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EQUIVALENT CONDITIONS FOR IRREDUCIBILITY
OF DISCRETE TIME MARKOV CHAINS

CUONG LE VAN AND JOHN STACHURSKI

Abstract. We consider discrete time Markov chains on general

state space. It is shown that a certain property referred to here

as nondecomposability is equivalent to irreducibility, and that a

Markov chain with invariant distribution is irreducible if and only if

the invariant distribution is unique and assigns positive probability

to all absorbing sets.

1. Introduction

Let (S,S ) be any measurable space, let M be the finite signed mea-

sures on same, and let P be all µ ∈ M with µ ≥ 0 and µ(S) = 1.

Let P : S × S → [0, 1] be a Markov kernel on (S,S ). In other

words, x 7→ P (x,B) is S -measurable for all B ∈ S , and B 7→
P (x,B) is an element of P for all x ∈ S. For µ ∈ M define Pµ

by Pµ(B) :=
∫
P (x,B)µ(dx). Also P n+1(x,B) :=

∫
P (x, dy)P n(y,B),

with P 1 := P .

A π ∈ M satisfying Pπ = π is called P -invariant. A set B ∈ S is

called P -absorbing if it is nonempty and P (x,B) = 1 for all x ∈ B.

Let ψ ∈ P. We call P ψ-nondecomposable when every P -absorbing

set satisfies ψ(B) = 1. As usual, P is called ψ-irreducible if for every

x ∈ S and B ∈ S with ψ(B) > 0 we have
∑∞

n=1 P
n(x,B) > 0. Finally,

let us agree to call P irreducible if it is ψ-irreducible for some ψ ∈ P.

The notion of irreducibility is fundamental to the modern theory of

Markov chains (cf., e.g., Meyn and Tweedie, 1993). In this paper we

show that ψ-nondecomposability is equivalent to ψ-irreducibility. In

addition, we show that when a P -invariant distribution π exists, P is
1
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irreducible if and only if π is the only invariant distribution in P and

π(B) = 1 for every P -absorbing B ∈ S .

2. Results

The first result from which many of our conclusions follow is

Theorem 2.1. Let ψ ∈ P. The Markov kernel P is ψ-nondecomposable

if and only if it is ψ-irreducible.

In Theorem 2.1 necessity is well known and rather obvious, but suffi-

ciency is not. The proof is given in the next section.

Theorem 2.2. Let a P -invariant π ∈ P exist. The following state-

ments are all equivalent.

(i) P is irreducible.

(ii) P is ψ-nondecomposable for some ψ ∈ P.

(iii) P is π-nondecomposable.

(iv) π is unique, and P is π-nondecomposable.

(v) π is unique, and every P -absorbing set has positive π-measure.1

Proof. From Theorem 2.1 (i) and (ii) are equivalent. Evidently (iv)

implies (iii) implies (ii). Now suppose that (i) holds for ψ ∈ P.

We show that (iv) holds. By Meyn and Tweedie (1993, Theorem

10.4.9) π is unique, and also absolutely continuous with respect to

ψ. From the latter it follows that P is also π-irreducible, and hence

π-nondecomposable. Thus (iv) is established. Finally, (iv) implies (v)

is clear, and it remains only to show that (v) implies (iv). This is

established by the following lemma. �

Lemma 2.1. If π is the only P -invariant distribution in P and B is

P -absorbing, then π(B) > 0 implies π(B) = 1.

1In (iv) and (v), uniqueness means of course that there is no other P -invariant

measure in P.
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For completeness we give a direct proof of Theorem 2.2 in the appendix.

Some of the necessary lemmas are of independent interest.

3. Proofs

To begin we state and prove the following simple lemma.

Lemma 3.1. Let B ∈ S and define (Bn)∞n=1 by B1 := B and

Bn+1 := {x ∈ Bn : P (x,Bn) = 1}.

If B∞ := ∩∞n=1Bn is nonempty, then it is P -absorbing.

Proof. Let x ∈ B∞ and suppose that P (x,B∞) < 1. Then P (x,Bk) < 1

for some k, and hence x /∈ Bk+1. This contradicts x ∈ B∞. �

Proof of Theorem 2.1. It is easy to check that ψ-irreducibility implies

ψ-nondecomposability (Meyn and Tweedie, 1993, Proposition 4.2.3).

Regarding the converse, suppose instead that there is an x0 ∈ S and

A ∈ S with ψ(A) > 0 and P n(x0, A) = 0 for all n ∈ N. Let

B1 := S \ A, Bn+1 := {x ∈ Bn : P (x,Bn) = 1}.

As Bn ⊂ S \ A it can never be P -absorbing, for this would contradict

ψ-nondecomposability. Therefore Bn \Bn+1 is never empty.

Observe also that if x ∈ Bn\Bn+1, then by definition P (x,Bn) < 1 and

P (x,Bn−1) = 1. Hence P (x,Bn−1 \ Bn) > 0. Similarly, if x ∈ B1 \ B2,

then P (x,A) > 0.

We claim that P (x0, Bn) = 1 for all n ∈ N. Clearly this is true for n =

1. Now let it hold forBn. If P (x0, Bn+1) < 1, then P (x0, Bn\Bn+1) > 0,

in which case it can be deduced that

(1)

∫
Bn\Bn+1

P (x0, dx1)

∫
Bn−1\Bn

P (x1, dx2)

∫
Bn−2\Bn−1

P (x2, dx3)

. . .

∫
B2\B3

P (xn−2, dxn−1)

∫
B1\B2

P (xn−1, dxn)P (xn, A)
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must be strictly positive. But P n+1(x0, A) is not less than the term in

(1), leading to a contradition. Hence P (x0, Bn+1) = 1 as claimed.

Now B∞ := ∩∞n=1Bn must be nonempty, because P (x0, B∞) = 1 clearly

holds. Hence B∞ is P -absorbing (Lemma 3.1), which contradicts ψ-

nondecomposability. �

Proof of Lemma 2.1. Suppose instead that π(S\B) > 0. Define µ ∈ P

by µ(A) = π(A ∩B)/π(B). Since µ(B) = 1 we have

Pµ(A) =

∫
B

P (x,A)µ(dx).

Since B is P -absorbing,∫
B

P (x,A)µ(dx) =

∫
B

P (x,A ∩B)µ(dx).

∴ Pµ(A) =

∫
B

P (x,A ∩B)µ(dx) =
1

π(B)

∫
B

P (x,A ∩B)π(dx).

But in fact ∫
B

P (x,A ∩B)π(dx) =

∫
S

P (x,A ∩B)π(dx),

because

π(B) =

∫
B

P (x,B)π(dx) +

∫
S\B

P (x,B)π(dx)

= π(B) +

∫
S\B

P (x,B)π(dx).

∴ Pµ(A) =
π(A ∩B)

π(B)
= µ(A).

But then µ = π, because π is the only invariant distribution, and hence

0 = µ(S \B) = π(S \B) > 0. Contradiction. �

Appendix A

In the appendix we establish Theorem 2.2 directly. Some lemmas are

of independent interest.

Lemma A.1. If P is ψ-nondecomposable for some ψ ∈ P, then P has

at most one invariant distribution.



IRREDUCIBILITY 5

Proof. Suppose instead that π and π′ are invariant distributions. We

can take decompositions π = % + α and π′ = % + α′, where α and α′

are nontrivial, mutually singular and nonnegative (c.f., e.g., Stokey et

al., 1989, p. 195). Note that

(2) α− α′ = P (α− α′).

Let B and C be disjoint sets in S satisfy α(B) = α(S) > 0 and

α′(C) = α′(S) > 0, where existence is by the Hahn decomposition.

Claim A.1. IfA ⊂ B and α(A) = α(B), then α(A) =
∫

A
P (x,A)α(dx).

By (2), α(A) = Pα(A)−Pα′(A). Since Pα(A) ≤ α(A), it follows that

0 ≤ Pα′(A) = Pα(A)− α(A) = 0. Therefore Pα′(A) = 0, and hence

(3) α(A) = Pα(A) =

∫
P (x,A)α(dx) =

∫
A

P (x,A)α(dx).

Now let B1 := B and Bn+1 := {x ∈ Bn : P (x,Bn) = 1}.

Claim A.2. This construction yields a decreasing sequence (Bn)∞n=1

such that (a) α(Bn) = α(B); (b) α′(Bn) = 0; and (c) α(Bn) =∫
Bn
P (x,Bn)α(dx).

That (a)—(c) hold for n = 1 is trivial. Suppose now that they hold

for fixed n ∈ N, and consider n + 1. Clearly (b) must always hold,

and (a) implies (c) by Claim A.1. Regarding (a), we have α(Bn) =∫
Bn
P (x,Bn)α(dx) by (a) of the induction hypothesis and Claim A.1.

This implies (a) for Bn+1, since P (x,Bn) ≤ 1 and P (x,Bn) < 1 on

Bn \Bn+1, in which case Bn \Bn+1 must be α-null.

If we define B∞ := ∩∞n=1Bn, then B∞ is nonempty, because α(B∞) =

α(B) > 0. Hence B∞ is P -absorbing by Lemma 3.1. Also, α′(B∞) =

limn α
′(Bn) = 0.

After a similar construction using α′, we find a C∞ which is absorbing

and a subset of C. Since B∞ and C∞ are disjoint and absorbing no ψ

as in the statement of the lemma can exist. �
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Lemma A.2. Let π be P -invariant. If π(B) = 0 for some P -absorbing

set B, then P is not ψ-nondecomposable for any ψ ∈ P.

Proof. If B ∈ S and π(B) = 0, then

(4)

∫
S\B

P (x, S \B)π(dx) =

∫
P (x, S \B)π(dx) = π(S \B) = 1.

Now let D1 := S \B and Dn+1 := {x ∈ Dn : P (x,Dn) = 1}. We claim

that π(Dn) = 1 for all n. This is clear for D1. Suppose it is true for

Dn. If π(Dn \Dn+1) > 0, then

π(Dn) =

∫
Dn+1

P (x,Dn)π(dx) +

∫
Dn\Dn+1

P (x,Dn)π(dx)

< π(Dn+1) + π(Dn \Dn+1) = π(Dn).

Therefore π(Dn+1) = 1, and π(Dn) = 1 for all n as claimed.

Now let D∞ := ∩∞n=1Dn. Evidently D∞ is nonempty, and hence (by

Lemma 3.1) P -absorbing. Since B and D∞ are disjoint the statement

of the lemma immediately follows. �

We can now complete the proof of Theorem 2.2. In light of Theorem 2.1

and Lemma 2.1, the nontrivial component which remains to be proved

is that either of (i) or (ii) implies (iv). We show (ii) implies (iv). By

Lemma A.1, π is unique. Now let B be P -absorbing. By Lemma A.2,

π(B) > 0, whence, by Lemma 2.1, π(B) = 1. This proves (iv).
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