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Abstract

This paper considers the extent to which fluctuations in Australian

economic growth are affected by domestic and overseas economic

performance. We investigate the performance of a range of non-linear

models versus linear models, comparing the models using Bayes factors

and posterior odds ratios. The posterior odds ratios favour non-linear

specifications in which fluctuations in economic activity in the US affect

Australia’s economic performance. Our results suggest that an exogenous

negative shock will be more persistent, lead to greater output volatility, and

have a greater impact on growth, than a positive shock of equal magnitude.
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1. Introduction
Since the onset of the Asian economic crisis in July 1997, the conventional

wisdom has been that since Australia is a small country with a heavy reliance on

primary commodity exports, at least some of the impact of the recessions in most East

Asian countries must be transmitted to Australia. This perception is perhaps most

evident in the recent volatility of the Australian dollar exchange rate, which

depreciated by over 7 per cent (in nominal terms) against the $US between May 22

and June 10 1998. The $A later reached an all-time low of 55.5 US cents on August

27, 1998. A large part of the depreciation stemmed from lowered expectations of

Australia’s growth as the economies representing 60 per cent of its total export market

entered severe recessions.

Similarly, the idea that “when the United States sneezes, Australia catches

pneumonia” is not new. There have been at least three channels identified by which

fluctuations in U.S. markets might affect the Australian economy. Gruen and

Shuetrim (1994) document the existence of a long-run equilibrium relationship

between U.S. and Australian GDP growth rates. de Roos and Russell (1996) focus on

exports as a channel through which U.S. business cycle fluctuations may be

transmitted to Australia. These authors also identify a link between the share markets

of the United States and Australia, and that share market effects on investment may

serve to raise the correlation between the two countries’ business cycles. Brooks and

Henry (2000) show that a non-linear relationship exists between U.S. and Australian

equity markets. In particular, they show that Australian markets are more volatile

when the U.S. market is trending downwards.

This paper examines the impact of economic fluctuations on Australia, using

the nonlinear threshold regression approach. This framework allows for asymmetry in
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the effects of exogenous shocks, reflecting the possibility that economic contractions

are characterised by fundamentally different behaviour than expansions. We use

generalised impulse response functions to trace out the regime-dependent response to

positive and negative shocks of a given magnitude.

This paper has five sections. The following section describes the construction

of the data. Section three provides a brief overview of threshold regression models.

Section four discusses the results of the empirical investigation, while the final section

presents a brief summary and some concluding comments.

2. Coincident Indexes
A composite coincident index (or ‘coincident index’ for short) is used in

economic indicator analysis as a proxy for the current ‘state of aggregate economic

activity.’ Such an index is a combination of several time series that one would expect

to contain information about the current state of the economy. Examples of such

series include industrial production, employment and unemployment, real retail sales,

real household income, and real gross domestic product (GDP). Boehm and Summers

(1999) provide an overview of the use of coincident (and leading) indexes in

forecasting and analysing business cycles. Summers (1997a,b) uses composite

coincident indexes in a VAR model to assess the relative importance of international

and domestic business cycle fluctuations in Australia and New Zealand.

Several composite coincident indexes of economic activity exist for the United

States, including indexes constructed by the Conference Board, the Foundation for

International Business and Economic Research (FIBER) and the Economic Cycle

Research Institute (ECRI). The latter two institutes also produce indexes for several

other countries, including Japan. The coincident index for Australia is produced by

the Melbourne Institute. In this paper, we use the U.S. and Japanese indexes
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constructed by FIBER. The data are monthly and cover the period from March 1970

to May 1998.

3. Threshold Regressions
The two regime threshold regression model for a univariate time series ty  can

be written as

( ) ( ) ( ) ( )γγ εθεφ >≤ +′++′=
tt zttzttt xxy 11 21 (1)

where ty  is a scalar, tx  is a k ×1 vector (which includes a constant and may include

lagged values of ty  or the other regressors), tz  is a known function of the data and

( ).1  is an indicator function, taking the value 1 when the condition in parentheses is

met. The threshold parameter is γ. The k ×1 parameter vector φ  relates ty  to tx  when

γ≤tz while θ  applies in the other regime.

Heteroscedasticity across the regimes can be incorporated in (1) by

setting 2)var( iit σε = , i=1,2. This model reduces to a standard regression model when

2
2

2
1, σσθφ == . A special case of equation (1) is the self exciting threshold

autoregression (SETAR) in which ( )ptttt yyyx −−−= ,...,, 21 , the threshold variable

ltt yz −=  and l is the unknown delay lag. Henry, Olekalns and Summers (2000),

Caner and Hansen (1997), and Potter (1995), inter alia, provide examples of this

model.

Maximum likelihood estimation of the parameters, l and ,,,, 2
2

2
1 γσσθφ can

be achieved by minimising the residual variance via sequential conditional least

squares.1 Alternatively, Bayesian analysis in this context is particularly attractive

because numerous analytical results exist. Specifically, conditional on γ and tz , and

                                                
1 Hansen (1997) provides further details.
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with Normal-Inverted gamma priors on the regime coefficients, the posterior

distributions of these coefficients are also Normal-Inverted gamma2. The marginal

posteriors can be obtained by using a discrete uniform prior on the threshold

parameters. Geweke and Terui (1993) and Koop and Potter (1997, 1998) provide

further details.

In this paper, we estimate a version of (1) in which is an autoregression of

order p:

( ) ( ) ( ) ( )γγ εθµεφµ >−≤− +++++=
tt zttzttt yLyLy 1)(1)( 212111 (2)

here, ty  represents the current state of the Australian economy, measured by the

(logarithmic) growth rate of the coincident index of economic activity, or real GDP.

The lag operator polynomials ( ) ( )LL  and ϕ  are both of order p. This assumption

involves no loss of generality, since differing lag orders or non-consecutive lag

coefficients can be incorporated in (2) by allowing some elements of these

polynomials to be zero. We model the threshold variable, tz , as a function of the state

of the economy domestically or in either the United States or Japan, as measured by

the coincident index for each country. The value of tz  relative to the threshold, γ,

determines the regime governing the evolution of Australian activity. Put simply,

when zt lies above the threshold, Australian economic growth is in one regime, while

a value of zt below the threshold puts Australian growth into the other regime. The

characteristics of each regime are determined by the estimated parameters governing

that regime.

There are three points to note regarding the specification in (2). First, our

analysis uses the growth rates of the variables under study. Harding and Pagan (1998)

                                                
2 That is, the regression coefficients have a Normal distribution, while the variances have an inverted
gamma distribution.
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point out that inferences regarding the classical business cycle (i.e., fluctuations in the

level of economic activity) are properly made by examination of the growth rates of

economic activity. Second, notice that the only way in which US or Japanese

economic fluctuations can affect Australia in (2) is through the threshold effect. The

specification in (2) is the simplest possible departure from a linear AR(p) model

(except for a SETAR model). Alternative specifications could include lags of the US

or Japanese variables, as is done in Henry and Summers (1999b). We briefly explore a

specification of this type below. Third, given that the model is univariate, we do not

attempt to distinguish between domestic and external shocks (i.e., we do not attempt

to identify any particular source of disturbances, εt). Rather, we treat all shocks

simply as exogenous. 

We estimate several versions of (2), using the Bayesian approach of Koop and

Potter (1998). Besides varying the country represented by the threshold variable

(Australia, Japan or the US), we also study different forms of the threshold function.

For example, let ( )AU
t

AU
tt nCICIy −×= ln100  and ( )US

t
US
tt nCICIz −×= ln100  be the

growth rates of Australian and US Coincident Indexes, respectively. We use three

different specifications for the threshold variable: tz  itself (US growth), tz∆  (the

change in US growth over the past quarter), and ( ) lzz ltt /−−  (the average change in

US growth over the past l quarters). Note that the last two specifications are identical

in the case of l=1. We refer to these models as the current growth (G), change in

growth (CG), and average change (AC) models, respectively. We estimate both

hetero-and homoscedastic versions of these models, denoting the latter by appending

an ‘H’ to the model abbreviation (so CGH is the homoscedastic change in growth

model).
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Bayes Factors and Priors

A major advantage of the Bayesian approach used in this paper is that

competing models (even non-nested ones) can easily be compared using Bayes

factors. Given a data set D, the Bayes factor (BF) for comparing two models A and B

is computed as:

( )
( )BDpr

ADpr
BF

|

|= (3)

which is the ratio of the marginal probability of the data under model A to its marginal

probability under model B. Another way of writing the Bayes factor is in terms of the

prior and posterior odds ratios of the two models:

( )
( ) )(/|

)(/|

BprDBpr

AprDApr
BF = (4)

In this expression, the prior odds in favour of model A are given by pr(A)/pr(B). In the

case of both models being equally likely a priori, the Bayes factor is just the posterior

odds in favour of model A. Kass and Raftery (1995) provide a general discussion of

Bayes factors, while Koop and Potter (1998) present an application similar to the one

in this paper.

Note that quantities such as ( )ADpr |  in (3) require the integration of the

posterior distribution of  model A’s parameters over the relevant parameter space.

These integrals are intractable in most cases, and must be computed numerically or by

Monte Carlo methods. In the present case however, analytical results for the Bayes

factors exist, which simplifies the computations considerably. See Koop and Potter

(1997, 1998) for details.

The prior distributions we use are proper (i.e., they integrate to one), but are

designed to be diffuse relative to the likelihood function. The need for proper priors in

model comparisons of this kind is explained in Koop and Potter (1998), and is due to
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the fact that the Bayes factors have an inherent bias towards the more parsimonious

linear models. A completely non-informative prior drives this bias to its extreme; all

posterior probability will be allocated to the linear model.

Our priors are very similar to those used by Koop and Potter (1998).

Specifically, we use Normal priors on all the regression coefficients (i.e., the elements

of ( ) ( )LL θφ  and in (2)). All of these distributions have mean zero. Since the model is

in growth rates, this prior is centred on a random walk representation for the (log)

level of the Australian coincident index. The prior variances for these coefficients are

unity for the first lag, 0.8 for the second, 0.64 for the third, and so on. The prior on the

constant term is ( )4,0N .

The prior on the regime-specific variances 2
iσ  is inverted-gamma with mean 1

and 3 degrees of freedom. This value for the degrees of freedom parameter is the

lowest (i.e., most diffuse) which ensures the existence of the first two moments of the

posterior distributions of the regime coefficients. The mean and standard deviation of

the monthly (logarithmic) growth rates in the Australian coincident index over our

sample period are 0.238 and 0.739 per cent, respectively. This suggests that our priors

are reasonable.

The prior for the threshold variable is flat (i.e., uniform) over the observed

range of the data, while the delay lag prior is also uniform, from 1 to the lag length

estimated for each model.3

4. Empirical Results
In the first stage of our analysis, we estimated (2) allowing for up to twelve

lags, giving a total of 252 models for the Australian coincident index (six nonlinear

                                                
3 Although the threshold variable is in principle continuous, in practice it is discrete (i.e., we only
observe a discrete subset of values for Australian economic growth). Koop and Potter (1998) explain
the effect of this on the computation of the marginal likelihoods and Bayes factors.
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TAR(p) models plus the linear AR(p)  for p=1,...,12, with thresholds in the US,

Japanese or Australian coincident index). The posterior probabilities of the various

models are shown in tables 1. In addition to reporting the posterior probability for a

particular model, the entries in each column can be added to give the marginal

probability of each model across all lag lengths. This probability is shown in the row

labelled “Marginal.” The evidence in favour of the linear AR model can be assessed

by comparing the sum of the first six columns (i.e., integrating over the various

nonlinear models and lag lengths) with the sum of the last column (integrating over

lag lengths for the linear model). Since none of the models has a higher a priori

likelihood than any other, the Bayes factor for one model relative to another is

obtained simply by computing the ratio of the respective posterior probabilities.

Table 1 shows the posterior probabilities for the various models in turn. Panel

A displays the results when the Japanese coincident index is the threshold variable,

Panel B reports the results with the US coincident index in that role, and Panel C

presents the results from the SETAR model. There is a good deal of evidence that

fluctuations in the Japanese economy have a nonlinear effect on the Australian

economy. Over one third of the posterior probability is assigned to one nonlinear

model, the homoscedastic average change (AH) model with 2 lags. The

heteroscedastic version of this model receives a further 9 per cent probability, for a

total of 45.7 per cent probability allocated to the 2-lag average change model. The

linear model with the highest probability is an AR(3), which receives about 11 per

cent posterior probability. Overall, the posterior odds in favour of a nonlinear model

are 2.24 to one (69.2 per cent to 30.8 per cent). If we concentrate on the models with

the highest probability in each class (linear vs. nonlinear), the odds are 3.39 in favour

of the AH(2) relative to the AR(3) .
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The evidence for a nonlinear influence of the US on Australia is much

stronger. Panel B of Table 1 shows that over 99 per cent posterior probability is

allocated to the two versions of the G model, in which the threshold variable is lagged

US economic growth. No linear model receives as much as 0.1 per cent probability,

and the odds in favour of a nonlinear model are 587 to one. Panel C shows that the

SETAR model is not supported by the data. Linear models attract 92% posterior

probability, with the AR(3) model being the most likely.

In Table 2 we compare across the various models. In addition  to the various

threshold and univariate AR models discussed previously, we also present results

from a linear model which includes lags of both the US and Japanese coincident

indexes. We refer to this as the ‘VAR model’ as it represents the ‘Australia equation’

from a three-variable vector autoregression. When the threshold is set in the growth

rate of the US coincident index almost all the posterior probability (99.48%) is

allocated to the 2 lag model and its homoscedastic counterpart. The remaining

probability is spread across various models in the Japanese coincident index and the

linear models. In particular, notice that the ‘VAR’ model, allowing lags of the US and

Japanese coincident indexes to affect Australian growth directly, receives virtually no

posterior support.

 Based upon the results in Tables 1 and 2 we consider the two lag model with

the threshold set by the growth of the US economy to be (overwhelmingly) the most

likely out of the set of models considered.

Parameter estimates for the A(2) model are presented in table 3. In addition to

the posterior mean and standard deviation of each parameter we present the maximum

likelihood estimate of the parameter and the associated asymptotic standard error.

When we evaluate the growth rates across regimes based on the posterior mean
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estimates, a clear asymmetry emerges. When growth in the US economy is below the

threshold (-0.1247 per cent per month), the Australian economy contracts, on average,

by 0.6031 per cent per month. On the other hand, when US growth is above the

threshold, the estimated expansion in the Australian economy is 0.3892 per cent per

month.4 Furthermore, the contractionary regime displays relatively higher volatility

than the expansionary regime, as is clear from the estimates of the regime-specific

residual variances. Thus, not only does ‘Australia catch a cold when the US sneezes,’

uncertainty about the health of the Australian economy increases following a negative

shock. However, notice that a contraction in the US coincident index is not sufficient

to cause Australia to enter the low-growth, high-variance regime; the contraction in

the US economy must exceed the threshold for this to occur. To continue the analogy,

a ‘mere sniffle’ in the US may not be contagious.

In a non-linear model the impulse responses will depend upon the initial

condition, the magnitude of the shock and the sign of the shock (see Koop, Pesaran

and Potter, 1996). Table 4 presents generalised impulse responses (GIRFS) to positive

and negative shocks of magnitude 2. The asymmetric response to shocks is clear, with

negative shocks taking much longer to die out than positive shocks in all three cases.

That is, irrespective of the economy’s initial conditions, the effects of a negative

shock will be more persistent than those of a  positive shock of equal size.

5. Summary and Conclusions
This paper has examined the extent to which domestic and overseas economic

fluctuations may have non-linear effects on the growth rate of the Australian

economy. Using Bayesian methods, we compare models in which Australian

economic growth is influenced by purely domestic factors, or by economic

                                                
4 At the maximum likelihood estimates, the growth rates are –0.137 and 0.2067 in regimes 1 and 2,
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fluctuations in Japan or the United States. There is considerable evidence that

fluctuations in the American economy have a nonlinear effect on Australia. The

rejection of the linear model in favour of the non-linear model in US growth has

important implications. The analysis casts a new light on the Gruen and Sheutrim

(1994) result, and while our analogy to contagion between the US and Australia

appears valid, the evidence suggests that the dynamics of this interrelation are highly

non-linear. In particular the effects of a positive and negative shock are markedly

different for Australian growth. The impulse response to a negative shock is larger

than to a positive shock of equal magnitude. Hence when “when the U.S. sneezes,

Australia catches pneumonia” may only be part of the story. News that the US has not

sneezed does not imply that Australia is necessarily healthy.

Our analysis was largely a model comparison exercise. The results of the

empirical work raise many questions. Our results provide strong evidence in favour of

the non-linear model as a characterisation of the data generating process underlying

Australian growth. Pagan (1997) and Harding and Pagan (1999) raise concerns about

the ability of univariate non-linear models to reproduce certain key features of the

data. While we are mindful of these concerns, it seems clear that a strictly linear

model is an inappropriate specification. Furthermore, in addition to the fact that our

simple non-linear specification fits the data better than a linear model, our approach

allows external economic fluctuations to have a direct influence on Australia’s

economy.

We have presented some evidence that the non-linear model continues to be

overwhelmingly preferred over the ‘Australian equation’ in a three-variable VAR.

This lack of support for the ‘VAR model’ is surprising. We believe further work on

                                                                                                                                           
respectively. The corresponding variances are 0.4595 and 0.4408.
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such models, using systems-based versions of the methods presented here, is needed

in order to determine the reasons for the relatively poor performance of standard

VARs.

The overwhelming evidence in this paper suggests that the mechanism which

propagates business cycle shocks to Australia is non-linear. Large negative shocks (ie,

those which occur when US growth is below the threshold) are more persistent, lead

to greater uncertainty, and have a greater impact on Australia’s growth rate than

positive shocks of an equal magnitude.
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Table 1: Posterior Model Probabilities, by Model
Panel A. Threshold in Japanese Coincident Index

Lags G GH M MH A AH AR
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0098 0.0403 4.6578 18.2393 9.3157 36.4786 6.1871
3 0.0169 0.0278 0.0053 0.0074 0.0080 0.0112 10.7684
4 0.0204 0.0906 0.0058 0.0112 0.0077 0.0150 4.7634
5 0.0006 0.0028 0.0027 0.0095 0.0033 0.0119 5.8652
6 0.0001 0.0002 0.0118 0.0165 0.0142 0.0198 2.6370
7 0.0151 0.0384 0.0005 0.0016 0.0006 0.0018 0.4674
8 0.0000 0.0001 0.0012 0.0002 0.0013 0.0002 0.0852
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0490
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0170
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0047
12 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0320
Marginal 0.0629 0.2003 4.6851 18.2859 9.3509 36.5386 30.8764

Panel B. Threshold in US Coincident Index
Lags G GH M MH A AH AR
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 29.1249 70.6456 0.0001 0.0001 0.0000 0.0001 0.0343
3 0.0243 0.0234 0.0000 0.0003 0.0001 0.0004 0.0597
4 0.0009 0.0019 0.0000 0.0000 0.0000 0.0000 0.0264
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0325
6 0.0001 0.0001 0.0000 0.0023 0.0000 0.0000 0.0146
7 0.0000 0.0000 0.0006 0.0000 0.0007 0.0027 0.0026
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Marginal 29.1502 70.6711 0.0007 0.0027 0.0008 0.0032 0.1712

Panel C. Threshold in AUS Coincident Index (SETAR)
Lags G GH M MH A AH AR
1 0.0002 0.0000 0.0007 0.0027 0.0000 0.0000 0.0000
2 2.1895 1.4943 0.5233 0.7336 0.3048 1.0113 27.9538
3 0.1634 0.4271 0.0421 0.2026 0.0291 0.1344 39.2646
4 0.0015 0.0016 0.0023 0.0106 0.0087 0.0389 12.5014
5 0.0023 0.0036 0.0007 0.0030 0.0024 0.0047 10.0440
6 0.0001 0.0002 0.0000 0.0001 0.0009 0.0038 2.6253
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.2402
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0203
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0051
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
Marginal 2.3569 1.9268 0.5691 0.9525 0.3458 1.1931 92.6557
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Table 2: Posterior Model Probabilities- All Models
Panel A. Threshold in Japanese Coincident Index

Lags G GH M MH A AH
1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.03 0.10 0.05 0.20
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7-12 0.00 0.00 0.00 0.00 0.00 0.00

Panel B. Threshold in US Coincident Index
Lags G GH M MH A AH
1 0.00 0.00 0.00 0.00 0.00 0.00
2 29.11 70.60 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7-12 0.00 0.00 0.00 0.00 0.00 0.00

Panel C. Threshold in AUS Coincident Index (SETAR) Linear Models
Lags G GH M MH A AH AR VAR
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04
3 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
7-12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 3. Parameter estimates, Threshold in US Coincident Index
Parameter Posterior Mean Posterior SD MLE Asymptotic SE

µ1 -0.1892 0.0848 -0.0470 0.1004
φ1 0.2522 0.1041 0.1061 0.1201
φ2 0.4341 0.1111 0.5509 0.1152
σ1 0.4937 0.0565 0.4595 --
µ2 0.2789 0.0481 0.1322 0.0737
θ1 0.0553 0.0603 0.1611 0.0932
θ2 0.2281 0.0587 0.2444 0.0916
σ2 0.3942 0.0251 0.4408 --
γ -0.1247 -- -0.1037 --

Table 4. Generalised Impulse Response Functions, Threshold in US Coincident
Index

History Fast Increase Fast Decrease No Change
Horizon/Shock +2 -2 +2 -2 +2 -2

0 1.3465 -1.3465 1.3148 -1.3148 1.3269 -1.3269
1 0.1371 -0.4423 0.1723 -0.3991 0.1801 -0.4208
2 0.4558 -0.5878 0.5013 -0.5846 0.4851 -0.5898
3 0.1387 -0.3212 0.1728 -0.3045 0.1668 -0.3189
4 0.1998 -0.3058 0.2352 -0.3041 0.2194 -0.3091
5 0.1019 -0.2069 0.1261 -0.2013 0.1138 -0.2075
6 0.1029 -0.1776 0.1275 -0.1765 0.1150 -0.1801


