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Measurement of Business Cycles∗

Don Harding�and Adrian Pagan�

Abstract

We describe different ways of measuring the business cycle. Insti-
tutions such as the NBER, OECD and IMF do this through locating
the turning points in series taken to represent the aggregate level of
economic activity. The turning points are determined according to
rules that either come from a parametric model or are non-parametric.
Once located information can be extracted on cycle characteristics.
We also distinguish cases where a single or multiple series are used to
represent the level of activity.
JEL ClassiÞcation E32.

Measurement of business cycles provides a reference point against which
macroeconomic theories and policy discussion can be assessed. The process
requires an operational deÞnition of a cycle, criteria to distinguish business
cycles from other forms of ßuctuation, procedures to detect the presence
of a business cycle, and methods to measure its features. A central theme
of this entry is that good measurement should not prejudge the nature of
the phenomena under investigation. Moreover, it should produce statistics
which are informative about features of interest and which can be formally
analysed.
DeÞning and detecting cycles
In their classic work Measuring Business Cycles, Burns and Mitchell

(BM) (1946) deÞne speciÞc cycles in a series yt in terms of turning points in its
sample path. This tradition has been central to work at the NBER and other
institutions such as the IMF(2002) and OECD (See www.oecd.org/std/cli.).

∗Prepared for the New Palgrave Dictionary of Economics.
�The University of Melbourne.
�Australian National University and Queensland University of Technology.
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When it came to discussing the business cycle BM simply referred to yt as
the level of aggregate economic activity, although in this entry we will regard
it as the log of economic activity as the turning points in the level and the
log of economic activity are the same. When Mintz (1969,1972) had trouble
Þnding turning points in the level of activity in surging economies such as
West Germany, this led her to Þrst extract a permanent component pt from yt
and to then study turning points in zt = yt−pt. The resulting growth cycle in
zt has many forms depending on the method used to extract the permanent
component. Others such as the Economic Cycle Research Institute (ECRI),
have studied turning points in the differenced data ∆yt. A generalization of
this explored by Kedem (1980, 1996) and Harding (2003) is to study turning
points in ∆ryt.
At the time Mitchell began his work the alternative way of thinking about

cycles ( or oscillations) was to view yt as composed of periodic components
represented by sine and cosine waves i.e.

yt =
mX
j=1

αj cosλjt+ βj sinλjt, (1)

where λj is the frequency of the j0th oscillation. If m = 1 there would be
a single periodic cycle. The problem with this way of looking at cycles was
that few economic time series showed evidence of periodicity. To overcome
that problem αj and βj were allowed to vary stochastically over time. Specif-
ically, they were treated as uncorrelated random variables with zero mean
and variance σ2j . This formulation meant that yt had to be a stationary ran-
dom variable and so could not be applied to the levels of variables such as
GDP (unlike turning point analysis). However, in this form one can measure
the importance of the jth periodic cycle by looking at the ratio of σ2j to the
variance of yt and it is the basis of spectral analysis. Such a perspective
has increasingly been referred to as studying ßuctuations rather than cycles,
since the focus of attention is upon the variance of yt.
To understand the difference between these alternative ways of measuring

cycles take the special case where λ1 = 0 and there is another frequency λ2.
Then

yt = α2 cosλ2t+ β2 sinλ2t+ α1t,

= y0t + α1t. (2)

Now there are certainly turning points in the series y0t and the period
between them is determined by λ2. In contrast, the turning points in yt will
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also be affected by the random variable α1t, and thus may be very different
to those in y0t. Information about cycles gathered from spectral analysis con-
cerns the nature of turning points in y0t and not yt.To give a more concrete
illustration of this point suppose that the model for yt is of the form

yt = 1.4yt−1 − .53yt−2 + et.
Then the periodic cycle in yt can be isolated by setting et = 0 to get y0t.
Using the dating methods of an institution like NBER, the turning points in
y0t are 22 quarters apart, as could also be discovered by computing the roots
of (1 − 1.4L + .53L2) = 0. However, applying the same methods to yt, one
Þnds that the turning points in yt will be on average 12 quarters apart. A
further disadvantage of the periodic cycle approach is that the data needs
to be Þltered to render it stationary before analysis proceeds and, as Cogley
(2006) observes, the Þlters most commonly used by macroeconomists can
introduce spurious periodic cycles, thereby blurring the picture.
Locating turning points
To locate turning points in a series it is necessary to deÞne what these are

and to provide some way of recognizing them in a given data set. An obvious
solution is to use the idea that peaks (troughs) are local maxima (minima)
in the series yt. Hence, if ∨t ( ∧t) are binary variables taking the value of
unity where there is a peak (trough) at t and zero otherwise, applying the
proposed deÞnition gives

∨t = 1 (yt < yt±j, 1 ≤ j ≤ k) (3)

∧t = 1 (yt > ytj±, 1 ≤ j ≤ k) . (4)

In equations (3) and (4) 1(A) is the indicator function taking the value unity
if the event A is true and zero otherwise. Of course this still leaves one with
the need to describe the interval over which the local maxima or minima are
said to occur i.e. a choice needs to be made regarding k. To replicate the
main features of Burns and Mitchell�s speciÞc cycle dating procedures it is
necessary to set k = 5 for monthly data or k = 2 for quarterly data.
This is not the end of the choices that need to be made when locating turn-

ing points, but the others do not relate to the location of local maxima and
minima. Rather they concern the question of whether one should eliminate
some of the local turns in deciding on a Þnal set of turning points. Mostly
these extra restrictions are imposed as phase length constraints, where phases
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are the periods of expansions and contractions between turning points. Thus
NBER dating procedures require that completed phase and complete cycles
durations last longer than 5 and 15 months respectively. These are generally
referred to as censoring operations. Whether turning points should be cen-
sored depends on the objectives of the research. If the objective is to match
NBER business cycle dates then censoring is essential. But if the researcher
is pursuing other objectives such censoring may not be necessary. Censor-
ing turning points makes it much harder to formally analyse the statistics
produced and this may provide an important reason for not imposing them.
BM acknowledged that the Þnal set of dates they selected for turn-

ing points reßected considerable amounts of judgement and incorporated
speciÞc information about economic activity at particular dates. Today,
academic economists are primarily interested in the average characteris-
tics of the cycle, and so it may well be that automated methods of turn-
ing point detection become attractive. In the early post WWII period
many of the procedures used by BM were codiÞed, producing an expert
system for locating turning points. Ultimately, Bry and Boschan (1973), pro-
duced an algorithm and FORTRAN program (called BB here) that largely
replicated this expert system. Subsequently Mark Watson (1994) imple-
mented this algorithm in the language GAUSS, and that code is available at
http://www.wws.princeton.edu/mwatson.
There were three key components to the BB algorithm. The Þrst was to

engage in some smoothing of the series and to Þnd an initial set of turning
points using equations (3) and (4) with k = 5. The second was to eliminate
enough of these turning points so as to ensure that expansion and contraction
phases exceed Þve months in duration, while completed cycles exceed Þfteen
months in duration. The third component was to ensure that peaks and
troughs alternate by deleting multiple sequential occurrences of these. That
was done through the application of various rules, such as choosing between
two peaks based on which has the higher value of yt.
Although BB were interested in analysing monthly data they suggested

a method for working with quarterly data that involved treating the obser-
vations on each of the months in a quarter as one third of the quarterly
value. A variant of BB was developed by Harding and Pagan (2002) and
called BBQ. It omitted the smoothing in the BB algorithm but retained
the three key principles of the BB algorithm. It also set k = 2 and made
the minimum phase and cycle lengths be two and Þve quarters respectively.
Faster recursive algorithms for locating turning points have been developed
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by Artis et al. (2004) and James Engel. Engel�s computer programs are
called MBBQ. They are written in MATLAB and GAUSS and are available
at www.ncer.edu.au.
Model based procedures for deÞning and locating turning points
The procedures above do not require any knowledge of the data generating

process for yt. An alternative approach is to adopt a model of ∆yt and use
this to locate turning points. To date the models used are parametric and
generally feature two regimes. Perhaps the best known parametric model
is that of Hamilton (1989), where the growth rate is treated as a Markov
Switching (MS) process of the form ∆yt = µ0(1− ξt)+µ1ξt+ et. Here µj are
the growth rates in the two regimes, and these are indexed by a latent binary
state, ξt, while et is a normally distributed zero mean error term. Here µ0
is the growth rate of the low growth state and µ1 is the high growth rate.
Sometimes the restriction µ0 < 0 is also imposed. The model is completed by
specifying the transition probabilities of moving from ξt−1 = 0 or 1 to ξt = 1
or 0. The model can be made more complex with extra dynamics, different
variances in each regime, allowing the transition probabilities to depend on
some observable data etc. This parametric model is used to compute the
conditional probability, Pr[ξt = 1|At], where At is either all or a sub-set of
the growth rates {∆yj}Tj=1. Thus the estimate of Pr[ξt = 1|At] is a function
of whatever growth rates are in At. Generally this probability will be a non-
linear function of the elements in At although a linear function can be quite
a good approximation � see Harding and Pagan (2003) for an example.
The cycle is then associated with a binary variable St that takes the value

one in expansion and zero in contraction. A rule is used to construct St by
comparing the estimated probability of being in the high growth state with
some critical value. Hamilton chose .5, and most of those using the technique
have followed suit. Consequently, if Pr[ξt = 1|At] > .5, an expansion is
signiÞed and St is set to unity. If the criterion is not satisÞed St is set to zero.
Notice that the ξt are not the phase states; the latter are St. They are simply
a device for producing some non-linear structure in ∆yt, although often one
can think of the outcomes for ξt as signifying a low or high growth period.
The correlation between St and ξt may be very low. Many applications of
this methodology have now been made and the MS model that one chooses
seems to vary a lot with the series it is being applied to. The simple one
described above rarely works satisfactorily.
In most instances a decision about the utility of the method is made

by comparing the business cycle states produced by the rule based on the
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magnitude of Pr[zt = 1|At] > .5 with those found by turning point methods.
Because of the latter comparison one has to ask what the advantages there
are in using a model to locate turning points. Chauvet and Piger (2003)
claim that an advantage of the model-based approach is that it allows an
investigator to forecast turning points in real time. There is some truth to
this but it is exaggerated. Since forecasts can be found for any such model,
they could be passed through any chosen dating algorithm to determine the
predicted phases.
Measuring Cycle Features
Turning points segment time series into phases. An expansion phase runs

from the trough to the next peak. A contraction runs from a peak to the
next trough. In what follows it is easiest to just describe the derivation of
information on expansions.
The two most basic statistics related to phases are duration and am-

plitude. The duration of an expansion is the number of periods of time
between the trough and next peak. The amplitude of an expansion measures
the change in yt from trough to the next peak. In many cases yt is the log
of some variable such as GDP or industrial production i.e. yt = ln(Yt), and
the amplitude has a natural interpretation as the approximate percentage
change in Yt between trough and peak.
Duration and amplitude form two sides of a triangle. Connecting the

trough and peak produces the hypotenuse. If yt = ln(Yt) then the hypotenuse
represents the path followed by a variable that exhibits a constant growth
rate during an expansion. With this in mind it is instructive to inspect
the actual path followed by the data, and to compare that path with the
constant growth path represented by the hypotenuse. Figure 1 shows how
US expansion paths have deviated from the constant growth rate path in the
post WWII period. The important feature evident in this Þgure is that the
growth rate of GDP is not constant over the expansion phase and typically
is highest in the Þrst half of an expansion.
While comparisons such as that in Figure 1 are visually informative there

is also a need for statistics that summarise the average shape of phases.
Sichel (1994) divided expansions into three stages, computed the average
growth rate for each stage, and showed graphs of these, as well as providing
formal statistical tests of equality of the growth rates in each stage. Harding
and Pagan (2002) compare the cumulated gain in an expansion with what
it would have been if growth had been constant throughout the phase. This
comparison was motivated by the idea mentioned above that a plot of yt
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Figure 1: Deviation of sample paths from hypotenuse, United States GDP
during expansions in the post WWII period
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against t during an expansion would look like a triangle if growth had been
constant. The area of such a triangle would be one half the product of the
amplitude and duration. If growth was not constant the area under the
path actually followed by activity during the expansion would differ from
the triangle. Thus a comparison of the two areas provides a measure of the
extent of departure from a constant growth scenario. The evidence seems
to be that expansions do not feature constant growth in some countries like
Australia, the US and the UK, but do so in many European countries. The
shape analysis is interesting since a linear process for∆yt will produce phases
that, on average, have constant growth rates. So a failure to see this signals
the need for a non-linear process for ∆yt. The shape analysis also provides a
useful tool for testing whether non-linear models produce realistic business
cycles.
All of the methods for summarizing business cycle information can be ap-

plied to growth cycles and to data that has undergone higher order differenc-
ing. In addition Sichel (1993) suggested tests for "deepness" and "steepness"
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in the growth cycle that were effectively tests for symmetry in the densities
of zt and ∆zt.
Using Multivariate Information in DeÞning and Detecting Busi-

ness Cycles
Burns and Mitchell�s famous deÞnition of a business cycle � Business

cycles are a type of ßuctuation found in the aggregate economic activity of
nations. . . a cycle consists of expansions occurring at about the same time
in many economic activities, followed by similarly general . . . contractions..�
has two aspects to it. One points to the need to identify aggregate economic
activity, and the other to the fact that there should be synchronization across
many series during the phases of a business cycle. They commented that
GDP was a suitable index of economic activity although others, such as
Moore and Zarnovitz (1986), have preferred a weighted average of several
series rather than a single one. However, since data on GDPwas not available
to Burns and Mitchell, for either the time period or frequency in which they
were interested, it is natural that they placed more emphasis upon the second
component of their deÞnition when discussing the business cycle.
This second component emphasises synchronization of the cycles in the

speciÞc series taken to represent economic activity. Burns and Mitchell took
the turning points in many series and then extracted a reference cycle by
determining those dates which peaks and troughs "clustered around". So a
primary task is to be able to measure the tightness of the clusters. At the
end of the process one also wishes to know how synchronized each of the
speciÞc cycles are with the cycle in the aggregate.
Harding and Pagan (2006) develop procedures to measure the tightness of

clusters of turning points and the degree of synchronization of cycles through
concordance indices that measure the fraction of time spent in the same
phase. They apply those procedures to the series referred to by the NBER
when dating the business cycle, and Þnd that the turning points in those se-
ries are tightly clustered together. Harding (2003) Þnds that between March
1949 and September 2001 there is a concordance of 0.96 between the NBER
business cycle states and the cycle obtained by locating turning points in US
GDP.
Automated Construction of the Reference Cycle
To automate the calculation of the reference cycle requires some rules

which will distill the speciÞc cycle turning points into a single set of turning
points. To determine what these rules might be one could look at the NBER
Business Cycle Dating Committee procedure. They have a similar modus

8



operandi to Burns and Mitchell as seen in their discussion about dating the
2001 recession at http://www.nber.org/cycles/recessions.html. However, one
rarely gets a precise description either of how their decisions are made or the
series used in that process. In addition it seems as if the series which have
been most inßuential in decisions may have been different at different pe-
riods in time. The clearest description of the procedures for aggregating
turning points in a set of series to create a reference cycle is in Boehm and
Moore (1984), who explain how NBER methods were used when establishing
a reference cycle for Australia. Their description can be taken as authorita-
tive because Moore was a pivotal Þgure in the NBER Business Cycle Dating
Committee for many years. Moore and Zarnowitz (1986) also provides infor-
mation on methods used by NBER in dating the business cycle.
Given the fact that the process for establishing the reference cycle is a

little vague, it should not be surprising that there have been few attempts
at producing automated dating algorithms to establish it from multivariate
series. Harding and Pagan (2006) construct an algorithm to replicate the
NBER procedures described by Boehm and Moore (1984). They obtained
the "clustering parameter" which is essential to measuring the tightness of
turning point clusters by looking at Boehm and Moore�s spreadsheets. The
resulting algorithm produced a reference cycle that matched the Australian
version established by Boehm and Moore quite well. Subsequently, it was
tested on US data, and was able to produce quite a good replication of the
reference cycle for that country, even though the clustering parameter had
been calibrated with Australian data.
Model based procedures for deÞning detecting and extracting a

reference cycle
Recently, academic economists have used parametric models to construct

a coincident index and the reference cycle from nmultivariate series∆y1t, ....,∆ynt.
A common element to all approaches is to write ∆yjt as a function of a com-
mon component ∆ft and idiosyncratic components ujt (j = 1, ..., n). Hence
a simple representation would be ∆yjt = aj∆ft+ujt. The ft is often thought
of as the coincident index of the business cycle. Of course there may be
more than one ft but, ultimately, we can think of combining then together
to form as a single variable. There are then many ways that models for ∆ft
and ujt might be speciÞed, depending upon how strong the assumptions are
that one wishes to make about the nature of ft and ujt. Often ∆ft is given
an MS form e.g. Chauvet and Piger (2003). Depending on what these as-
sumptions are will determine how an estimate of ft is to be made. Stock and
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Watson (1991) and Chauvet (1998) represent different approaches. In some
instances one can avoid specifying precise parametric models for ft and ujt,
restricting them only to be in a general class. Forni et al (2001)�s dynamic
factor approach is the main representative of this latter technique. The main
issue with these approaches is that the coincident index and reference cycle
obtained are conditioned on the assumptions made about the data gener-
ating process. For that reason these approaches cannot provide a neutral
measurement of the reference cycle.
Conclusion
Although widely used in official circles, Burns and Mitchell�s methods of

measuring cycles through turning points has been less popular in academia.
But this has changed in recent years. There are a number of reasons why
the methods have become increasingly attractive. First, information about
the nature of the cycle phases can be generated, and this shape information
proves important when trying to construct models of economic activity. Sec-
ond, the literature now contains expert systems for locating turning points,
and these have been coded into various computer languages, thereby elimi-
nating the judgemental aspect of the method. Nevertheless, the automati-
cally generated turning points have been quite good approximations to those
found via judgement. Third, the ability to produce simulated data from
parametric models means that such information can be passed through the
algorithms for locating turning points to produce simulated distributions for
the statistics that summarize the features of the cycle. Fourth, the emerging
mathematics literature on crossing points provides a natural foundation on
which to build a distribution theory for Burns and Mitchell�s methods. Fifth,
there is now a large literature on parametric methods for locating turning
points and measuring cycles. This latter literature can readily be linked to
the non-parametric turning point approach of investigators such as Burns
and Mitchell, as seen in Harding and Pagan (2003).
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