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Abstract: The use of bounded rationality in explaining economic phenomena

has attracted growing attention. In spite of this, there is still considerable disagree-

ment regarding the meaning of bounded rationality. Basov (2005) argues that when

modeling boundedly rational behaviour it is desirable to start with an explicit for-

mulation of the learning process. A complete understanding of the boundedly ratio-

nal decision-making process requires development of an evolutionary-dynamic model

which can give rise to such learning processes. Evolutionary dynamics implies that
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individuals use heuristics to adjust their choices in light of past experiences, moving

in the direction that appears most beneficial, where these adjustment rules are as-

sumed ‘hardwired’ into human cognition through the process of biological evolution.

In this paper we elaborate on the latter point by building a model of evolutionary

selection relevant to heuristics. We show that in addition to explaining the origin

of learning rules this approach also sheds light on some well documented preference

anomalies.

Keywords: Bounded Rationality, Heuristics, Replicator Dynamics

JEL Classification: C0, D7

1 Introduction

Recently there has been a growing acceptance of the use of bounded rationality

models in explaining economic phenomena. For example Offerman, Schram and

Sonnemans (1998) use a model of quantal response equilibrium to explain step-by-

step provision of public goods, while Anderson, Goeree and Holt (1998, 2001) use

similar models to explain behaviour in all-pay auctions and coordination games. On

the subject of social learning Kandori, Mailath and Rob (1993) and Young (1993) use

dynamic models based on gradual adjustment to explain the evolution of conventions.

Despite this growing reliance on models of boundedly rational behaviour there

is still considerable disagreement regarding the precise meaning of the term. Most

applied papers model bounded rationality as probabilistic choice using Luce’s (1959)

model and its extensions. Basov (2005) criticised this approach and argued that

when modeling boundedly rational behaviour it is desirable to start with an explicit

2



formulation of the learning process. This, however, leaves open the question: What

determines the learning rule? A complete model of bounded rationality should

endogenise the entire decision-making process. Basov (2006) suggests using the

evolutionary-dynamic approach which states that individuals adjust their choices in

light of past experiences and move in the direction that appears most beneficial.

This approach therefore assumes that the adjustment rules are themselves hardwired

into us through the process of biological evolution. In this paper we focus on the

latter point by building a model of evolutionary selection of heuristics that gives rise

to adjustment rules. In doing so we demonstrate that in addition to explaining the

origin of such rules this approach also sheds light on some well documented preference

anomalies.

The literature documenting preference anomalies has grown considerably over the

last 30 years. We focus briefly on literature relevant to (i) the endowment effect

and (ii) behaviour in public good games. For a broad collection and discussion of

behavioural anomalies see Thaler (1992).

The commonly observed endowment effect, a pattern of behaviour first formalised

by Thaler (1980), is the tendency for individuals to value a commodity (a good, a bun-

dle of goods or a bundle of lotteries) that they own more than an identical commodity

they could obtain through a transaction. The endowment effect is one of several sug-

gested explanations behind the observed disparity between individuals’ ‘willingness

to pay’ (WTP) and ‘willingness to accept’ (WTA) measures of value (see Knetsch &

Sinden, 1984). This anomaly is most prevalent in contingent valuation settings, with

the robust result being that an individual’s stated WTA is frequently considerably

higher than their WTP for a commodity of identical value. For a comprehensive

3



collection of empirical findings and associated discussion see Bateman, Kahneman,

Rhodes, Starmer and Sugden (2005), and Horowitz and McConnell (2002).

It is theoretically expected that the WTA and WTP measures of value be al-

most equivalent (barring unrealistically large income effects). Despite controlling

for a range of possible causes including income effects (Brookshire & Coursey, 1987);

learning effects (Coursey, Hovis & Schulze, 1987); the effect of incentives (Kahne-

man, Knetsch & Thaler, 1990); and the use of Vickery auctions (Coursey et al, 1987),

amongst others, the observed disparity persists.

Another persistent pattern of anomalous behaviour is observed in public good

experiments. In such experiments a group of k people are endowed with s dollars

each. They can contribute any amount between 0 and s into a common pool, the

sum total of which is then multiplied by some factor n < k and distributed equally

among all participants. It is clear that the dominant strategy is to contribute nothing

while an efficient outcome involves contributing everything. Subjects tend to invest

40 − 60% of their endowment in the common pool. If subjects play this game

repeatedly the contribution rates tend to fall but nevertheless remain positive. For

a detailed review of such experiments see Thaler (1992).

This paper is organised as follows: In Section 2 we provide some examples of

simple rule-based heuristics, while Section 3 demonstrates how two such heuristics

can explain several behavioural anomalies. In Section 4 we describe a general model

of heuristic evolution, while in Section 5 we assume environmental complexity changes

but at a rate slower than the characteristic time scale of heuristic evolution, leading

to the emergence of more sophisticated agents. Section 6 concludes with a summary

of results and a focus for further research.

4



2 Simple Heuristics

Our contention is that explaining certain behavioural anomalies is possible pro-

vided the idea of case-by-case optimisation is relaxed and instead one assumes that

individuals use simple rules of thumb, or heuristics, which are hardwired into our

instinctive cognition through the process of biological evolution. To clarify what is

meant by simple heuristics we provide the following examples:

Caution Heuristic Stick with the status quo when faced with a risky or unfa-

miliar decision, irrespective of the expected outcome of the risky proposition. For

example, if someone offers to exchange your car for a much better looking example

for a modest sum (say only $100) you might instinctively decline the offer and act

cautiously.

Recognition Heuristic Start with ordering the alternatives and choose the first

alternative you recognise. For example, assume an investor orders stocks in some

random manner (i.e. alphabetically or by company announcements) and invests in

the first stock they recognise.1 The probability an investor will invest in asset i

is determined by the ordering selected and by previous experience. If profitable

firms advertise more than less profitable ones, and the ordering is random, then the

probability of investment in a given stock will be increasing in its returns. Conversely,

if larger firms advertise more than smaller ones then the probability of investing in

a given stock will be increasing in the size of the firm and not necessarily in the

return on its stock.2 One can demonstrate that a portfolio constructed according

to this principle can perform quite well (Gigerenzer & Selten, 2001). Moreover, this

1The recognition heuristics is thoroughly discussed by Gigerenzer and Selten (2001).
2We use the recognition heuristic purely as an illustrative example and so ignore the possibility

of strategic interaction by firms in this environment.
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heuristic is shown to have evolutionary roots, in that rats tend to select foods the

smell of which they recognise over foods which they don’t, presumably to minimise

the chance of being poisoned (Gigerenzer & Selten, 2001).

Select the Best Assume that each individual is endowed with a set of ‘keys’,

ordered in accordance to their ecological validity.3 In the previous stock market

example, assume that an investor is endowed with two keys: (i) whether the company

name appears in the Fortune 500 and (ii) whether their friend invested in the stock

of the same company.4 Given the Fortune 500’s construction as the 500 largest

American corporations, our individual will abandon their first key in favour of their

second key assuming more than one company is listed. Relying on the second key

implies the investor consults a friend regarding their investment. If the friend invested

in a Fortune 500 company our individual does the same, if not they randomly choose

one of the 500 companies identified using their first key. As in the previous example

this process will lead to some probability distribution over the investment in various

stocks.

Note that the first three heuristics are static and can be used to explain initial

behaviour. The following two heuristics are dynamic and can be used to explain

behaviour across repetition.5

Tit-for-Tat Suppose you are confronted with a situation where repeated coop-

eration with another individual is required to achieve a common goal and where

cooperation is personally costly (thus refusing to do so is privately optimal). In

such cases you would find yourself in a standard prisoner’s dilemma situation. The

3Ecological validity of a key is the fraction of the correct decisions made based on the value of
the key.

4For simplicity assume the friend invests solely in one company.
5Thus these heuristics can give rise to social learning.
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tit-for-tat strategy calls for cooperation in period one and in subsequent periods if,

and only if, your partner cooperates in each period before you.

Generalised Tit-for-Tat Suppose you are confronted with a situation resembling

a standard public good game (i.e. being asked to contribute to a common pool from

which all players will receive an even share). The generalised tit-for-tat strategy

calls for starting with a high contribution and increasing (decreasing) contributions

in subsequent periods provided your contribution is below (above) the mean group

contribution.

A commonality amongst the above mentioned heuristics is their optimality in

very specific cases. For example, the behaviour suggested by the Caution Heuristic

is justified provided there is a high chance of a ‘lemon offer’ and information asymme-

tries are present, while Tit-for-Tat is the Nash equilibrium strategy in an infinitely

repeated prisoner’s dilemma provided players have sufficient patience. The central

idea behind the heuristic approach is that once behaviour specified by a heuristic

becomes hardwired into cognition, individuals follow such rules in all situations, even

when such a strategy leads to sub-optimal payoffs. In other words, the heuristic

approach does not assume individuals possess any form of ‘cognitive override’ which

might correct such erroneous behaviour. If we evolved in a world where the chance

of receiving a lemon trade is high we will continue to decline risky proposals, even in

situations where the chance of getting a lemon trade is negligible, due to pessimism or

having ‘learnt the hard way’. If Tit-for-Tat (or indeed Generalised Tit-for-Tat) is a

good strategy in some social interactions, we may continue to follow such a strategy in

other games with different structures, possibly relying on an obsolete or sub-optimal

rule.
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Observe that all five heuristics presented above are simple, i.e. they can be sum-

marised by a ‘rule of thumb’ and as such are assumed to incur zero complexity costs.

Conversely one might consider a more sophisticated heuristic. For example, when

faced with a choice under uncertainty one may use the Caution Heuristic if there are

three or more possible states of the world but compute the expected utility from each

state if faced with a binary choice. Such a heuristic is no longer rule based, thus

increasing its complexity, and as such an agent should incur some cost to develop the

relevant computational abilities to make such decisions.

A reasonable question to ask is: What determines the repertoire of heuristics

available to a given agent? Our answer: Evolution. To formalise this idea we

abandon the notion that individuals maximise on a case-by-case basis. Instead, we

specify a set of problems, Ω, an agent might face and assume there is a finite set

of heuristics, H, available to that agent. Agents are assumed to select a heuristic

hj ∈ H and apply it to all problems in Ω. This generates a payoff π(hj, x) where

x = (x1, ..., xH)
6 and xi is the fraction of the population that uses heuristic hi. We

assume that the evolution of xi is described by the replicator dynamics and that the

distribution of heuristics in a given population corresponds to asymptotically stable

steady states of such dynamics.

3 Motivating Examples

The notion of a heuristics approach to decision-making is appealing due to its

intuitive foundations, as noted by Rosenthal (1992). It is difficult to validate the

conviction that individuals possess the analytical skills to construct a model, assess

6With the standard abuse of notation we use H for both the set of heuristics and its cardinality.
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the relevant probabilities and finally maximise their utility criteria on a routine basis.

A far more realistic scenario is where an individual, faced with an unfamiliar and

uncertain decision, instinctively invokes a simple ‘rule of thumb’. Such a rule would

represent an accumulated pool of knowledge from similar past decisions, as well as

an instinctive assessment of the environment currently being confronted.

Example 1 Caution Heuristic Consider a large but finite population of risk-

neutral7 individuals faced with a family of problems, P . Each problem p ∈ P can be

represented as a choice between two actions: safe and risky. The safe choice results

in a certain payoff πH while the risky choice is represented as a binary lottery:

πl with probability γ

πh with probability 1− γ

where 0 ≤ γ ≤ 1 and πl �= πh. The payoffs and probabilities vary from problem to

problem and we assume that there are problems p1, p2 ∈ P such that

γ(p1)π
l(p1) + (1− γ(p1))π

h(p1) > πH(p1) (1)

γ(p2)π
l(p2) + (1− γ(p2))π

h(p2) < πH(p2) (2)

i.e. for some problems the safe option is the optimal choice and for others the risk is

worth taking. Furthermore we assume that making always the safe choice is better

than making always the risky choice.

Suppose that there are two types of individuals; naifs and sophisticates.8 Naifs

7Risk neutrality is assumed purely for simplicity. A similar analysis could be conducted incor-
porating risk aversion.

8We borrow this terminology from O’Donoghue and Rabin (1999) but adopt a literal interpreta-
tion in that sophisticates are more congnitively advanced than naifs.
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must restrict themselves to the same choice for all problems. Given our assumptions

on the payoffs, they will eventually learn to rely on the Caution Heuristic, i.e. will

always take the safe option. The sophisticates, on the other hand, solve this problem

using standard expected utility theory (EUT).9 We assume that in order to develop

mental capacities necessary to apply EUT individuals incur some cost, τ (such a cost

could be biological in nature, i.e. extra metabolic requirements necessary to support

advanced cognition, or simply the opportunity cost of ones time taken to learn the new

technique). Once the necessary mental capacity is developed we assume sophisticates

can apply this method costlessly in future situations. It is straightforward to show

that in the long-run the population will develop sophistication provided

τ > E(πEUT )−E(πH) (3)

and rely on the Caution Heuristic otherwise. Expectations in (3) are taken over all

problems in P . This model can be enriched to allow for the expected payoffs of a

particular strategy to depend on the fraction of the population which already utilise

that strategy. In such cases the long-run result could be a non-trivial mix of naifs

and sophisticates within a given population.

The above example can be used to explain the endowment effect. We define the

endowment effect as the tendency for individuals to value a commodity they own

more than an identical one they could obtain through a market transaction. In a

typical experiment to demonstrate the endowment effect mugs bought at a university

shop are distributed randomly among participants. Those who received a mug are

9One should not assume that these agents possess enough sophistication to solve any problem
using EUT - They just possess enough sophistication to apply EUT to binary choices.
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asked about the minimal price at which they would be willing to part with the mug

(WTA), while those who did not receive a mug are asked about the maximal price

at which they would be willing to buy the mug (WTP). A consistent experimental

finding is that WTA > WTP . To explain this result under assumptions of perfect

rationality one must either assume unreasonably large income effects or postulate a

direct preference for endowment.

We argue, however, that neither is necessary if one gives up the idea that choices

should be rationalised on a case-by-case basis. One should rather imbed the mug

problem into a class of problems in which sticking with your endowment is the sensible

thing to do, on average, by invoking the Caution Heuristic. Such a class of decision

problems might spring to mind if mugs are replaced by used cars. It is easy to justify

a higher asking price by an individual selling a car versus a lower bidding price by

an individual looking to purchase the same car since this is exactly the situation on

the ‘lemon market’ for used cars (see Akerlof, 1970).

Example 2 Generalised Tit-for-Tat Consider a standard public good game

where k subjects are given s dollars each and where they must decide on what amount

x ∈ [0, s] to contribute to a common pool. The contributions to the common

pool are multiplied by some constant n < k and distributed equally between all

participants. It is clear that the dominant strategy in this game is to contribute

nothing since for each dollar you contribute you get only n/k < 1 dollars back.

Numerous experiments (see Thaler, 1992), however, report that individuals start

with sufficiently high contributions which tend to decrease over time.

Again, under assumptions of perfect rationality, it is hard to explain such behav-

iour. However, the explanation is rather straightforward if we assume that individuals
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imbed such situations into a broad class of cooperation games and apply or adapt

some rules that work well in typical cooperation environments. Many cooperation

games can be modelled as a repeated prisoner’s dilemma. An extremely successful

strategy (in evolutionary terms) in this setting is Tit-for-Tat, which calls for cooper-

ation in period one and in subsequent periods if, and only if, your partner cooperates

each period before you (see Axelrod, 1984). One can adapt such a strategy for the

above game to imply; start with a high contribution and increase (decrease) your

choice in subsequent periods if your contribution is below (above) the population

mean. Formally, the contributions of agent i who follows the generalised tit-for-tat

strategy will evolve according to:

xit+1 = xit + γ(zt − xit) (4)

where zt is the mean population contribution, xit is the contribution of agent i at

time t and γ ∈ (0, 1) is some constant. If the entire population follows rule (4) then

the mean population contribution will be given by:

zt =
1

N

N∑

k=1

xit (5)

where N is the number of agents. It is straightforward to see that the unique solution

of (4) for given initial contributions is:

zt = z0, xit = z0 + (1− γ)t(xi0 − z0), (6)

where xi0 and z0 are initial contributions of agent i and the initial population mean

respectively. Therefore, if everyone in the population follows the generalised tit-for-
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tat strategy, the average contribution remains constant while individual contributions

revert to the population mean. Now assume that there is a fraction ρ ∈ (0, 1) of

sophisticates who ‘figure out’ the game and contribute nothing in each round. Then

equation (4) will describe the evolution of contributions of the naifs and equation (5)

should be modified to read

zt =
1− ρ

N

N∑

k=1

xit (7)

One can solve for the mean population contribution of the naifs in this case to obtain

zt = (1− ρ)z0 + z0ρ(1− γ)t (8)

Note that the average contributions deteriorate over time but remain positive, which

is consistent with experimental evidence. The individual contributions now follow:

xit+1 = (1− γ)xi0 +
t∑

k=0

(1− γ)kzt−k (9)

The behaviour of naifs in this example is hard to explain looking at the payoffs of any

particular game in isolation, however such behaviour makes perfect sense if viewed

as a simple response to a generalised cooperation environment.

4 The General Model

In this section we present a general model of heuristics evolution. Consider

a population of individuals who are repeatedly faced with a set of problems, P, to

solve. They have a finite set ofH heuristics available to use. Heuristic h ∈ H applied

to a problem p ∈ P produce a solution s(h, p) ∈ Sp, where Sp denotes the set of all
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feasible solutions to problem p. The expected payoff this solution generates for an

individual is π(s, x), where x = (x1, ..., xH) and xh is the fraction of the population

using heuristic h. We will endow P with a structure of measure space (P,Σ, µ),

where Σ is a sigma-algebra of subsets of P, µ is a probability measure on Σ, and for

∀B ∈ Σ we assume with probability µ(B) an individual encounters problem p ∈ B.

The expected payoff to an individual from using heuristic H is then:

U(h, x) =

∫

P

π(s(h, p), x)dµ(p)− c(h), (10)

where c(h) is the complexity cost associated with heuristic h. The average payoff of

an individual in the population is given by:

U(x) =
H∑

h=1

xhU(h, x) (11)

We assume that the rate of change of the fraction of a population that follows heuristic

h ∈ H is proportional to the difference between the expected payoff an individual

receives using heuristic h and the mean population payoff, i.e.

dxh
dt

= ηxh(U(h, x)− U(h)), (12)

where η > 0.

Equation (12) has the same form as the replicator equation in evolutionary game

theory.10 Interpretation in this case is, however, different. While in evolutionary

game theory one usually restricts attention to a particular game and studies the

10There is, however, a slight formal difference since we do not require U(r, x) to be polylinear in
x. Complexity costs present an obvious reason to violate such a condition.
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evolution of strategies, in this case we are interested in the evolution of rules, which

can be applied in a variety of different situations (i.e. different games). For example,

the Caution Heuristic can be applied in the mug experiment and in the market for

used cars while Generalised Tit-for-Tat can be used in a repeated prisoner’s dilemma

and in public good games.

It is immediate from equations (10), (11) and (12) that

d

dt

H∑

h=1

xh = 0 (13)

Therefore, if fractions of a population playing different strategies initially sum to

one, they will continue to do so at any other time. Note also that xh = 0 implies

dxh/dt = 0, i.e. if xh(0) > 0 it will remain non-negative at all times. Consequentially

system (12) confines the dynamics of x to the unit simplex.

Our next objective is to analyse the steady states of system (12) and their associ-

ated stability. Let us formally consider a non-cooperative gameG = ({Sα}α∈C , {uα}α∈C , C)

in which each player has a strategy set Sα = H. Players have Bernoulli utility

uα : ∆(H)×H → R where C is the set of all players and where

uα(h, x) = U(h, x) (14)

A non-standard feature of this formulation is that the payoff to a player who adopts a

particular strategy depends on population averages rather than on the strategy profile

of opponents. For this reason it is proper to think of the interaction between players

as being conducted jointly at a population-wide level in a way that does not lend
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itself to modelling with interaction among a randomly selected group of players.11 A

crucial observation, however, is that the von Neumann-Morgenstern utility of a player

who adopts a mixed strategy y against a population with distribution of strategies x

is

U(x, y) =
H∑

h=1

yhU(h, x) (15)

where U(x, y) is linear in y.12 It is now straightforward to define a Nash equilibrium

as a strategy profile y∗ such that

U(y∗, y∗) ≥ U(y∗, y) (16)

for all y ∈ ∆(H). The standard results of evolutionary game theory (see Weibull,

1995) can now be applied.

Result 1 Any Lyapunov stable state of system (12) is a Nash equilibrium of G.

In our case this implies that if a mix of heuristics used by the population is stable,

it is impossible to outperform an average member of the population using heuristics

from the same repertoire. Note, however, that this result does not imply that the

heuristics repertoire that emerges in equilibrium will allow one to obtain the maximal

possible payoff for any problem in P . Instead it simply implies that it is impossible

to get systematically higher payoffs using heuristics from set H.

Result 2 Any strict dominant strategy is a globally attractive steady state.

Result 3 Any interior Nash equilibrium (if such exists) is reachable, i.e. there

exists an initial steady state from which the system will eventually converge to. This

11For other interesting applications of population-wide models see Hansen and Kaarbøe (2002).
12We implicitly assume that C has cardinality of continuum and therefore the strategy choice of

one player does not disturb the population mean.
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means that the issue of equilibrium selection, familiar to game theorists, arises here.13

Such a problem of equilibrium selection is relevant only if one insists that prediction

of a theory should correspond to an equilibrium point and that dynamics are at best

an aid in selecting such a point. We, on the contrary, take dynamics seriously as

describing the evolution of human behaviour over time. In this case, multiplicity of

equilibria can be an asset rather than liability, since it allows us to study how chosen

heuristics were shaped by real evolutionary processes.

5 Changing Environments and the Evolution of

Complexity

Let us now assume that time passes in discreet periods and that during each

period the set of problems is Pn where n ∈ N . We will assume that Pn ⊂ Pn+1

and interpret problems Pn+1\Pn as more complex than those in Pn (for example, the

evolution of society and technology brings forth new challenges). We also assume

that the sets of heuristics {Hk}
p
k=1 are ordered in such a way that all heuristics in

the same set Hk have the same complexity cost ck and that ck+1 > ck. Moreover, we

assume that for ∀n ∈ N ∃k(n) ∈ N : ∃h ∈ Hk(n) such that

π(s(h, p), x) ≥ π(s∗, x) for ∀s∗ ∈ Sp,∀p ∈ Pn (17)

In words, this means that for any problem set Pn there is a sophisticated enough

heuristic which can solve all problems in Pn optimally, net of complexity costs. It is

13Recent literature has shown that adding noise does not solve this problem, since the exact
equilibrium selected depends on the way the noise is added. For population-wise games this was
first demonstrated by Hansen and Kaarbøe (2002).
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natural to assume that the heuristics sets k(n) are increasing in n and that individuals

acquire heuristics gradually, i.e. they possess repertoires of heuristics of the form:

Hm =
m⋃

k=1

Hk (18)

This amounts to saying that environments of higher order n are more complex. It is

important to note that we do not assume that every problem in Pn+1 is necessarily

more complex than any problem in Pn. We only assume that a universal algorithm to

find the optimal solution for any problem in Pn+1 is more complex than a universal

algorithm to find the optimal solution for any problem in Pn. Therefore, it is quite

possible that most individuals are able to find the optimal solution to a complex

problem in Pn (e.g. to manage running a marathon), but are unable to solve a simple

problem in Pn+1 (e.g. how much to save for retirement given time-preferences and

market interest rates). Finally, we assume that each period is sufficiently long such

that we can concentrate on the long-run dynamics of system (12).

Definition 1 Given environment Pm, the repertoire of heuristics Hm is evolu-

tionary stable if

max
h∈Hm

∫

P

π(s(h, p), x)dµ(p)− cm ≥

max( max
h∈Hm−1

∫

P

π(s(h, p), x)dµ(p)− cm−1, max
h∈Hm+1

∫

P

π(s(h, p), x)dµ(p)− cm+1) (19)

It is strictly stable if the above inequality is strict.

Before proceeding further let us consider a simple example.
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Example 3 Suppose environment P is such that individuals are called repeat-

edly to choose one of three outcomes. The utilities of each outcome are independently

distributed according to the uniform distribution on [0, 1]. Three available heuristics

sets H0, H1, H2 are all singletons. Set H0 = {h0} is “choose the first option you

encounter.” The evolutionary cost associated with this set is 0. If we assume that

the order in which the options are encountered is uncorrelated with the payoffs then

the expected utility attained by individuals who use this heuristic is

E(u) =
1

3
(E(u1) +E(u2) +E(u3)) =

1

2
(20)

SetH1 = {h1} is “choose a pair of options at random, compare the utilities and choose

the best” (this heuristic is sophisticated enough to compare a pair of options but not

sophisticated enough to store the results). The evolutionary cost associated with this

set is c1 and the expected utility attained by individuals who use this heuristic is

E(u) =
1

3
(Emax(u1, u2) +Emax(u2, u3) +Emax(u1, u3)) =

2

3
(21)

Finally, set H2 = {h2} is “choose a pair of options at random, compare the utilities,

remember the best, compare with the remaining options, and choose the best,” (this

heuristic allows for short term memory and is sophisticated enough to always lead to

the optimal choice in environment P ).14 The evolutionary cost associated with this

set is c2 and the expected utility attained by the individuals who use this heuristic is

E(u) = Emax(u1, u2, u3) =
3

4
(22)

14It is wrong, however, to identify agents that use such a heuristic as ‘utility maximising’. This
is because heuristic H2 will fail to maximise utility in a choice between four or more alternatives.
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If c1 ≥
1

6
then the evolutionary stable set is H0, if c1 ≤

1

6
and c2 ≥

1

12
then the evolu-

tionary stable set is H1 and if c2 ≤
1

12
(which implies c1 <

1

12
) then the evolutionary

stable set is H2.

Let us return to the general characterisation of evolutionary stable steady states.

Proposition 1 Assume that ck+1 > ck, so that for any n ∈ N

max
h∈Hm

∫

Pn

π(s(h, p), x)dµ(p)− max
h∈Hm−1

∫

Pn

π(s(h, p), x)dµ(p) (23)

is decreasing in m, and that their exists a q ∈ N such that

max
h∈Hq+1

∫

Pn

π(s(h, p), x)dµ(p)−max
h∈Hq

∫

Pn

π(s(h, p), x)dµ(p) < 0 (24)

Then for any n there are only finitely many evolutionary stable steady states.

Proof Evolutionary stability implies

max
h∈Hm

∫

Pn

π(s(h, p), x)dµ(p)− max
h∈Hm−1

∫

Pn

π(s(h, p), x)dµ(p) ≥ cm − cm−1 > 0 (25)

Conditions (23) - (24) imply that there are only finitely many solutions to (25) �

Note that if multiple steady states exist then those with the lowest complexity

are more likely to be observed since they require a smaller number of simultaneous

mutations. Our assumption regarding the gradual acquisition of heuristics repertoires

implies that the evolution of set Hk to Hk+n requires n simultaneous mutations. The

implication of this result is that a population can be trapped in a state with relatively

low complexity even though a higher degree of complexity might have been beneficial.
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6 Conclusions

Empirical work using experiments has uncovered numerous behavioural anom-

alies; two such examples being the endowment effect and public good contributions.

An attempt to understand such anomalies on the basis of case-by-case optimisation

inevitably leads to the postulation of non-standard preferences (e.g. preferences be-

ing expressed in changes rather than levels or kinked utility functions at the point of

endowment). We argue that such modifications are unnecessary if one abandons the

assumption of case-by-case optimisation and instead embraces holistic optimisation.

The holistic optimisation approach proposes that individuals apply simple heuris-

tics to a wide variety of decision problems. Solutions generated by such rules need

not be optimal on a case-specific basis, however they should on average dominate the

solutions generated by alternative and feasible rules. The appropriate criterion for

evaluation of such rules is evolutionary fitness. Given reasonable assumptions, such

an environment can be represented under the expected utility framework (see Rob-

son, 2001), net of complexity costs. Under a rule-based system of problem-solving

(governed by evolutionary dynamics) no ad hoc modifications to preferences, such as

those advocated by many behavioural economists, are necessary.

The ideas set forward in this paper can be further developed in two directions.

Firstly, one can study more carefully real evolutionary environments in which hu-

mans have developed to shed light on the actual set of heuristics commonly used in

economic decision-making. Secondly, one can use reduced-form models of human be-

haviour that arise from this heuristics approach to rationalise economic phenomena.

As argued in Basov (2005, 2006) such reduced-form models should assume that an

individual’s choices follow a Markov process over some state space.
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