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Abstract

Using examples drawn from two important papers in the recent literature on weak
instruments, we demonstrate how observed experimental outcomes can be pro-
foundly influenced by the different conceptual frameworks underlying two exper-
imental designs commonly employed when simulating simultaneous equations.
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1 Simultaneous Equations and Experimental Design

The classical linear simultaneous equations model has enjoyed renewed inter-
est of late as a consequence of the problems associated with inference in weakly
identified models; see, for example, the papers discussed by Chesher, Dhaene,
and van Dijk (2007). Several authors have addressed the specific problem of
inference on the coefficient of an endogenous regressor in a structural equation
and various suggestions have been made about how to proceed in such circum-
stances. Using invariance principles and similar regions, Andrews, Moreira,
and Stock (2006) restrict attention to a class of tests from which they extract
members with desirable optimality properties. However, in the absence of a
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uniformly most powerful test, comparison of the absolute and relative merits
of different tests continues to be guided by simulation experiments.

One aspect of this analysis that has received little attention is the observation
that there are two formulations of the underlying model in common use. These
formulations are probabilistically equivalent, in that one can move from one to
the other via non-singular linear transformations. However, these transforma-
tions involve parameters that may be of interest in certain types of simulation
experiments and, in such cases, the competing formulations of the models can
be conceptually quite different. In this note we demonstrate that the lessons
one might hope to learn through the use of simulation studies can vary enor-
mously depending upon which conceptual framework is chosen to guide the
experiments. We illustrate this point by exploring the behaviour of three statis-
tics that have been important in the analysis of weakly-identified simultaneous
equations models, namely the AR test (Anderson and Rubin, 1949), the K test
(Kleibergen, 2002), and the conditional likelihood ratio (CLR) test (Moreira,
2003).

To begin, consider the classical structural equation model
y=Y0B+ Xv+u, (1)

where the endogenous matrix variables y and Y are N x 1 and N X n, respec-
tively, the matrix of exogenous variables X is N x k, and u denotes a N x 1
vector of uncorrelated stochastic disturbances with zero mean and variance o2.
The vectors of structural coefficients § and v are n x 1 and k x 1, respectively.

There are two commonly encountered ways of completing the specification of
this model. The first involves augmenting (1) by reduced form equations for
Y'; namely,

Y = XII; + ZIl, + V, (2)

with II; and Il of dimension k£ xn and v x n, respectively. The stochastic spec-
ification is then completed by assumptions about the conditional distribution
of [u V] given X and Z, e.g. [u V]|[X Z] ~ N (0,® ® Iy), where

2
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That is, the rows of the N x (n + 1) matrix [u V] are uncorrelated random
vectors with zero mean and common (n + 1) x (n + 1) covariance matrix .
Henceforth, the couplet of equations (1) and (2), together with the accompa-
nying distributional assumption, will be referred to as the structural equation
specification (SES).

The second specifies a reduced form for all of the endogenous variables in the



system; namely

m 1L
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where [v V]|[X Z] ~ N (0,X ® Iy) with
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and the coefficient vectors m; and 7y are k x 1 and v x 1, respectively. Hereafter
equations (1) and (3), together with their distributional assumption, will be
referred to as the reduced form specification (RFS). This model is comprised
of more equations than there are endogenous variables and so compatibility
of equations (1) and (3) requires the parameter restrictions
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which, together with (2), imply that
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Equations (5) and (6) show how the parameters of the two formulations of
the model are related to each other. They also make clear that, in simulation
experiments where values of 8 are varied, it is impossible to simultaneously
keep fixed the remaining parameters of both formulations. Hence, contingent
upon which formulation of the model you prefer, the other becomes something
of a moving feast as (3 is varied, making comparison of simulation experiments
across such paradigms very difficult. When investigating power, for example,
the difficulty lies in presenting the power as a univariate function of 3 when
in fact the power curve sits on a multidimensional manifold. Making a choice
between the two formulations of the model implies that one is traversing this
manifold and passing through observationally equivalent parameter points in
very different ways.

In order to illustrate the point, let us consider the problem of testing Hy :
[ = 0 against the two sided alternative H; : # # 0 under the following two
experimental designs based upon SES and RF'S.
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Note from (6) that, under Hy, ¥ = ® and the two data generating mechanisms
are observationally equivalent for any fixed values of the nuisance parameters.
But the latter is not true in general. From equation (6) it is apparent that,
as 3 varies under Hi, one can choose to hold fixed either ¥ or ®, but not
both. Hence it will be immaterial whether simulation experiments designed to
investigate size properties are based on ED1 or ED2, but if one allows 3 to
vary under Hy, as one does when considering the power of certain tests, then
the implications of using ED1 or ED2 can be very different.

Figures 1 and 2 present power functions for the AR, K and CLR tests based
on experimental designs ED1 and ED2, together with PE, the asymptotically
efficient two-sided power envelope for invariant, similar tests, as described in
Andrews et al. (2006). For both designs we have n = 1, N = 100 and v = 5.
To obtain Figure 1 we have set A = I1,Z'Z1l, = 1.0, so the instruments are
weak. Figure 1(a) is based on ED1 with p,;y = 0.99, following Kleibergen
(2002, Figure 4). Figure 1(b) examines the effect of such weak instruments in
ED2 where, instead of fixing p,y, we set p,y = 0.99. In Figure 2 we have set
A = 5.0, so the instruments are stronger than for Figure 1. Figure 2(b), as in
Andrews et al. (2006, Figure 1(a)), is based on ED2 with p,y = 0.95, so that
the degree of endogeneity is weaker than in Figure 1. Figure 2(a) examines
the corresponding power curves under ED1, where now p,; = 0.95.

The figures clearly demonstrate that the choice of experimental design has a
profound effect upon the observed power characteristics of the different tests
and hence a substantial influence on any conclusions that are likely to be
drawn from the associated simulation experiments. That said, one result that is
common across the figures is that the CLR test dominates the K test and has a
performance that is remarkably close to that of the power envelope. At least in
our examples there is little between them although the K test appears to have
points in the parameter space where it displays erratic behaviour, a property
not shared by CLR. However, it is only with ED2 that either K or CLR have
properties that might be considered desirable. Clearly, the attractiveness of
these procedures appears to be contingent upon the conceptual framework
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Fig. 1. Power Functions: Weak Instruments and Strong Endogeneity
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Fig. 2. Power Functions: Stronger Instruments But Weaker Endogeneity



within which their behaviour is analysed.

2 Discussion

Let us state at the outset that we are not suggesting that either ED1 or ED2
is incorrect. Nevertheless, when faced with alternative specifications one is
required to make choices. A preference for the specification that is comprised
of both (i) a structural equation and (ii) the complete reduced form rather than
just a subset of the reduced form, might be justified on two grounds. First, the
overall reduced form is an unrestricted regression and so the accompanying
conditional distribution of [v V] given X and Z is, to our minds, somewhat
easier to interpret than is that of [u V] given X and Z. Although structural
equation (1) is of primary economic interest, its probabilistic standing is less
clear without reference to the corresponding complete reduced form model
(3) and the compatibility conditions (5). Second, if one wishes to appeal to
asymptotic arguments, such as the local-to-zero asymptotics of Staiger and
Stock (1997), then a pervasive result is that ¥ can be consistently estimated. !
This suggests that a model in which ¥ is fixed a priori, as in RFS, is the
appropriate statistical model and, consequently, an experimental design where
Y} is held constant, as in ED2, is of intrinsic appeal. Conversely, given that it
is the structural equation that is of primary interest, it can be argued that
03 and o,y are natural parameters of the model that determine the variation
and the degree of endogeneity in the SES, and therefore holding ® constant a
priori, as in ED1, is a sensible feature of an experimental design.

We recognize that a choice between specifications SES and RFS remains a
matter of taste but, at the same time, stress that this choice carries with it
strong implications for the observed operational characteristics of test proce-
dures. Although it has not been completely ignored (see, for example, Forchini
and Hillier, 2003), we believe that the literature has dramatically underesti-
mated the practical consequences of this observation. In the absence of com-
pelling arguments in favour of one conceptual framework, and its associated
experimental design, over the other our results suggest that it would be pru-
dent to explore both designs when analysing the behaviour of tests such as
those considered here. Ultimately, of course, what is needed is an explanation
of the observed operational characteristics that is valid whatever conceptual
framework is adopted. Preliminary investigations using the ideas and results
presented in Poskitt and Skeels (2007) suggest that such an explanation might
be possible, but a detailed examination is beyond the scope of this paper.

1 'We have benefited from a discussion with James Stock on this point.
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