ22 = 10. Then u(x) < u(y) but

f(x) > f(y).

Part 1 of Theorem 2 claims that the situation illustrated by Example 1 is

quite generic. To formalize this idea, consider a class PD of locally improving

Markov adjustment processes (µB, Γ). By the definition of a PD process we

can write

µB = B∇U

for some positive definite matrix B with constant coefficients. (Matrix B is

called positive definite if for any z ∈ Rn/{0} hz,Bzi > 0. Note that matrix

B is not required to be symmetric.) Such an adjustment process can be

considered to be an element of Rn2+n(n+1)/2 (n2 is the number of independent

elements in matrix B, while n(n + 1)/2 is the number of the independent

elements in the symmetric matrix Γ). Endowing Rn2+n(n+1)/2 with Lebesque

measure we can make the class PD a measure space.

Our next goal is to prove that for n > 1 PM meets PD by a submanifold

of a lower dimension. Which means that a generic PD process is not PM,

where genericity is understood is both topological and measure theoretic

sense. First, we need to prove a technical result. To formulate it, let x0 ∈ Ω
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and

I = {x ∈ Ω : U(x) = U(x0)} (31)

be the indifference surface passing through x0.

Lemma 4 Let the Hessian of utility be non-degenerate Then there exist n dif-

ferent points x1, .., xn ∈ I such that vectors ∇U(x1), ...,∇U(xn) are linearly

independent.

Proof. First observe that if n vectors b1, .., bn (bi ∈ Rn) are linearly inde-

pendent then ∃δ > 0 such that for any ε1, ..., εn (εi ∈ Rn, kεik < δ) vectors

bi+εi are also linearly independent (this follows from the fact that the deter-

minant of the matrix formed by n vectors in Rn continuously depends on its

columns). Since the Hessian of U has full rank the indifference surface is not

a hyperplane, therefore for ∀ε > 0 there exist n different points x1, .., xn ∈ I

such that vectors (xi−x0) are linearly independent andkxi − x0k < δ. Using

the full rank assumption again one concludes that vectors bi defined by

bi = D2U(x0) · (xi − x0) +∇U(x0)
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are linearly independent. But

∇U(xi) = bi + o(ε).

Hence, according to the observation made in the start of the proof one can

choose δ small enough to ensure that ∇U(xi) are linearly independent.

Q. E.D.

Now we are ready to prove the following Lemma.

Lemma 5 Assume n > 1 and the Hessian of utility has full rank. Then

PD ∩ PM can be embedded in PM as a submanifold of a lower dimension.

In particular, this implies that the Lebesque measure of the PM processes in

class PD is zero and that the set of the PM processes is nowhere dense in

PD.

Proof. According to Lemma 3, for each payoff monotone process in class

PD we can write

B∇U(x) = c(U(x))Γ∇U(x). (32)

for some positive real valued function c(·). Fix x0 ∈ Ω and let x1, .., xn ∈ I be

such that ∇U(x1), ...,∇U(xn) are linearly independent. Such x1, .., xn exist
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by Lemma 4. Let us introduce the following notation

U(x0) = U, Ukj =
∂U(xk)

∂xj
(33)

yij = bij − c(U)γij, (34)

where bij and γij are matrix elements of matrices B and Γ respectively. Then

for a fixed i
nX

j=1

Ukjy
i
j = 0. (35)

Since ∇U(x1), ...,∇U(xn) are linearly independent, the unique solution of

(36) is yij = 0. Since this is true for every i, (35) implies

B = c(U)Γ. (36)

Since both B and Γ are constant matrices c(U) = c > 0 is also a constant.

This means that the set of payoff monotone processes is given by B = cΓ,

which is a smooth manifold of dimension 1 + n(n+ 1)/2 < n2 + n(n+ 1)/2,

provided n > 1. (A point on the manifold can be uniquely determined by

n(n+1)/2 elements of matrix Γ and c). Therefore, this set is nowhere dense

in PD and has Lebesque measure zero.
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Q.E.D.

This completes the proof of part 1 of Theorem 2. The proof of part 2 is

almost verbatim the same and is omitted. Now let us return to Example 1.

An interesting corollary of Lemma 4 given by the following Proposition.

Proposition 1 Assume the Hessian of the utility has a full rank. Process

(30) is payoff monotone if and only if Γ = σ2I, where I is the identity

matrix.

Proof. According to Lemma 3, process (30) is payoff monotone if and only

if for any x ∈ Ω vector ∇U(x) is an eigenvector of matrix Γ. Moreover,

eigenvalue corresponding to this eigenvector depends on x only through the

utility level U(x). Lemma 4 implies that a symmetric matrix Γ has n linear

independent eigenvalues corresponding to the same eigenvalue, hence Γ =

σ2I. If Γ = σ2I then the steady state is given by

fs,Ω =
exp(2U(x)

σ2
)Z

Ω

exp(2U(y)
σ2
)dy

.

It is, clearly, payoff monotone.

Q.E.D.

Recall that a Markov adjustment process satisfies the IIA property if the
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ratio of the probability that the choice is in an ε− ball centered at the point

x1 to the probability that it is in an ε− ball centered at point x2 does not

depend on whether some other choice z is available, up to the order o(ε).

The following result holds.

Lemma 6 A Markov adjustment process satisfies IIA if and only if the Jacobi

matrix of the vector field Γ−1µ(x), D(Γ−1µ(x)), is symmetric for ∀x ∈ Ω.

Proof. Let us introduce vector j by the formula:

j(x) = −∇U(x)f(x) + 1
2
Γ∇f(x). (37)

Then, in the steady state j(x) should solve the following boundary problem

div(j(x)) = 0 (38)

hj(x), n(x)i = 0 on x ∈ ∂Ω. (39)

The distribution f is then determined by the system of first-order partial

differential equations:

j(x) = −µ(x)f(x) + 1
2
Γ∇f(x). (40)
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The IIA property implies that a change in Ω will result in multiplication of

f , and hence of j, by a constant, that is jnew = Cjold. This relation should

hold at each point, which belongs to the intersection of the new and the

old choice sets. Hence jnew should solve the same boundary problem, but

on a different domain. The only vector j that would solve (39)-(40) for any

domain is j = 0. Hence IIA, together with the definition of j, implies that

the steady state density f(x) solves the system

µ(x)f(x)− 1
2
Γ∇f(x) = 0. (41)

or

1

2
∇ ln f(x) = Γ−1µ(x). (42)

The Jacobi matrix of the left hand side of (43) is the Hessian matrix of

ln f(x). Since, according to Lemma 1, f(x) is positive and twice continuously

differentiable this matrix is symmetric, so the Jacobi matrix of the right hand

side should also be symmetric.

To prove the reverse, assume that the Jacobi matrix of Γ−1µ(x) is symmet-

ric and define f(x) to be the solution of (43). According to the Frobenuous

theorem, the solution exists and is unique up to a multiplicative constant.
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It is easy to see that f(·) such defined solves (5)-(6). The constant is chosen

from the normalization condition.

Q. E. D.

Lemma 6 shows that IIA requires some connection between the determin-

istic and stochastic part of Markov process to hold. This connection does not

have any a priori economic justification and we should not expect it to hold

in general. Moreover, as I will show below, IIA does not hold for a generic

Markov process from some broad class of the payoff monotone processes. To

see this consider a class PDS of Markov adjustment processes, which is ob-

tained from PD assuming that B is symmetric. I can be naturally embedded

in Rn(n+1). Let us endow this set with Lebesque measure. Then the following

result holds.

Lemma 7 Assume n > 1 and for any non-degenerate constant matrix C

there exist i, k such that

∂2U

∂x0i∂x
0
k

6= 0, (43)

where

x0 = Cx. (44)

Then PDS ∩ IIA can be embedded into PDS as a submanifold of lower dimen-
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sion. In particular, this implies that the Lebesque measure of the IIA processes

in class PD is zero and that the set of the IIA processes is nowhere dense in

PD .

Proof. Since both matrices Γ−1 and B are positive definite, there exists a

non-degenerate constant matrix C such that both CTΓ−1C and CTBC are

diagonal, with all diagonal entries strictly positive (Gantmakher, 1989). Let

us denote the ith diagonal element of Γ−1 as 1/σ2i and the i
th diagonal element

of B as bi. Let x0 = Cx. Then, according to Lemma 5, the process satisfies

IIA if and only if

(
bi
σ2i
− bk

σ2k
)

∂2U

∂x0i∂x
0
k

= 0. (45)

Now (46) and (44) imply that there exists a pair of indices i, k such that

bi
σ2i
=

bk
σ2k

. (46)

This means that the the set of processes for which IIA holds is a smooth

manifold with dimension at least by one smaller then n(n+1) and therefore,

the set of such processes has Lebesque measure zero and is nowhere dense in

PDS.

Q.E.D.
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This completes the proof one part 5 of Theorem 2. As one can see from

the proof, assumptions (44)-(45) can be weakened. Indeed, it is sufficient to

require them to hold only for C that brings Γ−1 and B to a diagonal form,

rather than for any non-degenerate C. Economically, assumption (44) says

that the utility is not additively separable in the components of vector x0. If

it is separable IIA will hold for any process in PDS.

Results obtained so far show that both the payoff monotonicity and IIA

do not hold for a generic locally improving processes. However, the payoff

monotonicity is strictly stronger assumption then IIA. Indeed, the following

result holds.

Lemma 8 Assume the Hessian of the utility function is non-degenerate.

Then PM ⊂ IIA.

Proof. According to Lemma 3 payoff monotonicity implies that

µ(x) = c(U(x))Γ∇U(x) (47)

for some differentiable function c : R → R+. But then the matrix element
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D(Γ−1µ)ij is given by

∂(Γ−1µ)i
∂xj

= c0(U(x))
∂U

∂xi

∂U

∂xj
+ c(U(x))

∂2U

∂xi∂xj
. (48)

Hence, the matrix is symmetric and the process satisfies IIA.

Q.E.D.

This completes the proof of part 3 of Theorem 2. The following lemma

completes the proof of Theorem 2.

Lemma 9 Assume that n > 1 and Hessian of the utility has a full rank.

Then PDS ∩ PM can be embedded in PDS ∩ IIA as a submanifold of a lower

dimension.

Proof. Following the same logic as in the proof of Lemma 5, it is easy to see

the set PM ∩PDS has dimension 1+n(n+1)/2. On the other hand, as one

can deduce from the proof of Lemma 6, set IIA∩PDS has dimension at least

n(n+1)−(n−1) = n2+1. Lemma 8 implies that PM∩PDS ⊂ IIA∩PDS.

Therefore, PM ∩ PDS can be embedded into IIA ∩ PDS as a submanifold

of a lower dimension.

Q. E. D.

To conclude, I have shown that for a sufficiently broad class of LI processes
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a generic process does not satisfy IIA and a generic process that satisfies IIA

is not PM. Note also that an IIA process need not be LI.

6 DISCUSSION AND CONCLUSIONS

Two kinds of theories of boundedly rational behavior are possible. Sta-

tic theories focus on stationary behavior and do not include any explicit

mechanism for temporal change. As in rational choice theory, they embody

something of a subject’s cognitive analysis of the choice problem. Dynamic

theories, on the other hand, explicitly model the fine-grain adjustments made

by the subjects in response to their recent experiences.

Both types of theories originated in mathematical psychology. Static the-

ories, first considered by Luce (1959), were based on the axiomatic approach

to the characterization of the choice probabilities. Dynamic learning models

where pioneered by Bush and Mosteller (1955). In these models learning is

modelled as a Markov process on the choice set.

The main contribution of this paper is to argue that the axioms of the

static approach are not supported by a generic dynamic adjustment proce-

dure. Therefore, when studying boundedly rational behavior, it would be
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desirable to start with explicit formulation of the learning process.

In the Introduction I mentioned some applied papers that used the static

approach. It would be interesting to study to what extend the results of

these papers are robust to explicit dynamic modelling.
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