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Abstract

We examine the relationship between short term interest rates and
UK equity returns using a two regime Markov Switching EGARCH
model. We find one high-return, low variance regime in which the
conditional variance of equity returns responds persistently but sym-
metrically to equity return innovations. In the other, low-mean, high-
variance, regime there is evidence that equity volatility responds asym-
metrically and without persistence to shocks to equity returns. There
is evidence of a regime dependent relationship between shorter matu-
rity interest rate differentials and equity return volatility. Furthermore,
there is evidence that events in the money markets influence the prob-
ability of transition across regimes.
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1 Introduction

Under the dividend discount approach to equity pricing of Gordon (1962),
and the dynamic counterpart of Campbell and Shiller (1988), the price of a
share in equilibrium is determined by the discounted value of the expected
cash flows accruing to the share. Campbell and Ammer (1993) decompose
the variance of unexpected excess returns implied by the dividend discount
model into three factors, news about future dividends, news about future
interest rates, and news about future excess returns. These models predict
that fluctuations to interest rates should cause equity prices to move and
may also result in changes to the variance of equity returns.
In general, there are two major sources of interest rate fluctuations,

those arising from changes in monetary policy and those arising from other,
possibly extreme, events in the money markets.
On the one hand, over the last two decades there has been increased

use of short term interest rates rather than measures of the money supply
as intermediate targets for monetary policy. Any potential change in the
policy rate is the focus of much attention from academics and practioners,
as arbitrage will ensure that a change in the policy rate will affect all other
traded interest rates in the economy. Any change in the stance of monetary
policy may impact on share prices along a number of alternative channels.
One possible channel is via the funding costs of a leveraged firm. Any
change in the policy rate will change debt funding costs and consequently
may impact on the profitability of the firm and its ability to pay dividends.
Secondly, any change in the policy rate may affect the opportunity cost of
equity investments, again impacting on share prices. Thirdly, changes in
the policy rate may impact upon the level of real activity in economy in the
short to medium term, and this may impact upon the value of equities by
influencing the value of expected future cash flows.1

There is substantial empirical evidence to suggest that changes in mon-
etary policy actually affect equity markets. Pearce and Roley (1985) find
changes to monetary policy are significant determinants of movements in
stock prices. Bernanke and Blinder (1992), Bernanke and Kuttner (2005)
and Chen (2007), inter alia, all provide evidence that changes to monetary
policy in the US impact on US equity values. Bredin, Hyde, Nitzsche and
O’Reilly (2007) study the impact of domestic monetary shocks on UK stock
returns.
On the other hand, there is also the possiblity that unexpected events

in the interest rate markets will impact upon equity returns. Events such as
the Russian debt crisis and the subsequent collapse of Long Term Capital
Management in 1998, (see Jorion 2000 inter alia), or the sub-prime mortgage

1For further discussion of the impact of monetary policy on stock returns see Sellin
(2001) or Bernanke and Kuttner (2005), inter alia.
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crisis of 2007 are good examples of such shocks. Leveraged firms that finance
their activities through short-term arrangements may experience periods of
high volatility when conditions in the debt markets make refinancing uncer-
tain. This is particularly true for firms that finance long-term illiquid assets
with short term borrowing, implicitly assuming that sufficient liquidity will
always be available to refinance their activities.
The aim of this paper is to seek evidence that events in the money mar-

kets impact on equity returns and volatility. Given the widespread evidence
of asymmetry in equity returns, (see Glosten Jaganathan and Runkle 1993,
Engle and Ng 1993, Henstchel 1995 and Baekert and Wu 2000 inter alia)
positive and negative interest rate innovations may have markedly different
impacts on the mean and/or variance of equity returns. A second aim of this
paper is to seek evidence of periods of high volatility in equity returns and
further to examine whether these periods are associated with events in the
money markets in a statistically significant fashion. Deuker (1997), Lunde
and Timmerman (2004), Bae, Kim and Nelson (2007) and Chen (2007) inter

alia all find evidence of regime switching in equity returns. A common find-
ing in these papers is that equity returns display two regimes, a high-mean,
low variance regime and a low-mean high variance regime. However, from an
econometric point of view, it is not feasible to separate the first and second
aims of this paper. Standard asset pricing models tell us that the riskiness
of an asset is important in determining the true value of that asset. Optimal
inference about the conditional mean of the asset return, requires that the
conditional second moment be correctly specified. Consequently, in seeking
to determine whether equity returns are influenced by events in short term
money markets, and/or whether equity returns display infrequent intervals
of high volatility, it is necessary to allow for both possibilities. Omission of
the former possibility may lead to unreliable inference about the latter and
vice-versa. Furthermore, given the widespread evidence of asymmetry in
stock volatility, a standard symmetric regime-switching GARCH may very
well fail to provide an adequate conditional characteristion of equity return
dynamics.
The approach followed in this paper is to allow for two regimes in asset

returns. Our full model characterises the within regime conditional variance
as an exponential GARCH process. This allows us to encompass both types
of innovation to volatility, that is, we allow for switching between regimes
and time variation and asymmetry in the conditional variance within regime.
However our model also allows for regime dependence in the impact, persis-
tence and asymmetric response to shocks to equity volatility.
Our results suggest that there are two regimes in UK equity returns, a

high-mean, low-variance regime and a low-mean high-variance regime. The
evidence also suggests that shorter maturity interbank interest rate differ-
entials are significant, regime dependent, determinants of the volatility of
UK equity returns. Furthermore, there is some evidence to suggest that
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the probability of transition across regimes is itself a function of short-term
interest rate differentials. Failure to account for either regime switching
and/or dependence on short-term interest rate differentials may lead to in-
valid inference, biased forecasts and consequently inefficient risk manage-
ment as Value-at-Risk (V aR) measures or volatility estimates for option
pricing may be biased.
This paper contains five sections. The next section outlines the Markov

Switching EGARCH model of stock returns. The third section describes
the data. Section four reports the empirical results and is divided into three
subsections. The first subsection outlines the results associated with the
baseline models of equity return. The second and third subsections outline
the results for the extended Markov Switching EGARCH models with fixed
and time varying transition probabilities, respectively. The final section
provides a summary and some concluding comments.

2 The Markov Switching EGARCH Model

There is a substantial literature describing the volatility of stock returns
and, in particular, the asymmetry in stock volatility2. Following a negative
shock to equity prices, equity returns tend to display more volatility than
would occur following a positive shock of equal magnitude. Nelson (1991)
presents the EGARCH model designed to capture such asymmetry. The
EGARCH(1,1) may be written as

rt = µt + εt (1)

εt ∼ N (0, ht)

log (ht) = ω + α

[∣∣∣∣∣
εt−1√
ht−1

∣∣∣∣∣
−
√
2/π

]

+ β log (ht−1) + δ
εt−1√
ht−1

The logarithmic construction of (1) ensures that the estimated conditional
variance, ht, is strictly positive avoiding the need for the non-negativity
constraints used in the estimation of GARCH models. Moreover, since δ̂
is typically negative in sign, a negative innovation, εt < 0, generates more
volatility than a positive innovation of equal magnitude. The innovation εt
may be treated as a collective measure of news about equity prices arriving to
the market over the period t−1 to t. Suppose information is held constant at

2This asymmetry is commonly referred to as the leverage effect after Black (1976) and
Christie (1980) who argue that that the increased leverage implied by a decline in stock
prices results in higher equity volatility. An alternative explanation of asymmetry in equity
volatility is referred to as the volatility feedback hypothesis; if volatility is persistent any
increase in current volatility will, by definition, raise future volatility and thus lead to
price falls in markets that price volatility. The fall in current equity prices allows for an
increase in the required return necessary to compensate investors for holding more volatile
equity.
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time t−2 and before, Engle and Ng (1993) describe the relationship between
εt−1 and ht as the news impact curve (NIC).The NIC for the EGARCH(1,1)
may be written

ht =

{
A. exp

[
δ+α
σ εt−1

]
for εt−1 > 0

A. exp
[
δ−α
σ εt−1

]
for εt−1 < 0

(2)

where A = σ2β exp
[
ω − α

√
2/π

]
. Clearly given the construction of (2) δ <

0 will cause the slope of the NIC in the εt−1 < 0 segment to be steeper than
corresponding slope in the εt−1 > 0 segment; volatility therefore responds
asymmetrically to the sign of the shock. A major drawback of the GARCH
approach is that single regime GARCH models are prone to overestimate the
persistence of a shock in the face of an unparameterised change in regime,
see Lamoureaux and Lastrapes (1990), Cai (1994) and Hamilton and Susmel
(1994) inter alia.
Hamilton and Susmel (1994) and Cai (1994) develop the Markov switch-

ing ARCH or SWARCH model which has been widely applied to equity,
interest rate and foreign exchange data. Gray (1995) develops a Markov
switching GARCH model, hereafter MS-GARCH, which has been applied
to interest rate and foreign exchange data. Deucker (1997) employs a simi-
lar model to investigate regime switching in US equity returns. Bauwens et
al (2006) present a Bayesian approach to estimating the symmetric Markov
Switching GARCH(1,1) model.
We employ a Markov switching EGARCH model, which, unlike the

SWARCH and MS-GARCH models, guarantees that ht is positive by con-
struction without the use of non-negativity constraints and captures asym-
metry in volatility. Ideally one would choose to estimate a model of the
type

rt = µit + εt (3)

εt ∼ N (0, hi,t)

log (hit) = ωi + αi

[∣∣∣∣∣
εt−1√
hi,t−1

∣∣∣∣∣
−
√
2/π

]

+ βi log (hi,t−1) + δi
εt−1√
hi,t−1

.

We allow for two states, i, indexed by an unobserved latent variable St which
takes the value of 0 or 1 depending on the state of the markets. Following
Hamilton (1989), St is assumed to follow a two-state Markov process with
a fixed transition probability matrix P , written as

P =

[
p00 1− p11

1− p00 p11

]
(4)
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where,

p00 = P (St = 0|St−1 = 0) (5)

1− p00 = P (St = 1|St−1 = 0)

p11 = P (St = 1|St−1 = 1)

1− p11 = P (St = 0|St−1 = 1)

Implicitly, St depends on past realisations of r and S only through St−1.
The transition probabilities are initially assumed to be constant and are
specified as:

p00 =
exp {θ0}

1 + exp {θ0}
and p11 =

exp {γ0}
1 + exp {γ0}

(6)

However, Cai (1994) and Hamilton and Susmel (1994) argue that MS-
GARCH models are intractable. They point out that maximum likelihood
estimation is impossible because the conditional variance depends on the
entire past history of the data in a MS-GARCH model.
Gray (1996) argues that it is possible to construct a measure of ht that

is not path dependant. Recall that ht = E
[
r2t |Ωt−1

]
− E [rt|Ωt−1]2 which

yields

ht = p
00
(
µ20t + h0t

)
+
(
1− p00

) (
µ21t + h1t

)
−
[
p00µ0t +

(
1− p00

)
µ1t
]2
. (7)

The measure of the conditional variance provided by (7) is conditional on
available information, but aggregated across regimes and provides a path
independent model of volatility. In (7) each conditional variance depends
on the regime alone, and not on the entire history of the process.
Using (7) in place of the lagged conditional variance in (3) yields

rt = µit + εt (8)

εt ∼ N (0, hi,t)

log (hit) = ωi + αi

[∣∣∣∣∣
εt − 1√
ht−1

∣∣∣∣∣
−
√
2/π

]

+ βi log (ht−1) + δi
εt − 1√
ht−1

ht = p00
(
µ20t + h0t

)
+
(
1− p00

) (
µ21t + h1t

)
−
[
p00µ0t +

(
1− p00

)
µ1t
]2
.

Satisfaction of the restriction |βi| < 1 for all regimes i, rules out the
possibility of explosive, or non-stationary volatility. The NIC for (8) may
be written

ht =






A0. exp
[
δ0+α0
σ εt−1

]
for εt−1 > 0

A0. exp
[
δ0−α0
σ εt−1

]
for εt−1 < 0

when St = 0

A1. exp
[
δ1+α1
σ εt−1

]
for εt−1 > 0

A1. exp
[
δ1−α1
σ εt−1

]
for εt−1 < 0

when St = 1

(9)

6



where Ai = σ2βi exp
[
ωi − αi

√
2/π

]
. Clearly, Ai, the vertical intercept of

the NIC will vary across regimes unless ω0 = ω1, α0 = α1 and β0 = β1. Sim-
ilarly, the degree of asymmetric response to news will be regime-dependent
unless δ0 = δ1.
Bae, Kim and Nelson (2007) estimate the regime switching threshold

GARCH model
ht = ωi + βht−1 + αε

2
t−1 + γξ

2
t−1 (10)

Where ξt = min {0, εt}, is a threshold term capturing the asymmetric re-
sponse of news to volatility. To ensure that ht is positive definite in (10) re-
quires non-negativity constraints on the parameter vector θ = {ω0, ω1, α, β, γ}.
To overcome the problem of path dependence, Bae et al (2007) only allow
for switching in ω and where γ̂ > 0 and β̂ > 0, a persistent and asymmetric
response to news. Essentially, the unconditional variance of return in regime
i in this approach is given by ωi/ (1− α− β − γ/2). However, neither the
persistence nor the asymmetry of the response of volatility to news are state
contingent by assumption. The NIC of (10) may be written as

ht =

{
Ai + αε2t−1

Ai + (α+ δ) ε2t−1

if εt−1 > 0
if εt−1 < 0

in regime i = 1, 2. (11)

where Ai = ωi + βσ2 for i = 1, 2. From (11) it is clear that the effect of
regime switching is to cause the vertical intercept of the News Impact Curve
of (10) to vary across regimes, but the shape of the NIC is constant across
regimes
The Markov switching EGARCH (8) can be estimated using quasi max-

imum likelihood techniques, see Hamilton (1989) and Gray (1995), inter

alia. To the best of the author’s knowledge, this is the first time a Markov
Switching Exponential GARCH model has been estimated. Furthermore un-
like existing Markov Switching GARCH models, the model proposed in this
paper has sufficient flexibility to capture regime dependence in the impact,
persistence and asymetric response to a shock.

3 Data Description

Weekly data over the period 2nd January 1980 to 29th August 2007 were
collected from Datastream. The equity returns were calculated as

rt = 100× log (It/It−1) (12)

where It represents the value of the total return index, which captures both
divided yields and capital gains. Also collected were interbank interest rates
for loans of one day, one week, one, three and six months, and one year in
maturity.3. Let xm,t−1 represent an interest rate differential from the London

3The datstream codes are TOTMKUK for the equity returns. The iterbank interest
rates collected were LDNIBON, LDNIB7D, LDNIB1M, LDNIB3M, LDNIB6M, LDNIB1Y
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Interbank Market. For loan maturity m = 1 day, xm,t = iLIBt,1 − iLIBt−1 ,
and the one day measure captures changes in the overnight rate on the
London Interbank market. For loans of greater than one day in maturity,
xm,t = i

LIB
t,m − iLIBt,1 , representing the spread over the interbank overnight

rate.
-Figure 1 about here-

Visual inspection of the returns data, plotted in Figure 1, suggests that
the returns are centered on E (rt) = 0. However, the volatility clustering
common in asset returns is also evident in Figure 1. Irrespective of the sign
of the return, large movements in rt tend to follow large movements, while
small movements tend to follow small movements. Such volatility cluster-
ing is a common motivation for the use of GARCH models as conditional
characterisations of asset returns.

-Table 1 about here-

Table 1 presents summary statistics for the returns, rit, and interest
rate differentials, xm,t. The evidence suggests that the data are non-normal
in distribution. Interestingly, the degree of skewness in the interest rate
differentials is monotonically increasing in m, while the kurtosis declines in
m. The data all appear stationary, with the null hypothesis of a unit root
of the Said and Dickey (1984) Augmented Dickey Fuller test being strongly
rejected for all the series. There is evidence of ARCH in all the series, with
the Engle (1982) LM test for the null of no ARCH of up to 10th order being
strongly rejected for all the data.

4 Results

4.1 The baseline models

Table 2 presents results associated with the estimation of various baseline
models of equity returns. The simplest model is a linear model of the type

ψ (L) rt = µ+ εt (13)

εt ∼ N
(
0, σ2

)

which we estimate by OLS.
In all cases considered below the autoregressive order, chosen using the

Akaike (1974) and Hannan-Quinn (1979) information criteria, was deter-
mined to be zero. The model predicts a weekly average return of 0.2673%,
which implies a nominal annual return of approximately 13.9%. However the
standard deviation of return is 2.14% per week on average. While the resid-
uals from (13) are free from serial correlation, there is very strong evidence
of neglected ARCH in the data.

-Table 2 about here-
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There is a large literature discussing regime switching in equity re-
turns.Turner, Startz and Nelson (1989), Deuker (1997), Lunde and Tim-
merman (2004), Bae, Kim and Nelson (2007) and Chen (2007) inter alia all
report evidence of regime switching in equity returns from various markets.
Many of these papers examine Markov-switching autoregressive models of
the type

ψ (L) rt = µi + εt (14)

εt ∼ N
(
0, σ2i

)

This model is a special case of the Hamilton (1989) approach and describes
the conditional distribution of rt as a mixture of normals, with mean µi and
variance σ2i in state i. Let St be a variable taking the value St = 0 when
returns are drawn from anN

(
µ0, σ

2
0

)
distribution. On the other hand St = 1

when the data are drawn from an N
(
µ1, σ

2
1

)
distribution. The unobserved

state variable St evolves according to (4) , (5) , and (6) above. When St = 0
the trend in prices is µ0, while when St = 1 the trend is µ1.
Quasi-maximum likelihood estimation results for the Markov switching

AR model are presented in Table 2. Regime 1 corresponds to a high-mean,
low-variance phase, while regime 2 corresponds to a low-mean, high-variance
state, similar to the Bull and Bear Market phases reported by Chen (2007)
inter alia. The estimated persistence for regime i is 1/

(
1− pii

)
for i = 0, 1.

The high-mean low-variance regime has an estimated persistence of 68.49
weeks, while the low mean high variance regime has an estimated persistence
of 9.56 weeks.
Does the Markov switching model provide a superior conditional charac-

terisation of the data to the random walk model of returns? Testing the null
of no switching in the data is a non-trivial task. Under such a null hypothesis
µ0 = µ1 and σ

2
0 = σ

2
1. However any test will have a non-standard distri-

bution since the transition probabilities are unidentified under the null, a
feature known as the Davies’ Problem (see Davies 1987). Furthermore there
are problems associated with the maximum likelihood estimator under these
restrictions since the derivative of the likelihood function with respect to µ0
and σ20 is identically equal to zero. Garcia and Perron (1996) present a
Likelihood Ratio test adopting the Davies (1987) upper bound approach.
Defining L0 as the value of the log-likelihood under the null and L1 as the
same measure under the alternative we obtain LR = 2 (L1 −L0). Assuming
that the likelihood ratio has a single peak, an upper bound for the signifi-
cance of LR is given as Pr

∣∣χ2D > LR
∣∣+2 (LR/2)D/2 exp (−LR/2) /Γ (D/2).

Note that there are D = 2 parameters appearing only under the alternative
and that Γ (.) represents the gamma function. Obviously the upper bound
is greater than Pr

∣∣χ2D > LR
∣∣, the usual marginal significance level associ-

ated with the LR test, in this case a χ2 (2) value of 5.99 assuming a 5%
level of confidence. Garcia (1998) obtains critical values for the long-swings
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model using Monte-Carlo simulation, with the 95% critical value of 10.89
for the model considered here. The likelihood ratio statistic for the null of
no switching is displayed as LR1 in Table 3. The statistic far exceeds the
χ2 (2) , Garcia and Perron (1996) and Garcia (1998) critical values. This
suggests that the Markov-Switching model may provide a superior condi-
tional characterisation of the data than the linear model of returns. Table 2
also presents the results of a Wald test of the null hypothesis of no switching
in the mean W1 and no switching in the variance,W2. Both these hypothe-
ses are rejected for the data at all usual levels of confidence. There was no
evidence of serial correlation in the standarised residuals of (14). However,
there is strong evidence of neglected ARCH in the standardised residuals.
Column 3 of table 2 reports quasi maximum likelihood estimates of the

EGARCH model (1). The standardised residuals of the model are free from
serial correlation and neglected ARCH. The model is stationary given that∣∣∣β̂
∣∣∣ < 0 and predicts an average weekly return of 0.2829% corresponding

to an annual return of 14.9% in nominal terms. Furthermore, given the
negative and significant estimate of δ, the EGARCH predicts an asymmetry
in variance. Figure 2 presents the news impact curve for the estimated
EGARCH model calculated using (2)

-Figure 2 about here-

The asymmetry in variance driven by δ̂ < 0, is clear in Figure 2. Neg-
ative shocks to return will, all else equal, produce higher levels of volatility
than positive shocks of equal magnitude. The linear and Markov-Switching
models are capable of capturing neither the the asymmetry in volatility, nor
the volatility clustering, inherent in the returns data.
The final column of table 2 reports the estimates of the Markov-Switching

EGARCH model described in (8) above. The estimates of θ0 and γ0 are
significant and imply that p00 = 0.9864 and p11 = 0.8151. The implied per-
sistence of the high-mean, low-variance regime is 73.53 weeks. On the other
hand, the low-mean, high variance regime is predicted to last 5.41 weeks on
average. In the high-mean, low variance regime, the average return is esti-
mated to be 0.3416% per week. In this regime, the estimate of the intercept
in the conditional variance equation, ω0, is insignificantly different from zero.
implying a relatively low level of unconditional volatility. Both α0, which
captures the arrival of news in period t, and β0 which captures persistence
in the conditional volatility are significant while δ0 is insignificantly different
from zero, although negative in sign. In the other regime the estimated re-
turn is −0.6561% per week. In regime 1 ω̂1 = 2.8868, which is 22.9 times the
magnitude of ω̂0. Clearly regime 1 corresponds to a low-mean, high-variance
regime. Interestingly, the magnitude of α̂1 > α̂0 implying that any news ar-
riving in regime 1 leads to relatively large increases in volatility as compared
to regime 0. However, as β̂1 is statistically insignificantly different from zero
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these shocks are not persistent. These results are somewhat similar to those
reported by Friedman and Laibson (1989) for a sample of post-World War 2
US equity returns. Using a modified ARCH model that allows for jumps to
divide their sample into ordinary and unusual price movements, Friedman
and Laibson (ibid.) find that the volatility of ordinary returns displays per-
sistence but that the volatilty associated with unusual or extraordinary price
movements does not persist. Finally as δ̂1 = −0.6351, and is significantly
different to zero for all usual levels of confidence, the market will react more
sharply to negative innovations to returns than positive innovations of equal
size.
The news impact curves for the MS-EGARCH model are displayed in

figure 3
-Figure 3 about here-

The news impact curve for regime 0 is presented in the upper panel of
figure 3. The degree of asymmetry in volatility is small, and the vertical
intercept of the NIC is at h0 = 8.90 approximately. Taken together this
implies that in regime 0, the unconditional level of volatility is relatively low,
but any news εt−1 �= 0 will lead to increased volatility because |α̂0| >

∣∣∣δ̂0
∣∣∣.

Consequently, in regime 0 the aphorism “no news is good news” appears to
hold some truth.
However, in regime 1, the market displays a markedly different response

to news. In the first case there is a significantly higher level of unconditional
volatility. The vertical intercept of the NIC for regime 1, displayed in the
lower panel of figure 3 is at h1 = 27.2, approximately. Given that α̂1 < 0
and δ̂1 < 0, the effect of a negative innovation εt−1 is to increase volatility

sharply in regime 1. However as |α̂1| <
∣∣∣δ̂1
∣∣∣, when εt−1 > 0 volatility will

decline. In the low mean-high variance regime bad news will tend to drive up
volatility sharply, while good news will tend to be associated with declining
volatility.
The upper and lower panels of figure 4 present the smoothed estimates

of p00for the MS-AR and MS-EGARCH models, respectively.

-Figure 4 about here-

There is a great deal of similarity in the estimated probabilities of the
high-mean, low variance regimes across the two models. The major differ-
ence between the two appears to arise in 1998 The MS-AR model suggests
that the probability of the low-mean high variance regime was almost 1,
while the EGARCH suggests that the maximum probability of this regime
was 0.4 approximately.
We compare the MS-EGARCH and EGARCH models using a LR test.

The LR statistic was 76.3824, which is significantly in excess of 11.07 the
the 95% χ2 (5) variate. This is, at best, indicative since tests of H0 : µ0 =
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µ1, ω0 = ω1, α0 = α1, β0 = β1, δ0 = δ1 in (8) will have a non-standard
distribution as the transition probabilities p00 and p11 are unidentified under
the null hypothesis. To address this issue we calculate an upper bound on
the χ2(5) statistic, which assumes that the likelihood ratio has a single
peak. The associated p-value is [0.0000] suggesting that the MS-EGARCH
provides a superior characterisation of the data to the EGARCH.

4.2 The Impact of Interbank Volatility: Constant Transition

Probabilities

Do events in the short term money markets impact upon equity returns?
The interest rate differential x1,t = iLIBt,1 − iLIBt−1 , captures changes in the
level of the yield curve for the London Interbank market. On the other
hand, xm,t = iLIBt,m − iLIBt,1 , for m = 7 days, and 1, 3 6 and 12 months,
captures changes in the slope of the yield curve at each maturity.
Consider the extended Markov Switching EGARCH model:

rt = µi + φixm,t−1 + εt; (15)

εt ∼ (0, hi,t) for i = 0, 1

log (hit) = ωi + αi

[∣∣∣∣∣
εt−1√
ht−1

∣∣∣∣∣
−
√
2/π

]

+ βi log (ht−1) + δi
εt−1√
ht−1

+ λixm,t−1

ht = p00
(
µ20t + h0t

)
+
(
1− p00

) (
µ21t + h1t

)
−
[
p00µ0t +

(
1− p00

)
µ1t
]2

p00 = Pr (St = 0) =
exp {θ0}

1 + exp {θ0}

p11 = Pr (St = 1) =
exp {γ0}

1 + exp {γ0}

Holding the transition probabilities constant, there are two channels through
which events in the interbank market may impact on the conditional dis-
tribution of equity returns. If the parameter estimates φ̂i are statistically
significantly different from zero then the m maturity interest rate differen-
tial impacts upon the conditional mean of the equity return. Consequently,
rejection of the null hypothesis H0 : φ1 = φ2 = 0 implies that xm,t−1 will
have some impact on the conditional mean of rt. Furthermore, rejection of
the hypothesis H0 : φ0 = φ1 implies the relationship between interest rate
differentials and equity returns varies across regimes.
Similarly, significance of λ̂i implies that the m maturity interest rate dif-

ferential is a statistically significant determinant of the conditional variance
of stock returns. Rejection of the null hypothesis H0 : λ1 = λ2 = 0 implies
that xm,t−1 will have some impact on the conditional variance of rt. Failure
to reject the restriction H0 : λ0 = λ1 would suggest that the relationship be-
tween the conditional variance of stock returns and interest rate differentials
in the money market rates exhibits regime dependence.
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Table 3 presents quasi maximum likelihood estimates, diagnostic statis-
tics and hypothesis test results for the extended MS-EGARCH model (15)

-Table 3 about here-

To briefly summarise the results, the overall behaviour across regimes
and across maturities is similar to that reported in table 2. The estimates
for regime 0 are consistent with a high-mean, low variance regime with per-
sistent and symmetric response in volatility to news, εt−1. Regime 2 how-
ever, is a low-mean, high variance regime in which the response of volatility
to news is asymmetric and lacks persistence.
Do events in the money market impact on the conditional mean of rt?

There is little evidence that φi is significant for any maturity considered.
The data fails to reject a Wald test of the null hypothesis H0 : φ0 = φ1,
labelled as, W2 for all maturities m. Similarly, there is no evidence that the
data reject the hypothesis H0 : φ0 = φ1 = 0. In short, there is no evidence
that events in the money market influence the conditional mean of rt in a
statistically significant fashion.
Turning to the conditional variance it is interesting to note that

∣∣∣λ̂1
∣∣∣ <

∣∣∣λ̂2
∣∣∣ for all maturities. For m > 1, λ̂1 > 0 and λ̂2 < 0. At the one week and

one month maturity, the null hypothesis H0 : λ0 = λ1 = 0, is rejected. This
implies that the one week and one month spread over the interbank rate
influence the conditional variance of rt in a statistically significant fashion.
Furthermore, the data fail to support the restriction H0 : λ0 = λ1 indicating
a regime specific response to xm,t = iLIBm,t − iLIB1,t for m =one week and
one month. There is strong evidence that the relationship between the
conditional volatility of rt and interest differentials in the interbank market
is state-contingent at shorter maturities. Furthermore a Wald test, W5 of
the restriction H0 : φ0 = φ1 = λ0 = λ1 = 0 is rejected for m = one week and
one month. The restriction is satisfied for all other maturities considered.

4.3 The Impact of Interbank Volatility, Time Varying Tran-

sition Probabilities

It is possible to relax the assumption of constant transition probabilities by
allowing the transition matrix P to depend on some variable xm,t−1, yielding
the time-varying transition matrix P (t)

P (t) =

[
p00t (xm,t−1) 1− p11t (xm,t−1)

1− p00t (xm,t−1) p11t (xm,t−1)

]
(16)

In this case pijt (xt−1) = P (St = j|St−1 = i, xm,t−1) . Movements across the
regimes are governed by the time varying probability matrix P (t). Any
fluctuations in xm,t will lead the probabilities of a switch in regime to vary

13



over time. By relaxing the assumption of fixed transition probabilities it is
possible to investigate whether events in the money market influence not
only the mean and variance of rt, but also the probabilities of a change in
regime.
Consider the unrestricted Markov Switching EGARCH model:

rt = µi + φixm,t−1 + εt (17)

εt ∼ (0, hi,t) for i = 0, 1

log (hit) = ωi + αi

[∣∣∣∣∣
εt−1√
ht−1

∣∣∣∣∣
−
√
2/π

]

+ βi log (ht−1) + δi
εt−1√
ht−1

+ λixm,t−1

ht = p00
(
µ20t + h0t

)
+
(
1− p00

) (
µ21t + h1t

)
−
[
p00µ0t +

(
1− p00

)
µ1t
]2

p00t = Pr (St = 0) =
exp {θ0 + θ1xm,t−1}

1 + exp {θ0 + θ1xm,t−1}

p11t = Pr (St = 1) =
exp {γ0 + γ1xm,t−1}

1 + exp {γ0 + γ1xm,t−1}

As before, significance of φi and/or λi indicates the conditional mean and/or
conditional variance of rt responds in a possibly state contingent fashion to
xm,t.
Consider the parameterisation of the state transition probabilities

p00t =
exp {θ0 + θ1xm,t−1}

1 + exp {θ0 + θ1xm,t−1}
and p11t =

exp {γ0 + γ1xm,t−1}
1 + exp {γ0 + γ1xm,t−1}

(18)

The use of the logistic functional form in (18) and (??) , which constrains
the transition probabilities into the interval (0, 1) was suggested by Filardo
(1994).
It follows that

∂p00t
∂xm,t−1

= θ1p
00
t

(
1− p00t

)
, and

∂p11t
∂xm,t−1

= γ1p
11
t

(
1− p11t

)
. (19)

The transition probabilities p00t and p11t are non-negative and bounded

between zero and unity in magnitude, implying that the signs of ∂p00t
∂xm,t−1

and
∂p11t

∂xm,t−1
are governed by the signs of θ̂1 and γ̂1. For θ̂1 > 0 a positive shock

to xm,t−1 implies that the equity returns are more likely to stay in regime 0.
Conversely, θ̂1 < 0 implies that a switch to the high volatility state is more
likely following a positive shock to xm,t−1.

-Table 4 about here-

Table 4 presents quasi maximum likelihood estimates, diagnostic sta-
tistics and hypothesis test results for the unrestricted Markov Switching
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EGARCH model (17) . Again, the results are consistent with 2 regimes in
rt, a high-mean, low-variance regime and a low-mean, high-variance regime.
In the case of the one week and one month maturities, there is evidence of
a statistically significant and regime dependent response of return volatility
to events in the money market.
At the 10% level of confidence, the null hypothesis of constant transition

probabilities, H0 : θ̂1 = γ̂1 = 0, is rejected for all maturities except the
1 month and 12 month maturities. This implies that there is statistically
significant evidence of time variation in the transition probabilities.
For the overnight maturity, θ̂1 > 0 and γ̂1 > 0, implying that the prob-

ability of staying in a particular regime is increasing in ∆x1t. For the one
week maturity θ̂1 > 0 implying that a positive shock to xm,t = iLIBm,t − iLIB1,t

increases the probability of staying in the high-mean low-variance regime,
while a narrowing of the differential increases the probability of a transition
across regimes. In the other regime as xm,t becomes increasingly positive,
the probability of staying in the low return, high variance regime falls as
γ̂1 < 0. Figures 5 and 6 plot the response of p00t and p11t to movements in
x1,t and x7,t.

-Figures 5 and 6 about here-

It is noticeable that the response of p00t to movements in x1,t and x7,t,
plotted in the upper panel of Figures 5 and 6, respectively is flat. A compar-
ison of the magnitudes of θ̂0 and θ̂1 suggests that the economic significance
of time variation in p00t is small.
Conversely, the lower panel of figures 5 and 6 suggests that as conditions

in the money market tighten, the probability of being in the low-mean, high-
variance regime declines. In figure 5 it is clear that when x1,t = ∆iLIB1,t > 0,
the probability of remaining in the low-return, high variance regime in-
creases. In other words, increases in short-term interest rates are associated
with a significantly higher probability of regime 1.
When xm,t < 0 then iLIBm,t < i

LIB
1,t , for m > 1 day. In other words, when

the interest rate spread is negative, then the money market yield curve is
inverted. The lower panel of figure 6 suggests that when xm,t < 0 the
probability of remaining in the low mean-high variance regime increases.
Inverted yield curves are usually a result of tight monetary policy and

therefore are a signal of poor prospects for short term growth. As the
yield curve inverts, the opportunity cost of investment increases, making
investment in equity less attractive. Morevover, a negatively sloped yield
curve will tend to render the use of short term borrowings to finance long-
term lending unprofitable, impacting heavily on the performance of maturity
transforming intermediaries.
Why are shorter maturity interest rate differentials so important? It

may be that firms seeking funding in the very short-term money market
do so because they are significantly liquidity constrained and are unable
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to access longer term funding. Such firms are very exposed to the risk
that short term funding will be unavailable at any point where refinancing
is necessary. When the yield curve is significantly inverted, firms which
are maturity transforming intermediaries, borrowing short-term in relatively
liquid markets and lending in long-term relatively illiquid securities, can
run into difficultly very rapidly. In short, a business may become insolvent
simply because it cannot access sufficient cash to finance its short term
activities and not because it is unviable in the medium to long term.

5 Summary and Conclusions

This paper considers the impact of volatility in the London interbank market
on equity returns using weekly data over the period January 1980 to August
2007.
The results suggest that equity returns display significant evidence of

regime switching, with strong evidence of two regimes in the data. Our pre-
ferred model for equity returns is a Markov Switching Exponential GARCH
model. One regime is consistent with a high mean low variance state,
within which volatility responds persistently but symmetrically to news.
This regime tends to be dominant and is estimated to persist for approxi-
mately 75 weeks on average. The other regime appears to be a low-mean,
high variance state within which the variance of returns respond asymmet-
rically to news. However, in this regime shocks to volatility display little
evidence of persistence. The estimated duration of this second regime is
approximately 6 weeks.
Extending the Markov-Switching EGARCH model to allow for the a

relationship between interest rate differentials and equity returns, we find
evidence that fluctuations in interest rate differentials at shorter maturities
play a significant role in determining both the volatility of returns and the
probability of a transition across regimes.
In the low-mean, high-volatility regime the impact of an increase in short

term interest rates or a steepening in the slope of an inverted money market
yield curve will exacerbate the volatility of returns. It is precisely when con-
ditions in the money market are tightest that firms who borrow in the short
term markets to finance long-term investment will be least profitable and
most exposed to the risk of being unable to obtain refinancing. Furthermore,
there is some evidence that the probability of being in the low mean-high
volatility regime increases as the short term interest rate increases and/or
the yield curve in the money market becomes inverted.
Failure to account for these features may lead to biased and misleading

inference in econometric models of asset prices. A more serious issue is the
potential mispricing of risk in the equity markets.
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Tables and Figures

Table 1: Data Description

rt 1 Day 1 Week 1 Month 3 Month 6 Month 12 Month
Mean 0.2672 -0.0067 0.3578 0.4417 0.4890 0.4748 0.5083
V ariance 4.5637 5.2700 3.1008 3.2896 3.4624 3.6774 4.0146
Sk -0.6601 -0.0203 -1.6313 -1.7009 -1.7431 -1.8255 -1.8994

[0.0000] [0.7198] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
EK 7.0938 12.1691 21.8400 17.6815 16.6209 16.3997 15.4502

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
J −B [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
ADF (µ) -20.5178 -23.4725 -6.6292 -6.5476 -6.4091 -6.1403 -5.4818
ARCH(10) 251.1796 40.8009 23.0073 28.2918 29.1388 27.9629 28.6623

[0.0000] [0.0000] [0.0107] [0.0016] [0.0016] [0.0018] [0.0014]

Notes to Table 1: Sk and EK are measures of skewness and excess kurtosis,

respectively. J −B is a Jarque- Bera test for normality of the standardised

residuals. ADF (µ) is an augmented Dickey-Fuller test where the test
regression includes an intercept. The critical values for the ADF test are

−3.4347, −2.8633 and −2.5678 for the 1%, 5% and 10% levels of con-

fidence, respectively. ARCH(10) is Engles (1982) LM test for up to 10th

order ARCH which is distributed as χ2(10) under the null of no ARCH .
Marginal significance levels displayed as [.].
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Table 2: The Baseline Models

Linear: rt = µ+ εt; εt ∼ N
(
0, σ2

)

MS-AR: rt = µi + εt; εt ∼
(
0, σ2i,

)

EGARCH: rt = µt + εt; εt ∼ N (0, ht)
log (ht) = ω + α

[∣∣∣∣
εt−1√
ht−1

∣∣∣∣−
√
2/π

]
+ β log (ht−1) + δ

εt−1√
ht−1

MS-EGARCH: rt = µi + εt; εt ∼ (0, hi,t) for i = 0, 1

log (hit) = ωi + αi

[∣∣∣∣
εt−1√
ht−1

∣∣∣∣−
√
2/π

]
+ βi log (ht−1) + δi

εt−1√
ht−1

ht = p
00
(
µ20t + h0t

)
+
(
1− p00

) (
µ21t + h1t

)
−
[
p00µ0t +

(
1− p00

)
µ1t
]2

Linear MS-AR EGARCH MS-EGARCH
µ0 0.2673 0.3517 0.2829 0.3416

(0.0562) (0.0503) (0.0502) (0.0499)
µ1 -0.3516 -0.6561

(0.3266) (0.3096)(
σ20
)
ω0 4.5605 2.8184 -0.0483 0.1313

(0.3615) (0.1323) (0.0256) (0.1017)(
σ21
)
ω1 16.8897 2.8868

(1.4199) (0.3444)
α0 0.1885 0.1841

(0.0281) (0.0636)
α1 -0.4876

(0.1769)
β0 0.9289 0.6775

(0.0134) (0.0796)
β1 0.1296

(0.1709)
δ0 -0.1118 -0.0336

(0.0164) (0.0362)
δ1 -0.6351

(0.1233)
θ0 4.2122 4.2804

(0.3512) (0.4077)
γ0 2.1471 1.4832

(0.3435) (0.4077)
p00 0.9854 0.9864
p11 0.8954 0.8151
L -3144.5390 -3015.4396 -3029.4947 -2991.3030

Notes to table 2: L is the value of the log likelihood function. Bollerslev-
Wooldridge standard errors displayed as (.)
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Table 2 continued: Diagnostic Statistics

Linear MS-AR EGARCH MS-EGARCH
Q (10) [0.0951] [0.2845] [0.7079] [0.6396]
Q2 (10) [0.0000] [0.0000] [0.8782] [0.8736]
J −B [0.0000] [0.0000] [0.0000] [0.0000]
LR1 258.1988 76.3834

{0.0000} {0.0000}
W1 4.4217 9.3868

[0.0355] [0.0022]
W2 100.2704 138.2059

[0.0000] [0.0000]

Notes to Table 2: Q (10) and Q2 (10) are Ljung-Box tests for serial corre-
lation in the standardised residuals and their corresponding squares, respec-

tively. Bollerslev-Wooldridge (1992) standard are errors displayed as (.) .
J − B is a Jarque- Bera test for normality of the standardised residuals.

LR1 is a likelihood ratio test of the null of no switching in the MS-AR
and MS-EGARCH models. Marginal significance levels calculated using the

Davies (1987) upper bound approach displayed as {.} . W1 is a Wald test of

the null hypothesis of constant mean H0 : µ0 = µ1, distributed as χ
2 (1).

W2 is a Wald test of null hypothesis of constant variance H0 : σ
2
0 = σ

2
1,

distributed as χ2 (1) for the MSAR and H0 : ω0 = ω1;α0 = α1;β0 =
β1; δ0 = δ1 distributed as χ

2 (4) for the MSEGARCH. Marginal signifi-
cance levels displayed as [.] .
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Table 3: Extended MS-EGARCH: Fixed Transition Probabilities

rt = µi + φixj,t−1 + εt; εt ∼ (0, hi,t) for i = 0, 1

log (hit) = ωi + αi

[∣∣∣∣∣
εt − 1√
ht−1

∣∣∣∣∣
−
√
2/π

]

+ βi log (ht−1) + δi
εt − 1√
ht−1

+ λixj,t−1

ht = p00
(
µ20t + h0t

)
+
(
1− p00

) (
µ21t + h1t

)
−
[
p00µ0t +

(
1− p00

)
µ1t
]2

p00 = Pr (St = 0) =
exp {θ0}

1 + exp {θ0}

p11 = Pr (St = 1) =
exp {γ0}

1 + exp {γ0}
x1,t = iLIB1,t − iLIB1,t−1, xm,t = i

LIB
m,t − iLIB1,t for m = 1 week, 1, 3, 6, and 12 months

xm,t 1 Day 1 Week 1 Month 3 Months 6 Months 12 Months

µ0 0.3179 0.2877 0.3191 0.3243 0.3327 0.3425
(0.0503) (0.0487) (0.0493) (0.0507) (0.0507) (0.0510)

µ1 -0.6780 -0.8131 -0.8083 -0.7022 -0.7411 -0.7694
(0.3737) (0.7451) (0.3302) (0.3322) (0.3074) (0.2898)

φ0 0.0289 -0.0033 -0.0071 -0.0238 -0.0343 -0.0437
(0.0213) (0.0230) (0.0221) (0.0226) (0.0223) (0.0219)

φ1 0.0279 -0.4390 -0.2704 -0.1052 -0.1513 -0.1535
(0.0097) (0.6013) (0.3058) (0.2830) (0.2903) (0.2739)

ω0 0.1499 -0.0028 0.0652 0.0924 0.1067 0.1230
(0.1049) (0.0577) (0.0816) (0.0999) (0.1030) (0.1058)

ω1 2.8898 3.7701 2.7282 2.8801 2.8834 2.8627
(0.3458) (0.5647) (0.3069) (0.3665) (0.3696) (0.3693)

α0 0.1777 0.1271 0.1275 0.1738 0.1731 0.1721
(0.0653) (0.0540) (0.0604) (0.0643) (0.0648) (0.0654)

α1 -0.4518 -0.1100 -0.4417 -0.4619 -0.4667 0.4758
(0.1823) (0.1886) (0.1793) (0.1765) (0.1787) (0.1867)

β0 0.6627 0.8466 0.7542 0.7037 0.6948 0.6849
(0.0831) (0.0447) (0.0640) (0.0789) (0.0807) (0.0820)

β1 0.1193 -0.4022 0.1494 0.1200 0.1230 0.1376
(0.1756) (0.3116) (0.1661) (0.1846) (0.1853) (0.1829)

δ0 -0.0372 —0.0731 -0.0223 -0.0300 —0.0272 -0.0268
(0.0369) (0.0296) (0.0347) (0.0367) (0.0367) (0.0369)

δ1 -0.6093 -0.2844 -0.6518 -0.6172 -0.6209 -0.6316
(0.1334) (0.1537) (0.1369) (0.1300) (0.0367) (0.1365)

λ0 0.0068 0.0454 0.0438 0.0234 0.0152 0.0071
(0.0202) (0.0147) (0.0167) (0.0178) (0.0166) (0.0151)

λ1 0.0252 -0.2371 -0.1202 -0.0322 -0.0498 -0.0622
(0.0813) (0.0639) (0.0776) (0.1157) (0.1112) (0.1075)
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Table 3: Continued

xm,t 1 Day 1 Week 1 Month 3 Months 6 Months 12 Months

θ0 4.2647 4.8641 4.3164 4.2143 4.2095 4.2158
(0.4047) (0.4516) (0.3744) (0.3940) (0.3906) (0.3932)

γ0 1.5076 1.1276 1.4657 1.3699 1.3706 1.3833
(0.4477) (0.5502) (0.4315) (0.4517) (0.4542) (0.4569)

p00 0.9861 0.9923 0.9868 0.9854 0.9854 0.9854
p11 0.8151 0.7554 0.8124 0.7974 0.7975 0.7995
Log L -2990.2509 -2985.9988 -2988.2984 -2989.7506 -2989.4639 -2988.7960

Diagnostic Statistics

Q (10)
Q2 (10)
J −B
W1

W2

W3

W4

W5

[0.6371]
[0.8554]
[0.0000]
0.0001
[0.9966]
1.8807
[0.3892]
0.0510
[0.8214]
0.1890
[0.9098]
2.4043
[0.6618]

[0.7764]
[0.9539]
[0.0000]
0.5266
[0.4680]
0.5431
[0.7622]
17.6509
[0.0000]
20.9255
[0.0000]
24.7776
[0.0001]

[0.7427]
[0.9399]
[0.0000]
0.7351
[0.3912]
0.8995
[0.6378]
3.8927
[0.0485]
7.7511
[0.0207]
12.5121
[0.0139]

[0.6855]
[0.8902]
[0.0000]
0.0811
[0.7758]
1.3315
[0.5139]
0.2013
[0.6466]
1.7341
[0.4202]
3.3160
[0.5064]

[0.6877]
[0.8847]
[0.0000]
0.1589
[0.6901]
2.8439
[0.2412]
0.3139
[0.5753]
0.9028
[0.6367]
4.1984
[0.3798]

[0.6719]
[0.8770]
[0.0000]
0.1567
[0.6922]
4.6503
[0.0978]
0.3848
[0.5350]
0.4597
[0.7947]
5.7261
[0.2206]

Notes to Table 3: L is the value of the log likelihood function. Bollerslev-
Wooldridge (1992) standard are errors displayed as (.) . Q (10) andQ2 (10)
are Ljung-Box tests for serial correlation in the standardised residuals and

their corresponding squares, respectively. J −B is a Jarque- Bera test for

normality of the standardised residuals. W1 is a Wald test of null constant

slope H0 : φ0 = φ1, distributed as χ
2 (1). W2 is a Wald test of zero

slopes H0 : φ0 = φ1 = 0, distributed as χ2 (2).W3 is a Wald test of null

constant slope H0 : λ0 = λ1, distributed as χ2 (1). W4 is a Wald test of

zero slopes H0 : λ0 = λ1 = 0, distributed as χ2 (2). W5 is a Wald test

for the exclusion of xj,t H0 : φ0 = φ1 = λ0 = λ1 = 0, distributed as
χ2 (4). Marginal significance levels are displayed as [.] .
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Table 4: Extended MS-EGARCH: Time Varying Transition Probabilities

rt = µi + φixj,t−1 + εt; εt ∼ (0, hi,t) for i = 0, 1

log (hit) = ωi + αi

[∣∣∣∣∣
εt − 1√
ht−1

∣∣∣∣∣
−
√
2/π

]

+ βi log (ht−1) + δi
εt − 1√
ht−1

+ λixj,t−1

ht = p00
(
µ20t + h0t

)
+
(
1− p00

) (
µ21t + h1t

)
−
[
p00µ0t +

(
1− p00

)
µ1t
]2

p00t = Pr (St = 0) =
exp {θ0 + θ1xj,t−1}

1 + exp {θ0 + θ1xj,t−1}

p11t = Pr (St = 1) =
exp {γ0 + γ1xj,t−1}

1 + exp {γ0 + γ1xj,t−1}
x1,t = iLIB1,t − iLIB1,t−1, xm,t = i

LIB
m,t − iLIB1,t for m = 1 week, 1, 3, 6, and 12 months

xm,t 1 Day 1 Week 1 Month 3 Month 6 Month 12 Month

µ0 0.3090 0.3109 0.3060 0.2973 0.3024 0.3086
(0.0498) (0.1954) (0.0494) (0.0506) (0.0506) (0.0501)

µ1 -0.3202 -0.6156 -0.6015 -0.0973 -0.1818 -0.3764
(0.4386) (0.1954) (0.5600) (0.4462) (0.5085) (0.7003)

φ0 0.0266 -0.0037 -0.0097 -0.0282 -0.0343 -0.0443
(0.0220) (0.0248) (0.0217) (0.0233) (0.0221) (0.0211)

φ1 0.0305 -0.0094 -0.2745 0.0379 -0.1268 -0.2029
(0.2743) (0.0212) (0.4830) (0.2981) (0.3902) (0.5156)

ω0 0.1141 0.0679 0.0049 0.0502 0.0186 0.0303
(0.0980) (0.0722) (0.0656) (0.0899) (0.0846) (0.0887)

ω1 3.0940 2.7134 3.1950 3.1472 3.3017 3.5449
(0.3517) (0.3410) (0.3971) (0.3857) (0.4320) (0.5556)

α0 0.1361 0.1982 0.0996 0.1028 0.1251 0.1619
(0.0678) (0.0625) (0.0559) (0.0719) (0.0680) (0.0645)

α1 -0.1729 -0.5531 -0.1084 -0.0805 -0.0931 -0.1445
(0.1525) (0.1389) (0.1757) (0.1635) (0.1671) (0.1760)

β0 0.7059 0.7290 0.8342 0.7622 0.7907 0.7764
(0.0800) (0.0555) (0.0514) (0.0714) (0.0644) (0.0691)

β1 -0.1142 0.2897 -0.2016 -0.1865 -0.2318 -0.2416
(0.1796) (0.1549) (0.2231) (0.2048) (0.2329) (0.3077)

δ0 -0.0593 -0.0363 -0.0562 -0.0855 -0.0749 -0.0731
(0.0375) (0.0362) (0.0319) (0.0390) (0.0371) (0.0351)

δ1 -0.3647 -0.6673 -0.3302 -0.2946 -0.2950 -0.3105
(0.1089) (0.1054) (0.1292) (0.1162) (0.1223) (0.0877)

λ0 0.0087 0.0283 0.0462 0.0195 0.0160 0.0112
(0.0210) (0.0180) (0.0169) (0.0215) (0.0182) (0.0162)

λ1 0.0958 0.3433 -0.2176 -0.0873 -0.1087 -0.0944
(0.0775) (0.0989) (0.0663) (0.0952) (0.0975) (0.1256)

25



Table 4: Continued

x1,t 1 Day 1 Week 1 Month 3 Month 6 Month 12 Month

θ0 4.3777 4.4594 4.6140 4.3132 4.3162 4.2566
(0.4138) (0.4387) (0.4402) (0.0215) (0.4474) (0.4303)

θ1 0.2287 0.1677 -0.2546 -0.6450 -0.3524 0.0427
(0.1050) (0.1129) (0.1862) (0.5178) (0.1587) (0.3103)

γ0 1.9286 1.4602 1.5723 1.6634 1.4054 0.9355
(0.5447) (0.5610) (0.5018) (0.4758) (0.5010) (0.5649)

γ1 0.5864 -0.8944 -0.6611 -0.4201 -0.6622 0.0102
(0.4960) (0.6087) (0.6324) (0.1584) (0.6199) (0.2098)

Log L -2987.0088 -2983.4394 -2985.5097 -2987.2720 -2987.5095 -2987.907

Diagnostic Statistics

Q (10)
Q2 (10)
J −B
W1

W2

W3

W4

W5

W6

[0.6402]
[0.9141]
[0.0000]
0.0002
[0.9899]
1.5114
[0.4697]
1.2714
[0.2595]
1.5842
[0.4529]
4.9129
[0.0857]
12.9864
[0.0433]

[0.7434]
[0.9129]
[0.0000]
0.0294
[0.8639]
0.2234
[0.8943]
9.4521
[0.0021]
15.9532
[0.0003]
4.9782
[0.0830]
21.9866
[0.0012]

[0.7513]
[0.9410]
[0.0000]
0.3009
[0.5833]
0.5051
[0.7768]
13.7728
[0.0002]
15.6997
[0.0004]
2.1257
[0.3455]
25.9946
[0.0002]

[0.6314]
[0.8966]
[0.0000]
0.0575
[0.8274]
1.4663
[0.4804]
1.0316
[0.3097]
1.2082
[0.5466]
7.0726
[0.0291]
14.6175
[0.0234]

[0.6928]
[0.8898]
[0.0000]
0.0552
[0.8141]
2.6521
[0.2655]
1.3894
[0.2385]
1.4830
[0.4764]
4.9694
[0.0834]
15.1692
[0.0190]

[0.7170]
[0.8836]
[0.0000]
0.0940
[0.7591]
4.7076
[0.0950]
0.6499
[0.4201]
0.8173
[0.6654]
0.0129
[0.9904]
7.0380
[0.3173]

Notes to Table 4: L is the value of the log likelihood function. Bollerslev-
Wooldridge (1992) standard errors are displayed as (.) . Q (10) andQ2 (10)
are Ljung-Box tests for serial correlation in the standardised residuals and
their corresponding squares, respectively. J −B is a Jarque- Bera test for
normality of the standardised residuals. W1 is a Wald test of null constant
slope H0 : φ0 = φ1, distributed as χ

2 (1). W2 is a Wald test of zero
slopes H0 : φ0 = φ1 = 0, distributed as χ2 (2).W3 is a Wald test of null
constant slope H0 : λ0 = λ1, distributed as χ

2 (1). W4 is a Wald test of
zero slopes H0 : λ0 = λ1 = 0, distributed as χ2 (2). W5 is a Wald test
of zero slopes H0 : θ1 = γ1 = 0, distributed as χ2 (2) . W6 is a Wald
test for the exclusion of xj,t H0 : φ0 = φ1 = λ0 = λ1 = θ1 = γ1 = 0,
distributed as χ2 (6). Marginal significance levels are displayed as [.] .

26



FTSE Total Return

02 January 1980 - 29 August 2007

1980 1983 1986 1989 1992 1995 1998 2001 2004 2007

-20

-15

-10

-5

0

5

10

15

Figure 1: The continuously compounded total returns data rt
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News Impact Curve: EGARCH
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Figure 2: News Impact Curve - Single Regime EGARCH
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News Impact Curve: MS-EGARCH
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News Impact Curve: MS-EGARCH
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Figure 3: News Impact Curve: Markov Switching EGARCH - Constant
Transition Probailities
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Smoothed Transition Probability: Regime 0
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Figure 4: Smoothed p00 constant transition probability models

30



 

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

-4 0 -3 0 -2 0 -1 0 0 1 0 2 0 3 0 4 0

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

-4 0 -3 0 -2 0 -1 0 0 1 0 2 0 3 0 4 0

Figure 5: p00 and x1t (upper panel), p11 and x1t (lower panel),
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Figure 6: p00 and x7t (upper panel), p11 and x7t (lower panel),
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