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Abstract 

We develop a GMM procedure for estimating income distributions from grouped data with 

unknown group bounds. The approach enables us to obtain standard errors for the estimated 

parameters and functions of the parameters, such as inequality and poverty measures, and to 

test the validity of an assumed distribution using a J-test. Using eight countries/regions for 

the year 2005, we show how the methodology can be applied to estimate the parameters of 

the generalized beta distribution of the second kind, and its special-case distributions, the 

beta-2, Singh-Maddala, Dagum, generalized gamma and lognormal distributions. This work 

extends earlier work (Chotikapanich et al., 2007, 2012) that did not specify a formal GMM 

framework, did not provide methodology for obtaining standard errors, and considered only 

the beta-2 distribution. The results show that generalized beta distribution fits the data well 

and outperforms other frequently used distributions.  

Keywords: GMM; generalized beta distribution; grouped data; inequality and poverty. 

JEL classification numbers: C13, C16, D31 
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1. Introduction 

The estimation of income distributions has played an important role in the 

measurement of inequality and poverty and, more generally, in welfare comparisons over 

time and space. Access to what is a vast literature on the modeling of income distributions, 

the characteristics of different specifications, and various estimation methods, is conveniently 

achieved through a volume by Kleiber and Kotz (2003), the collection of papers in 

Chotikapanich (2008), and papers by Bandourian et al. (2003) and McDonald and Xu (1995).  

For carrying out large scale investigations that involve many countries, different time 

periods, and the estimation of regional and global income distributions (see, for example, 

Milanovic (2002) and Chotikapanich et al. (2012)), compilation of the necessary country-

specific income distribution data is a major research problem. The data are generally drawn 

from household expenditure and income surveys that are conducted once in five years in most 

countries. Because compilation of data and data dissemination from these surveys are 

resource intensive, much of the raw data are not readily available for researchers. More 

regularly disseminated data take the form of summary statistics that include mean income, 

measures of inequality like the Gini coefficient, and grouped data in the form of income and 

population shares. Two sources of such data are the World Bank and the World Institute for 

Development Economics Research.1 The focus of this paper is the estimation of country-level 

income distributions from limited data of this form. Specifically, our objective is to develop 

and apply a generalized method of moments (GMM) estimator for income distributions, 

using data that is in the form of population shares and group mean incomes, with unknown 

group limits. Group mean incomes for each group in a given country can be computed from 

the readily available data on the county’s mean per capita income, and its income and 

                                                 
1 http://go.worldbank.org/6F2DBUXBE0 and http://www.wider.unu.edu/research/Database/en_GB/wiid/  
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population shares. To achieve comparability over countries and time, mean incomes that have 

been adjusted for purchasing power parity are available from the World Bank and the Penn 

World Tables.2 

Some of us have tackled this problem before. Chotikapanich et al. (2007) (hereafter 

CGR) suggest a GMM estimator for the beta-2 distribution, apply it to a sample of 8 

countries in two time periods, and illustrate how the estimated distributions can be combined 

to derive a regional distribution, find Lorenz curves, and measure inequality. In a more 

extensive study, Chotikapanich et al. (2012) use the same technique to estimate the global 

income distribution as a mixture of GMM-estimated beta-2 distributions for 91 countries in 

1993 and 2000. The GMM technique is a natural candidate because it can be implemented 

with aggregated data rather requiring individual income observations. Chotikapanich et al. 

(2007, 2012) describe the main features of their approach, and show that it works well, but 

their method was deficient in several respects. They did not set up their estimator within a 

formal GMM framework, they used an arbitrarily specified weight matrix, and, because of 

the lack of an asymptotic covariance matrix for the estimator, they did not provide any 

standard errors.  

These deficiencies are remedied in this paper. We define a formal set of moment 

conditions and construct an optimal weight matrix, leading to an asymptotically efficient 

estimator. Deriving the optimal weight matrix for the estimator makes it possible to estimate 

the asymptotic covariance matrix of the estimator which in turn provides measures of 

reliability in the form of standard errors of the estimated parameters and any functions of the 

parameters used regularly in the area of income distributions, such as inequality and poverty 

measures. We also extend the CGR framework to one that can accommodate any income 

distribution, not just the beta-2 distribution. In our empirical work we focus on the 

                                                 
2 http://pwt.econ.upenn.edu/ 
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generalized beta distribution of the second kind (GB2 distribution) and its popular special 

cases, the beta-2, Singh-Maddala, Dagum, generalized gamma and lognormal distributions. 

We show how the adequacy of an income distribution can be assessed using (i) the J-test for 

the validity of excess moment restrictions, and (ii) a comparison of predicted and observed 

income shares. We also illustrate how estimates of the parameters can be used to plot income 

distributions and their confidence bounds, and compute inequality and poverty measures. 

It is useful to note how our current and past work differs from related parallel work by 

Wu and Perloff (2005, 2007) who also consider GMM estimation of income distributions 

from grouped data. Wu and Perloff use a maximum entropy density to approximate the 

underlying income distribution and use simulation to estimate the optimal weight matrix that 

is used in a two-step estimator. In this paper, we show how the optimal weight matrix can be 

expressed in terms of the moments and moment distribution functions of any income 

distribution; then, in our empirical work, we estimate the GB2 as a general and flexible class 

of income distributions. Knowing the parametric specification means we are able to specify 

the optimal weight matrix as a function of the unknown parameters and obtain optimal GMM 

estimates in one step. Our past work (Chotikapanich et al. (2007, 2012)) used the more 

restrictive beta-2 distribution and a sub-optimal weight matrix. Other distinguishing features 

of our current work are our emphasis on estimation of group bounds, and the asymptotic 

covariance matrix that can be used to find standard errors for all estimated parameters 

(including the bounds) and functions of those parameters.  

The paper is organized as follows. In Section 2 the GMM methodology is described in 

general for estimating the parameters of any income distribution. In Section 3 we provide the 

expressions that are needed for GMM estimation of the GB2, beta-2, Singh-Maddala, Dagum, 

generalized gamma and lognormal distributions. These expressions include the moments, 

distribution functions and first-moment distribution functions. We refer to an appendix where 
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derivatives for computing the GMM asymptotic covariance matrix can be found. Expressions 

for inequality and poverty measures are also provided. Section 4 contains a description of the 

data used to illustrate the theoretical framework and the ability of the GMM technique to 

recover income densities. We selected eight countries/areas for the year 2005: China rural, 

China urban, India rural, India urban, Pakistan, Russia, Poland and Brazil. The results 

presented in Section 5 include parameter estimates and their standard errors, plots of income 

densities and their confidence bounds, goodness-of-fit assessment, and inequality and poverty 

measures. Concluding remarks are provided in Section 6. 

2. The GMM estimator  

Suppose that we have a sample of T observations  1 2, , , Ty y y  that are assumed to 

be randomly drawn from a parametric income distribution ( ; )f y  , and that these 

observations have been grouped into N income classes 0 1 1 2 1( , ),( , ), ,( , )N Nz z z z z z , with 

0 0z   and Nz   . Let the mean class incomes for the N classes be given by 1 2, , , Ny y y ; 

and let the proportions of observations in each class be given by 1 2, , , Nc c c . Given available 

data on the iy  and the ic , but not the iz , our problem is to estimate  , along with the 

unknown class limits 1 2 1, , , Nz z z  . To tackle this problem using GMM estimation we create 

a set of sample moment conditions 

       
1

1
,

T

t
t

y
T 

 H θ h θ         (1) 

such that  plim H θ 0 , where  1 2 1, , , ,Nz z z 
θ   . The GMM estimator θ̂  is defined as  

     ˆ arg min ' θθ H θ W H θ        (2) 
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where W is a weight matrix. In what follows we consider first the moment conditions and 

then the weight matrix. 

2.1 The moment conditions 

To set up the moment conditions we begin by defining the population proportion for 

the i-th income class as:   

   
1

( ; )
i

i

z

i

z

k f y dy


 θ     1, 2, ,i N     (3) 

Also, the population class mean income for income class i is defined as 

    1

1

( ; )

( ; )

i

i

i

i

z

z
i z

z

y f y dy

f y dy





 



θ




  1,2, ,i N     (4) 

Then, letting  ig y  be an indicator function such that  

 
11     if 

0    otherwise

i i

i

z y z
g y

   


 

we have  

   

     

 

 
1

0

;

;
i

i

i i

z

z

i

E g y g y f y dy

f y dy

k





  









θ



  

The corresponding sample moment is 

    
1

1
    

T
i

i t i
t

T
g y c

T T

   
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where iT  is the number of observations in group i. Thus, for the proportion of observations in 

each group, we have 1N   moment conditions 

     
1

1
  

T

i t i i i
t

g y E g y c k
T 

     θ  1,2, , 1i N      (5) 

The moment condition for i N  is omitted because the result  
1 1

1
N N

i ii i
k c

 
  θ  makes 

one of the N  conditions redundant. 

 To obtain the moment conditions for the class means, we note that  

  

         

   

 
1

0

1 1
;

1
;

i

i

i i
i i

z

i z

i

E yg y yg y f y dy
k k

y f y dy
k





  



 





θ θ

θ

θ



  

Now, since  plim i ic k θ , 

      
1

1 1
plim

T

t i t i
ti

y g y
c T 

 
  

 
 θ

 

Then, noting that 

      
1 1

1 1 1T T
i

t i t t i t i
t ti i i

T T
y g y y g y y

c T c T 

    

we have,  

   
1

1 1
plim plim  

T

t i t i i
ti

y g y y
c T 

     

Thus, for the class means we have the N  moment conditions 
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      
1 1

1 1 1 1
plim

T T

t i t t i t i i
t ti i

y g y y g y y
c T c T 

 
    

 
   1,2, ,i N         (6) 

Collecting all the terms we can write  

 

   

   

   

   

1 1

1 1

1
1

1

,

t

N t N

t t
t

t N t
N

N

g y k

g y k

y g yy
c

y g y

c

 

  
 
 
 
 
 

  
 
 
 
 
 
  

θ

θ

h θ θ

θ





     (7) 

and 

   

 

 

 

 

1 1

1 1

1
1 1

1
  ;   

T N N

t
t

N N

c k

c k
y

T y

y

 



 
 
 
 
     
 
 

  



θ

θ
H θ h θ

θ

θ





        (8) 

If K is the dimension of   (the number of unknown parameters in the income density), then 

there are 2 1N   moment conditions and 1N K   unknown parameters.  

For computational purposes, it is typically more convenient to express  ik θ  and 

 i θ  in terms of distribution functions. If 
0

( ) ( ; )E y y f y dy


      is the mean of y, 

( ; )F y   is the distribution function, and  

0
1

( ; )

( ; )

y

t f t dt

F y 


 
                 (9) 
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is the first moment distribution function, then, from (3), (4) and (9), 

   1( ; ) ( ; )i i ik F z F z  θ          (10) 

and 

   1 1 1

1

( ; ) ( ; )

( ; ) ( ; )
i i

i
i i

F z F z

F z F z




 
 


θ

 
 

         (11) 

In Section 3 we give explicit expressions for  , ( ; )iF z   and 1( ; )iF z   for the GB2 

distribution, and its special cases, the beta-2, Singh-Maddala, Dagum, generalized gamma 

and lognormal distributions. Inserting these expressions into the moment conditions in (7) 

and (8), and including expressions for the elements of the weighting matrix that we consider 

in the next section, makes the GMM estimator operational. 

2.2 The weighting matrix 

The simplest weighting matrix is that where W I . However, since the last N 

moment conditions involving the class means are of a much higher order of magnitude than 

the first 1N  , which involve proportions, setting W I  gives an undesirably large relative 

weight to the last N conditions. Under these circumstances, the last N conditions tend to 

dominate the estimation procedure and, as noted by CGR, this can lead to perverse outcomes 

where 1ˆ ˆi iz z   for some i . To ensure both sets of moment conditions were on a similar scale, 

CGR used a diagonal weighting matrix, with diagonal elements 2 2 2
1 2 1( , , , ,Nc c c  

  

2 2 2
1 2, , , )Ny y y   . For future reference, we refer to this matrix as CGRW . The motivation 

behind this weight matrix was that it led to an estimator that minimized the sum of squares of 

percentage errors in the moment conditions. It is not an optimal weight matrix, however. Its 

diagonal elements are not equal to the inverses of the variances of the moment conditions, 

and it ignores correlations between moment conditions. Deriving an optimal weight matrix is 
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crucial for deriving an asymptotically efficient estimator and facilitates derivation of standard 

errors for the parameter estimates.  

The optimal weight matrix is given by: 

   
1

1

1
plim , ,

T

t t
t

y y
T





    
W h θ h θ        (12) 

where 1W  is traditionally estimated from  

   1

1

1 ˆ ˆˆ , ,
T

t t
t

y y
T





 W h θ h θ         (13) 

with θ̂  being a first-step estimator obtained by minimizing ( ) ( )H WH   for a pre-specified 

W . The estimator Ŵ  depends on both the sample data and estimates of the parameters θ̂ . It 

turns out not to be suitable for our problem because it contains terms of the form 
1

2

1

i

i

T

tt T
y

   

which are not available from the grouped data. However, instead of using (13), we can take 

the probability limit in (12) and obtain a result that depends only on the unknown parameters, 

not on the sample data. This result is derived in Appendix A.1 and is presented in the 

following equations. To ease the notation, we write ik  for  ik θ  and i  for  i θ . Then, 

partitioning 1W  as  

   
11 12

1

21 22

  
 
 

W W
W =

W W
      (14) 

we find that 11W  is an    1 1N N    matrix with diagonal elements 

     11 1ii i iw k k    1,2, , 1i N   

and off-diagonal elements 
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    11
ij i jw k k      , , 1,2, , 1i j i j N    

22W  is an N N  matrix with diagonal elements 

   
(2)

22 2i
ii i

i

w
k


     1,2, ,i N   

and off-diagonal elements 

   22
ij i jw        , , 1,2, ,i j i j N    

where 

 

 

 

1

(2) 2 2

1

(2)
2 2 1

1
plim plim

1
( ; ( ; ,

i

i

T

i i tt T
i

i i
i

y y
T

F z F z
k

 



 
    

 

   



  

      (15) 

2 (2)
2 0
( ; ( ; )

iz

iF z y f y dy     is the second moment distribution function, and (2) 2( )E y   

is the second moment for y. See Appendix A.2. The elements in the off-diagonal blocks of 

1W  are 

  

 
 

 

1 1 2 1 1 1 1

1 2 2 2 1 2 212 21
1

1 1 2 1 1 1 1

1

1

1

N N

N N
N N

N N N N N N

k k k k

k k k k

k k k k




 

    

     
       
 
 
      

W W




    


  (16) 

The matrix 1W  defined in this way is a convenient one because it depends only on 

the unknown parameters and not on the sample data. In traditional GMM estimation where no 

distributional assumptions are made, this matrix is not available and one must resort to using 

the matrix 1ˆ W  specified in (13). In our case, because we will be assuming a specific 
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parametric distribution for ( ; )f y  , taking the probability limit in (12) enables us to express 

the result in terms of unknown parameters. 

 For minimizing the GMM objective function, we require W , not 1W . For given 

values (or estimates) of θ , W  can be readily found by numerically inverting 1W . 

However, it is useful to provide an analytical expression for W  to improve computational 

efficiency and to give insights into the minimization process. Working in this direction, we 

begin by expressing 1W  in matrix notation. We define the following N-dimensional vectors. 

   1 2( , , , )Nk k k k    1 2( , , , )N    μ    

     (2) (2) (2)
1 1 2 2, , , N Nk k k    a   

The 1N   dimensional vectors obtained by deleting the last element in each of the above 

vectors will be denoted by ,N N k μ  and Na , respectively. Also, for any vector x , we use 

the notation ( )D x  to denote a diagonal matrix with the elements of x  on the diagonal. Then, 

we can write 

 

 

 

1

1

1

1

1

( ) ( )

( )
( )

( ) ( )

( )
( )

N N N N N N

N

N

N

N N N

N

NN

N

     








  







   
 
   
    
    

 
   
       
          

D k k k D μ 0 k μ

W D μ
μk D a μμ

0

D k D μ 0
k

k μD μ
μD a

0

       (17) 

where 1N0  is an ( 1)N   dimensional vector of zeros.  

 In Appendix A.3, we show how an analytical expression for W  can be derived from 

(17). The result is given in (18) where we use the notation (2) 2
i i iv     to denote the 

variance of the i-th group, 1 2( , , , )Nv v v v  , and 1Nι  is an ( 1)N  -dimensional vector of 
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ones. Also, with a slight abuse of matrix notation, we use  D x s  to denote a diagonal matrix 

with diagonal  1 1 2 2, , , N Nx s x s x s , for any two vectors x  and s .  

 

       
 

   

1 1 1

1

N N N N N N N N N N N

N N

N N N

a v v

v

      

 



      
  
    

D a v ι ι D μ v ι

W = D μ v
D k v

ι

             (18) 

An advantage of expressing W  in this form is that it contains a large number of zeros in all 

sub-matrix blocks except the upper left. The total number of zeros is 23 7 4N N  . It may 

also help explain why the CGR estimator, which uses a diagonal W , performed well (in the 

sense that it led to estimates comparable to those from optimal GMM) in our empirical work. 

 For any particular distribution, the extra information needed to compute W  (that was 

not also needed to compute the moment conditions) is the second moment (2)  and the 

second moment distribution function 2( ; )iF z  . Expressions for these quantities for a number 

of distributions are provided in Section 3. 

2.3 Empirical implementation of GMM estimation 

We consider three GMM estimators: the CGR estimator ˆ
CGRθ  that uses the weight 

matrix CGRW ; a two-step estimator that uses ˆ
CGRθ  to compute an estimate of the optimal 

weight matrix,  ˆ
CGRW θ ; and a one-step estimator obtained by minimizing the complete 

objective function with respect to θ  where both the moment conditions and W  are functions 

of θ . Hansen et al. (1996) refer to the one-step estimator as the “continuous-updating 

estimator”.  

 The three estimators are given by 
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      ˆ arg min 'CGR CGR θθ H θ W H θ                 (19) 

     2
ˆ ˆarg min 'STEP CGR  θθ H θ W θ H θ      (20) 

     1
ˆ arg min 'STEP  θθ H θ W θ H θ      (21) 

2.4 Asymptotic covariance for the GMM estimator 

To specify the asymptotic covariance matrices for the estimators, we first define the 

matrix of partial derivatives of the moment equations with respect to the parameters as 

   2 1 1N N K   





H

G
θ

       (22) 

Then, an estimator for the asymptotic covariance matrix of the one and two-step estimators is 

given by (see, for example, Cameron and Trivedi, 2005 p. 176) 

    11ˆ ˆ ˆ ˆ( ) ( ) ( )
T


var θ = G θ W θ G θ       (23) 

An estimator for the asymptotic covariance matrix of ˆ
CGRθ  is given by 

     1 1
11ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

CGR CGR CGR CGR CGRT

 
  var θ = G W G G W W W G G W G      (24) 

where Ĝ  and 1ˆ W  are equal to ˆ( )CGRG θ  and 1 ˆ( )CGR
W θ , respectively.  

In our empirical work we focused on standard errors for the one and two-step 

estimators and functions of them. We successfully used both analytical and numerical 

derivatives to calculate the elements of the G  matrix. Some expressions for obtaining 

analytical derivatives for a variety of distributions are given in Appendix B. This appendix is 

best consulted after we consider specific income distributions in Section 3.  
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2.5 The J statistic 

Under the null hypothesis that the moment conditions are correct   plimH θ = 0 , 

the J statistic 

      2ˆ ˆ ˆ' d
N KJ T   H θ W θ H θ      (25) 

In traditional GMM estimation this test statistic is used to assess whether excess moment 

conditions are valid. In our case, since we assume a particular form of parametric income 

distribution, and use its properties to construct the moment conditions and weight matrix, the 

J statistic can be used to test the validity of the assumed income distribution. 

3. Income Distributions 

A large number of probability density functions has been suggested in the literature 

for modelling income distributions. See, for example, McDonald and Ransom (1979), 

McDonald (1984), McDonald and Xu (1995), Creedy and Martin (1997), Bandourian et al. 

(2003) and Kleiber and Kotz (2003). One of the flexible distributions introduced by 

McDonald (1984) is the four parameter generalized beta distribution of the second kind 

(GB2). This distribution has analytical properties that make it well suited to the analysis of 

income distributions (Parker, 1999), and, as we will see, it provides a very good fit to the 

observed data (see also, Bordley et al. (1996) and Bandourian et al (2003)). In this section we 

describe the GB2 distribution and its characteristics needed for GMM estimation. We also 

present results needed for GMM estimation of the beta2, Dagum, Singh-Maddala, generalized 

gamma and lognormal distributions that can be obtained as special cases of the GB2 

distribution.  
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3.1 The generalized beta income distribution of the second kind 

The GB2 distribution whose parameters are ( , , , )a b p q   has probability density 

function (pdf) 

 

1

( ; , , , )

, 1

ap

p qa
ap

ay
f y a b p q

y
b B p q

b




       

  0y           (26) 

where y is income, 0, 0, 0,  0 b p q a    and  

   
1

1 1

0

( ) ( )
( , ) (1 )

( )
p qp q

B p q t t dt
p q

  
  

    

is the beta function. The GB2 distribution is a generalization of the standard beta distribution 

defined on the (0,1) interval. If U is a standard beta random variable with parameters ( , )p q , 

then  1(1 ) 2( , , , )
a

Y b U U GB a b p q   . The inverse of this transformation is  

   
 
 1

a

a

Y b
U

Y b



 

Thus, the cumulative distribution function (cdf) of the GB2 distribution is given by  

1 1

0

1
( ; , , , ) (1 ) ( , )

( , )

u
p q

uF y a b p q t t dt B p q
B p q

       (27) 

where    1
a a

u y b y b     and the function ( , )uB p q  is the cdf for the standard beta 

distribution. Expressing the GB2 cdf in this form is convenient because ( , )uB p q  is readily 

computed by computer software. 

 The quantities required to compute the moment conditions and the weighting matrix 

for GMM estimation are the first and second moments (2)and  , the distribution function 
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( ; )F y  , and the first and second moment distribution functions 1( ; )F y   and 2( ; )F y  . The 

moments of order k exist only if ap k aq   , and, if a moment exists, it is given by (Kleiber 

and Kotz, 2003, p.188) 

  
 

 
( ) ,

,

k
k b B p k a q k a

B p q

 
       (28) 

Also, the k-th moment distribution function ( )

0
( ; ( ; )

y k k
kF y t f t dt     can be written as 

(Kleiber and Kotz, 2003, p.192) 

( ; ) ; , , , ,k u

k k k k
F y F y a b p q B p q

a a a a
           
   

       (29) 

This expression is a computationally convenient one, because it allows us to compute the first 

and second moment distribution functions using a standard beta distribution function with 

different parameters. 

Income distributions are often estimated to assess inequality and poverty. To 

illustrate, we consider two inequality measures, the Gini and Theil coefficients, and two 

poverty measures, the headcount ratio and the Foster-Greer-Thorbecke measure with an 

inequality aversion parameter of 2 ( (2FGT  ) (Foster, Greer and Thorbecke, 1984). General 

forms for the Gini and Theil coefficients, and their expressions in terms of the parameters of 

the GB2 distribution, are (McDonald, 1984; McDonald and Ransom, 2008) 

 
     

 

0

3 2

3 2

2
1 ( ; ) ( ; )

2 2 1 ,  2 1 1 1
1, ,2 ;  1,2 ;  1

, 1 ,  1

1 1 1
1, ,2 ;  1,2 ;  1

1

G y F y f y dy

B p a q a
F p q p p p q

B p q B p a q a p a

F p q p p p q
p a a a



  


              

         

  

         (30) 
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     

0

ln ( ; )

1
1 1 ln

y y
T f y dy

p a q a b
a

    
        

        

 
     (31) 

where 3 2F  is a generalized hypergeometric function and ( ) log ( )t d t dt    is the digamma 

function. The hypergeometric function can be computed by Matlab, but we found it was more 

efficient and reliable to numerically integrate  
0

1 2 ( ; ) ( ; )G y F y f y dy


       . 

For a given poverty line x, the headcount ratio is the proportion of population with 

incomes less than x, and so, for the GB2 distribution, it is simply given by 

  ( ; ) ( , )x uH F x B p q    where   
 
 1

a

a

x b
u

x b



            (32) 

The measure (2xFGT   considers not just the proportion of poor, but also how far the poor are 

below the poverty line. It is defined as 

    
2

0

(2 ( )
x

x

x y
FGT f y dy

x

    
                  (33) 

Following Kakwani (1999), it is convenient to express (2xFGT   in terms of the mean and 

variance of the poor ( x  and 2
x ), the headcount ratio xH , and the income gap ratio 

 x xg x x  . Definitions of these quantities, and expressions for them in terms of the 

parameters of the GB2 distribution and some of its special cases are given in Table 1. 

3.2 Some commonly used distributions 

A number of popular distributions are special cases of the GB2 distribution. Borrowing 

from McDonald (1984), we display those distributions in Figure 1. In our work we estimated 

the GB2, beta-2, Singh-Maddala, Dagum, generalized gamma and lognormal distributions. In 
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the remainder of this section we provide or refer to the quantities  , (2) , ( ; )F y  , 1( ; )F y   

and 2( ; )F y  , that are required for GMM estimation of these special-case distributions. For 

the inequality and poverty measures, we confined estimation to the GB2, beta-2, Singh-

Maddala, and Dagum distributions. Expressions for the inequality and poverty measures in 

terms of the parameters of these distributions are given in Table 1. 

 

Figure1- Relationship of GB2 with other distributions (adopted from McDonald (1984)) 

 The required first and second moments and distribution functions for the beta-2, 

Singh-Maddala, and Dagum distributions are readily obtained from the more general GB2 

expressions in (28) and (29) by setting 1, 1a p   and 1q  , respectively. Simplifications 

for the means of these distributions are given in Table 1. For the beta-2 distribution it is also 

worth noting that the second moment reduces to  

2
(2) ( 1)

( 1)( 2)

b p p

q q


 

 
 

There are also useful simplifications for the cdf’s for the Singh-Maddala and Dagum 

distributions. For the Singh-Maddala distribution we have 

1p 
q     1q 

1a 

0a  1a  1p   q     q     

Lognormal 

GB2 

  GG Beta2 Singh-Maddala Dagum 

Gamma Weibull 
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   ( ; , ,1, ) 1 1

qa
y

F y a b q
b


      

   
 

and, for the Dagum distribution, 

   ( ; , , ,1) 1 1

pa
y

F y a b p
b

      
   

 

3.3 Generalized gamma distribution 

The generalized gamma pdf is given by 

1( ; , , ) exp
( )

a

ap
ap

a y
f y a p y

p


  
         

           (34) 

It is obtained as a special case of the GB2 distribution in (26) by setting 1 ab q   and taking 

the limit as q   (McDonald 1984). The standard gamma pdf 

11
( ) exp

( )
p

p

u
f u u

b p b
      

         (35) 

can be obtained from (34) using the transformation au y , and redefining b as ab   . Thus, 

values for the cdf of the generalized gamma distribution can be computed from  

( ; , , ) ( , )uF y a p G p b   with au y  and ab    

where 1

0
( , ) ( )

u b p t
uG p b t e dt p    is the cdf of the standard gamma distribution with 

parameters p and b. 

 The moments and moment distribution functions for the generalized gamma are given 

by (McDonald, 1984; Butler and McDonald, 1989) 
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 ( )

( )

k
k p k a

p

  
 


      (36) 

   ( ; , , ) ; , , ,k uF y a p F y a p k a G p k a b              (37) 

These expressions complete what is needed for computing the moment conditions and the 

weight matrix.  

3.4 Lognormal distribution 

The lognormal pdf  

 
2

2
2

1 (ln )
; , exp

22

y
f y

y

 
      

           (38) 

can be obtained as a special case of the generalized gamma distribution by setting 2 2a a    

and ( 1) ap a   , and taking the limit as 0a   (McDonald, 1984). Its cdf is 

 2 ln( )
; ,

y
F y

       
        (39) 

where   is the standard normal cdf. Its moments are 

   
2 2

( ) exp
2

k k
k
 

    
 

 

and values for its moment distribution functions can be computed from 

   
2

2 2 2 ln( )
; , ; ,k

y k
F y F y k

   
          

   (40) 

Details can be found in Aitchison and Brown (1957) or Keliber and Kotz (2003). 
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4. Description of data and sources 

To illustrate the methodology described in Sections 2 and 3, we use income 

distribution data from the PovcalNet website developed by the World Bank poverty research 

group. This database is set up for the purpose of poverty assessment for individual countries, 

regions and globally. The data are provided in grouped form and can be downloaded from 

http://go.worldbank.org/WE8P1I8250. They are available for developing countries for a 

number of years ranging from 1981 to 2005. The latest version of the data was updated in 

August 2008 to incorporate 2005 purchasing power parity estimated by the World Bank 

International Comparison Program. To use a reasonably diverse cross section of countries to 

test the performance of the estimator, we chose as examples Brazil, China, India, Pakistan, 

Russia and Poland for the year 2005. Separate data are available for rural and urban regions 

in India and China, making a total 8 different data sets. We will refer to each data set as 

coming from a region, where a region can be a country, or rural or urban China or India.  

 For most of the chosen regions, population shares ic  and the corresponding income 

shares ig  were available for 20 groups. Exceptions were India rural and urban which each 

had 12 groups, and China rural which had 17 groups. In line with India rural and urban, we 

aggregated the data from the other regions into 12 groups. Having 12 regions for all regions 

has the advantage of uniformity for estimation, and it provides an opportunity for checking 

the ability of the estimated model to predict income shares for groups other than those used 

for estimation, a procedure that we consider in Section 5. The population proportions in each 

region were not identical, but in most cases they were approximately 0.05 for the first and last 

two groups and 0.1 for the remaining groups. China rural was an exception where there was a 

much smaller proportion in the earlier groups.  
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Also available from the World Bank website is each region’s mean income y , found 

from surveys and then converted using a 2005 purchasing-power-parity exchange rate. To use 

the methodology described in Sections 2 and 3, we need the data on class mean incomes iy . 

They are obtained as i i iy g y c . For computing standard errors and the J  statistic, we also 

need the sample sizes T  for each of the surveys. Unfortunately, although the website 

provides data on the population size of each region, it does not have comprehensive data on 

the sample sizes T  for each of the surveys. For our calculations we use 20,000T  . This is a 

conservative value since most of surveys have sample sizes which are much larger. If 

standard errors or J-statistics for other sample sizes are of interest, they can be obtained from 

our results by multiplying by the appropriate scaling factor. 

5. Empirical analysis 

Our presentation and discussion of the results begins in Section 5.1 with consideration 

of the estimated income distributions for the eight regions. Goodness-of-fit of the 

distributions is assessed in Section 5.2, using J-statistics and a comparison of predicted and 

observed income shares. Levels of inequality and poverty obtained from different 

distributions are reported in Section 5.3. 

5.1 Country-specific income distributions 

Table 2 contains the estimated class limits and parameters of the GB2 distribution 

obtained using the GMM estimation procedure outlined in Sections 2 and 3. For each region, 

we report three different sets of estimates  those from the CGR, the two-step, and the one-

step estimations. Standard errors for both the two-step and one-step estimates are also 

reported. There are no dramatic differences between the estimates from the three different 

estimators. The two-step and the one-step estimates are almost identical, and the CGR 
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estimates are only slightly different. Similarly, the standard errors obtained using two-step 

estimation are very close to those obtained from one-step estimation. The magnitudes of the 

standard errors for the class limits are very small suggesting we are estimating their values 

precisely. However, standard errors for some of the estimates  ˆˆ ˆ ˆ, , ,a b p q  are relatively large, 

implying wide confidence intervals around the corresponding parameters. In most regions, 

separate hypothesis tests for 0 : 1H p   (Singh-Maddala), 0 : 1H q   (Dagum), and 0 : 1H a   

(beta-2) would not be rejected. The situation may change, of course, if we use a larger sample 

size, but one of the 3-parameter distributions may be an adequate representation for some 

cases. More light is shed on this issue when we examine goodness of fit.  

To save space we have not reported estimates and standard errors for distributions 

other than the GB2; they are available from the authors on request. Estimates of the iz  and 

their standard errors were similar for all distributions. Standard errors for the estimated 

parameters of the beta-2, Singh-Maddala and Dagum distributions (which have parameters in 

common with the GB2) were much smaller than those for the GB2, reflecting the drop from 4 

to 3 parameters.  

In all cases we computed standard errors using both numerical derivatives and 

analytical derivatives, and where both sets were computable, they produced identical results. 

There were a few cases where the computation of analytical derivatives failed – beta-2 

estimates for Pakistan and India (rural and urban). These failures corresponded to solutions 

where p was very large and b was very small; estimation was unstable, with different starting 

values leading to different local minima. Analytical standard errors could not be found 

because the hypergeometric function in Matlab broke down. Numerical standard errors could 

still be found, however. This problem did not arise with the GB2 and other distributions. 
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Figure 2 contains graphs of the estimated GB2 pdfs for China rural and urban, India 

rural and urban, Brazil and Poland, along with 95% confidence bounds for these distributions. 

To find the confidence bounds, standard errors were computed for the estimated pdfs at a 

number of income levels using the covariance matrix of the parameter estimates, the delta 

rule, and numerical derivatives. The narrowness of the confidence bounds suggests we are 

accurately estimating the pdfs, despite relatively large confidence intervals for some of the 

parameters. A comparison of the urban and rural pdfs for India and China shows clearly the 

larger incomes of the urban populations. In India, it is interesting that the rural and urban 

modes are similar, but the urban pdf has a much fatter tail. Using a population weighted 

mixture of the rural and urban components, in Figure 3 we have graphed the pdf and cdf for 

all of China, alongside those of the rural and urban subpopulations. If more countries are 

considered, similar mixtures can be obtained for larger regions such as continents or the 

whole world. See, for example, Chotikapanich et al. (2012). 

A potential estimation problem for all distributions other than the generalized gamma 

and lognormal, is the non-existence of the second moment. For the existence of the k-th 

moment, the GB2 distribution requires aq k . This condition is the same for the moments of 

the Singh-Maddala distribution, it becomes q k  for the beta-2 distribution and a k  for the 

Dagum distribution. Since the optimal weighting matrix requires the existence of second 

order moments, if the CGR estimates violate one of these inequalities, we cannot proceed 

with two-step estimation of the offending distribution. Also, our experience suggests one-step 

estimation breaks down. (CGR estimation is still feasible.) We encountered this problem with 

Brazil, a country with relatively high inequality, for estimations with the GB2, Singh-

Maddala and Dagum distributions, but not the beta-2 distribution. In the results reported in 

Table 2 we overcame the problem by minimizing the objective function subject to the 



27 
 

constraint 2aq  . This solution may not be entirely satisfactory. The underlying income 

distribution may indeed not have second moments, the standard errors for the boundary 

solutions that result may not be valid, and inequality appeared to be underestimated relative 

to values reported by the World Bank. 

We also found that the generalized gamma distribution can be difficult to estimate. 

Sometimes estimation would break down, particularly when there was a tendency for the 

estimate for a to become small. We suspect that small values of a were making calculation of 

 1p a   troublesome. We tried different parameterizations and different starting values, 

and in all cases managed to get convergence. However, we are not confident that all our 

solutions correspond to global minima. 

5.2 Goodness-of-fit analysis 

In this section we assess the adequacy of the various distributions for modelling the 

observed population and income shares (or income shares converted to class mean incomes). 

Two criteria are used: (i) the J test to test whether the moment conditions are valid for each of 

the distributions, and (ii) a comparison of observed and predicted income shares. 

 Table 3 presents the p-values for the J statistics calculated for all distributions 

considered and for all example regions. Under the null hypothesis that the moment conditions 

are correct, the J statistic has a 2  distribution with degrees of freedom equal to the number 

of excess moment conditions. In the case of the GB2 distribution, we have 23 moment 

conditions and 15 parameters giving degrees of freedom of 8. For the 3-parameter 

distributions the degrees of freedom is 9, and for the log normal it is 10. The very large p-

values for the GB2 distribution show that its moment conditions are compatible with the 

sample moment conditions. The smaller, although still large, p-value for Brazil could be 
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attributable to minimizing a restricted version of the objective function. Results for the other 

distributions suggest the beta-2 distribution is adequate for all regions except India rural and 

Pakistan – two of the three regions where estimation was unstable with large p̂  and small b̂ . 

The Singh-Maddala distribution is unsuitable for China rural, India urban, Russia, Poland and 

Brazil. The same is true for the Dagum distribution for China rural, Russia and Brazil, and to 

a lesser extent Poland. At a 5% level of significance, the generalized gamma distribution is 

rejected for all regions except China urban, Russia and Poland; the lognormal is rejected for 

all regions except Russia. Based on these results, we conclude that the GB2 distribution is 

both the best-fitting and an adequate model, the beta-2 and Dagum distributions show some 

promise, and the Singh-Maddala, generalized gamma and lognormal are inadequate in most 

cases. 

We also assess the goodness-of-fit of the distributions by comparing the observed 

income shares ig  with the predicted income shares derived from the estimated distributions. 

The distributions were estimated using 12 groups, obtained by aggregating 20 original groups 

in all regions except India rural and urban and China rural. No aggregation was carried out on 

the original 12 groups available for India rural and urban, and, in the case of China rural, 17 

groups were aggregated to 12. To assess goodness-of-fit, we examined the ability of the 

models to predict the income shares in the original groups (20 in most cases) from the 

distributions estimated from 12 groups.  

The income shares were predicted in the following way. Beginning with the original 

population shares ic , and corresponding cumulative proportions 
1

i

i jj
c


  , we found class 

limits iz  (not necessarily the same as the previously-estimated class limits) by solving the 

equations 
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    ˆ;i iF z    

Then, predicted cumulative income shares ˆ i  were found from the first moment distribution 

function  

    1
ˆˆ ;i iF z    

giving the predicted income shares 1ˆ ˆˆi i ig    .  

 Note that when the number of groups used for estimation differs from the number 

used for predicting the income shares, the class limits ( )iz  in the above two equations will, 

by necessity, be different from the estimated iz . When the same number of groups is used for 

estimation and prediction, we have two alternatives for predicting the income shares. We can 

use the above two equations as already described, or we can simply use  1
ˆˆ ˆ ;i iF z    where 

ˆiz  are the original estimates of the class limits. We used the former approach in all cases. 

Since it uses less information from GMM minimization, it is likely to be a more stringent test 

of predictive ability. 

 We present a comparison of the predicted and actual income shares (in percentage 

form) for the GB2 distribution in Table 4. Table 5 contains the root-mean-squared errors, 

 
2

1

1
ˆ100

N

i ii
N g g


   , for all distributions. In Table 4 the observed and predicted 

income shares are remarkably similar for all regions, giving strong support for the GB2 

distribution. This outcome is very encouraging given that the parameters of the distributions 

have been estimated from limited data, the predictions are partially “out-of-sample” for most 

countries, and the class limits iz  implied by the estimated parameters, not the iz  giving the 

“best fit”, were used to compute the predicted income proportions.  
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In Table 5, the GB2 distribution performs the best in five out of the eight cases; the 

exceptions were India rural, Russia and Brazil where the preferred distributions (Singh-

Maddala in the case of India rural and beta-2 in the other cases) were marginally better than 

GB2. With the exception of Russia, the lognormal and generalized gamma distributions 

performed very poorly in all cases. A possibly counterintuitive result is that the lognormal 

distribution outperformed the generalized gamma distribution. Since the lognormal can be 

viewed as a 2-parameter special case of the 3-parameter generalized gamma, we would 

expect the generalized gamma to do better. The problem with the generalized gamma seemed 

to lie in predicting the share of the last group. If this group was omitted, the predictions from 

the lognormal were worse. We speculated earlier that, with the generalized gamma, we may 

not have always reached a global minimum. That could be the reason for poor prediction of 

the last share. 

5.3 Inequality and poverty 

In this subsection we illustrate how the parameter estimates can be used to estimate 

inequality and poverty. The Gini and Theil coefficients were calculated using the expressions 

given in (30) and (31) for the GB2 distributions and using those in Table 1 for the beta-2, 

Singh-Maddala and Dagum distributions. Standard errors were computed numerically using 

the delta rule and the covariance matrix of the parameter estimates. Table 6 reports the 

estimated Gini and Theil coefficients and their corresponding standard errors. It is found that 

GB2 and beta-2 give similar results for the Gini and Theil coefficients while Singh-Maddala 

and Dagum give slightly different results. In terms of the standard errors, those from beta-2 

seem to be the smallest. However, in all cases the standard errors are relatively small 

compared to the estimated coefficients. Inequality is highest in Brazil followed by India 

urban; it is lowest in India rural. 
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 Table 7 reports poverty incidence using the headcount ratio (HCR) and the FGT(2) 

measure, both expressed as percentages, using a poverty line of $1.25 per day, or, in the 

monthly units used in estimation, $38. Values are calculated from the expressions in Table 1 

for the beta-2, Singh-Maddala, Dagum and GB2 distributions. The corresponding standard 

errors are also reported. Poverty is greatest in rural and urban India, followed by rural China 

and Pakistan, then Brazil. There is much less poverty in urban China, Russia and Poland. The 

estimates can be sensitive to the chosen distribution, particularly when we are in the tail of 

the distribution where the level of poverty is low; see, for example, Russian and Poland. 

6. Summary and conclusions 

Estimation of income distributions is critical for monitoring inequality and poverty at 

both national and international levels. Studies which attempt to estimate the global income 

distribution taking into account both within-country and between-country inequality typically 

utilize data provided in aggregated form by either the World Institute for Development 

Economics Research (WIDER) or the World Bank. See, for example, Milanovic (2002) and 

Chotikapanich et al (2012). Previous work by Chotikapanich et al (2012) used a method-of-

moments estimator to estimate beta-2 income distributions from this data. In this paper we 

have extended their work by providing moment conditions and the optimal weight matrix that 

can be used for GMM estimation of any class of income distributions. Specific expressions 

for the moment conditions and the optimal weight matrix were provided for the more general 

GB2 distribution, its obvious special cases the beta-2, Dagum and Singh-Maddala 

distributions, and its less obvious special cases, the generalized gamma and lognormal 

distributions. We also show how to get standard errors for the optimal GMM estimates. Once 

the parameters have been estimated, along with the covariance matrix of the estimator, they 

can be used in a variety of ways. Values for the density function, distribution function and 
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Lorenz curve and their confidence bounds can be found at a number of income values and 

then graphed. Distributions for larger regions can be obtained as population weighted 

mixtures of individual countries. Inequality and poverty measures and their standard errors 

can also be computed. We have illustrated the methodology and how a number of 

economically relevant quantities can be estimated from it, using data on 6 selected countries 

that included 8 different regions. We found that the methodology can be readily implemented 

and that the GB2 distribution provides a good fit in terms of the validity of its moment 

conditions, and the accuracy of predicted income shares from the estimated distributions. 
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Appendix 1  Optimal Weighting Matrix 

A.1 Finding 1W  as a probability limit 

We require  

         

 
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1 1

1
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It is straightforward to show that the elements of P , Q  and M  are 
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1
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ij i j i j i j i j
t i j

y g yy g y
m y y

T c c

  
          

    
    i j   

Now, let 
1

2 2

1

1 i

i

T

i tt T
i

y y
T  

  be the average of the squared observations in each group, and let 

 (2) (2) 2( ) plimi i iy    . Using this result and also that plim i ic k  and plim i iy   , we 

have for the elements of the matrix 1W  (see equation (17)), 

   plim 1ii i ip k k   

  plim ij i jp k k   

 plim 1ii i iq k  
 

plim ij i jq k    

  (2) 2plim ii i i im k    

  plim ij i jm     

A.2 Second moment for the i-th group 

It is convenient to write (2)
i  in terms of the second moment distribution function 

   

2

0
2 2

( ; )

( ; )
( )

y

t f t dt

F y
E y


 

   

Working in this direction, we have 
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where (2) 2( )E y  . 

A.3 Deriving W  from 1W  

With obvious definitions for A  and c , we write 1W  as 
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To invert this matrix, we use the result 

    1 1 1 1
1

1

1
   


   


A cc A A cc A
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First, we need to obtain 1A  which we partition as  

  
11 12

1

21 22

  
  
 

A A
A

A A
 

Using results on the partitioned inverse of a matrix, we have 

         
1

111
1

1

N
N N N

N


 

  
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0
 

This is a diagonal matrix of dimension  1N   with diagonal elements 
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Finally, 
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Appendix B  Analytic expressions for derivatives of moment conditions 

To find the asymptotic covariance matrix of the estimators we need G , the matrix of 

derivatives of the moment conditions with respect to all the parameters. We can calculate the 

elements of G  using numerical derivatives. However, it is also possible to calculate them 

analytically. To do so we first note that this matrix has the following structure: 
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where H  is partitioned as  ,k   H H H  with kH  denoting the moment conditions for the 

class proportions and H  denoting the moment conditions for the class means. Also, we 

partition θ  as    θ z ,   where  1 2 1, , , Nz z z  z   and   is the vector of parameters in the 

income distribution. The elements in kH  and H  for which we require derivatives are, 
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In this appendix, we focus on the derivatives of ( ; )iF z   and 1( ; )iF z   with respect to iz  and 

the elements in  . Finding the derivatives of   and combining these derivatives with those 

of ( ; )iF z   and 1( ; )iF z   to find the required derivatives of  i θ  is straightforward, although 

tedious. The basic tool used to find expressions for the derivatives of ( ; )iF z   and 1( ; )iF z   is 

the following standard result from calculus: 

2 2

1 2
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B.1  Derivatives for the GB2 distribution 

Let      1
a a a a a

i i i i iu z b z b z b z      . Derivatives for  ,
iuB p k a q k a   

are provided. Setting 0k   gives the required expressions for ( ; )iF z  ; setting 1k   will 

give the required expressions for 1( ; )iF z  . Derivatives for the beta-2, Singh-Maddala and 

Dagum distributions, can be obtained by setting 1a  , 1p   and 1q  , respectively. 
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In the derivatives with respect to p and q,   is the derivative of the log of the gamma 

function and 3 2F  represents the generalized hypergeometric function.  

B.2 Derivatives for the generalized gamma distribution 

For the generalized gamma distribution, we need the derivatives of  ,
iuG p k a b  

for 0k   and 1k   where a
i iu z . They are 
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The integral in the derivative with respect to p can be evaluated numerically. 
 

B.3 Derivatives for the lognormal distribution 

For the lognormal distribution, we need the derivatives of  2ln( )iz k        

for 0k   and 1k  . They are 
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2 2 2

2

ln( ) ln( ) ln( )iz k z k z k            
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where (.)  denotes the standard normal pdf. 
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Table 2: Estimated Coefficients from GB2 Distributions 

   China Rural  China Urban 

   CGR  Two‐Stage  SE  One‐Stage  SE  CGR  Two‐Stage  SE  One‐Stage  SE 

1z  11.367  10.891  0.887  10.905  0.885  53.020  52.877  0.807  52.870  0.807 

2z  13.777  13.612  0.705  13.616  0.704  65.901  65.840  0.687  65.835  0.687 

3z  16.747  16.650  0.538  16.650  0.537  84.935  84.964  0.765  84.959  0.765 

4z  22.626  22.563  0.350  22.560  0.350  101.457  101.586  0.783  101.581  0.783 

5z  33.617  33.572  0.308  33.570  0.308  117.928  118.142  0.742  118.136  0.742 

6z  41.763  41.776  0.298  41.774  0.298  135.872  136.121  0.733  136.115  0.733 

7z  55.340  55.455  0.280  55.455  0.280  156.932  157.187  0.907  157.182  0.907 

8z  83.104  83.514  0.689  83.516  0.689  183.845  184.071  1.368  184.066  1.368 

9z  111.511  112.271  1.330  112.272  1.330  223.373  223.485  2.205  223.477  2.205 

10z  126.329  127.313  1.699  127.314  1.699  298.630  299.124  3.885  299.113  3.884 

11z  140.582  141.847  2.091  141.849  2.091  387.675  389.653  6.333  389.673  6.333 

b  27.743  22.735  10.878  22.738  10.886 109.276  108.431  9.842  108.440  9.839 

p  4.918  6.900  4.945  6.903  4.949  1.930  2.100  0.751  2.099  0.751 

q  1.884  2.264  0.841  2.267  0.844  1.439  1.561  0.451  1.561  0.451 

a  1.565  1.370  0.358  1.369  0.358  2.102  1.988  0.399  1.988  0.399 

   India Rural  India Urban 

   CGR  Two‐Stage  SE  One‐Stage  SE  CGR  Two‐Stage  SE  One‐Stage  SE 

1z  20.971  20.910  0.347  20.907  0.347  19.729  19.637  0.321  19.635  0.321 

2z  24.340  24.274  0.279  24.271  0.279  23.479  23.385  0.250  23.382  0.250 

3z  28.770  28.736  0.285  28.734  0.285  29.128  29.100  0.254  29.097  0.254 

4z  32.686  32.707  0.263  32.705  0.263  34.664  34.699  0.270  34.697  0.270 

5z  36.457  36.519  0.224  36.519  0.224  40.174  40.267  0.269  40.266  0.269 

6z  40.254  40.347  0.212  40.346  0.212  46.570  46.694  0.264  46.692  0.264 

7z  44.988  45.095  0.264  45.095  0.264  54.726  54.826  0.296  54.825  0.296 

8z  51.394  51.495  0.390  51.496  0.390  64.941  64.974  0.427  64.974  0.427 

9z  61.431  61.491  0.583  61.490  0.582  81.217  81.181  0.750  81.181  0.750 

10z  80.736  80.756  0.917  80.751  0.917  112.682  112.584  1.503  112.581  1.503 

11z  105.900  106.302  1.621  106.304  1.621  153.378  153.802  2.737  153.803  2.736 

b  30.296  29.744  2.942  29.745  2.943  6.776  6.761  14.811  6.760  14.812

p  1.417  1.580  0.666  1.581  0.667  21.052  21.058  48.051  21.058  48.043

q  0.609  0.661  0.172  0.662  0.173  2.366  2.387  1.178  2.389  1.180 

a  4.244  3.963  0.877  3.960  0.876  1.201  1.194  0.444  1.193  0.444 
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Table 2: Estimated Coefficients from GB2 Distributions (cont.) 

   Pakistan  Russia 

   CGR  Two‐Stage  SE  One‐Stage  SE  CGR  Two‐Stage  SE  One‐Stage  SE 

1z  26.652  26.689  0.429  26.689  0.429  79.750  79.910  1.348  79.908  1.348 

2z  30.975  30.975  0.349  30.975  0.349  101.364  101.428  1.122  101.427  1.122 

3z  37.077  37.044  0.358  37.043  0.358  135.210  135.094  1.226  135.094  1.226 

4z  42.285  42.224  0.342  42.224  0.342  166.344  166.169  1.328  166.167  1.328 

5z  47.476  47.407  0.302  47.406  0.302  198.668  198.505  1.329  198.502  1.329 

6z  53.161  53.105  0.281  53.104  0.281  234.775  234.660  1.317  234.657  1.317 

7z  59.917  59.909  0.342  59.908  0.342  277.852  277.703  1.535  277.699  1.535 

8z  68.735  68.803  0.510  68.802  0.510  333.446  333.146  2.296  333.138  2.296 

9z  82.008  82.104  0.782  82.102  0.782  414.316  414.016  3.903  414.003  3.902 

10z  108.371  108.395  1.284  108.392  1.284  564.702  564.324  7.318  564.298  7.318 

11z  141.530  141.576  2.171  141.575  2.171  735.808  733.461  11.722  733.447  11.721

b  37.832  37.689  4.570  37.688  4.570  170.347  171.246  49.656  171.226  49.660

p  1.904  1.903  0.838  1.903  0.838  6.152  5.643  4.261  5.643  4.261 

q  0.813  0.802  0.211  0.803  0.211  4.619  4.201  2.622  4.201  2.622 

a  3.297  3.320  0.719  3.320  0.719  0.952  1.004  0.375  1.004  0.375 

   Poland  Brazil 

   CGR  Two‐Stage  SE  One‐Stage  SE  CGR  Two‐Stage  SE  One‐Stage  SE 

1z  95.853  95.527  1.591  95.517  1.591  30.022  30.289  0.564  30.318  0.564 

2z  117.507  117.131  1.285  117.120  1.284  44.736  44.816  0.554  44.820  0.560 

3z  150.310  150.100  1.353  150.089  1.353  70.527  70.698  0.745  70.631  0.763 

4z  179.794  179.867  1.424  179.857  1.424  96.635  96.729  0.851  96.612  0.859 

5z  209.978  210.315  1.390  210.305  1.390  125.954  125.798  0.880  125.655  0.879 

6z  243.370  243.905  1.352  243.893  1.352  160.347  159.434  1.035  159.290  1.052 

7z  282.956  283.603  1.552  283.591  1.552  204.023  201.667  1.532  201.568  1.598 

8z  333.865  334.264  2.285  334.256  2.285  264.539  261.845  2.439  261.900  2.551 

9z  407.922  407.971  3.814  407.963  3.814  361.476  360.107  3.745  360.607  3.829 

10z  546.846  547.417  7.068  547.397  7.068  563.605  569.661  9.003  571.962  9.200 

11z  708.788  712.313  11.450  712.337  11.450 826.852  845.195  35.083  853.705  38.098

b  148.476  140.202  54.804  140.218  54.801 179.415  160.600  14.908  159.153  15.532

p  4.761  5.428  4.092  5.428  4.092  1.935  1.489  0.386  1.514  0.419 

q  2.574  2.826  1.403  2.827  1.403  2.148  1.501  0.481  1.512  0.520 

a  1.373  1.290  0.425  1.290  0.425  1.097  1.335  0.243  1.323  0.257 
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Table 3: p-Values from J-Statistics  

GB2 B2 SM Dagum GGamma LogN 

China Rural 0.9998 0.9972 0.0000 0.0111 0.0035 0.0000 
China Urban 0.9931 0.6083 0.4344 0.8222 0.8798 0.0009 
India Rural 0.9955 0.0000 0.9696 0.9625 0.0000 0.0000 
India Urban 0.9985 0.9994 0.0000 0.3073 0.0000 0.0000 
Pakistan 0.9998 0.0080 0.9449 0.9991 0.0000 0.0000 
Russia 0.9998 0.9999 0.0005 0.0017 0.5375 0.6798 
Poland 0.9978 0.9977 0.0024 0.1515 0.1830 0.0016 
Brazil 0.7866 0.3908 0.0060 0.0000 0.0039 0.0000 
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Table 4: Observed and Estimated Percentage Shares of Income based on GB2 

China Rural China Urban India Rural India Urban 

Estimated   Observed  Estimated   Observed  Estimated   Observed  Estimated   Observed 

0.013  0.014  1.541  1.553  1.702  1.709  1.325  1.332 

0.053  0.054  2.080  2.052  2.319  2.310  1.771  1.788 

0.172  0.174  2.441  2.416  5.270  5.240  4.140  4.115 

1.010  1.002  2.675  2.665  6.453  6.416  5.264  5.225 

2.103  2.091  2.934  2.925  7.052  7.057  5.813  5.776 

3.326  3.317  3.128  3.124  7.213  7.246  6.871  6.877 

2.054  2.051  3.331  3.332  8.443  8.506  8.338  8.407 

4.588  4.591  3.571  3.587  9.829  9.888  9.265  9.360 

5.038  5.059  3.779  3.801  11.690  11.699  11.845  11.901 

7.958  8.001  4.018  4.052  13.703  13.552  15.043  15.017 

12.692  12.741  4.280  4.316  9.157  8.921  10.650  10.477 

10.770  10.781  4.526  4.561  17.169  17.456  19.673  19.726 

8.867  8.836  4.859  4.895             

6.903  6.852  5.163  5.188             

5.689  5.624  5.641  5.663             

4.322  4.258  6.139  6.138             

24.437  24.554  6.792  6.727             

      7.754  7.632             

      9.290  9.091             

      16.058  16.280             

Pakistan  Russia  Poland  Brazil 

Estimated   Observed  Estimated   Observed  Estimated   Observed  Estimated   Observed 

1.708  1.700  1.024  1.017  1.259  1.264  0.344  0.343 

2.196  2.212  1.513  1.528  1.752  1.755  0.668  0.698 

2.487  2.495  1.835  1.851  2.064  2.057  0.918  0.936 

2.705  2.720  2.115  2.125  2.330  2.320  1.148  1.157 

2.917  2.929  2.378  2.378  2.578  2.565  1.375  1.372 

3.121  3.134  2.636  2.635  2.820  2.800  1.608  1.621 

3.309  3.312  2.896  2.887  3.061  3.044  1.896  1.894 

3.505  3.501  3.163  3.146  3.309  3.306  2.083  2.089 

3.709  3.699  3.443  3.424  3.567  3.570  2.508  2.529 

3.924  3.905  3.742  3.719  3.841  3.850  2.512  2.547 

4.157  4.133  4.064  4.051  4.136  4.154  2.996  3.064 

4.413  4.378  4.420  4.408  4.461  4.490  3.381  3.443 

4.691  4.659  4.818  4.818  4.825  4.878  4.124  4.114 

5.034  5.017  5.276  5.277  5.242  5.305  4.061  4.037 

5.433  5.443  5.817  5.818  5.735  5.792  5.114  5.080 

5.944  5.991  6.480  6.470  6.340  6.361  5.813  5.792 

6.583  6.664  7.339  7.377  7.125  7.108  6.970  7.000 

7.571  7.626  8.552  8.572  8.240  8.143  8.703  8.890 

9.312  9.332  10.586  10.732  10.124  9.915  12.104  12.755 

17.280  17.150  17.902  17.767  17.192  17.322  31.674  30.639 
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Table 5: Root-Mean-Square Errors 

China 
Rural 

China 
Urban 

India 
Rural

India 
Urban

Pakistan Russia Poland Brazil 

GB2 0.0424  0.0763  0.1198  0.0673  0.0412  0.0468  0.0644  0.2779 

B2 0.0812  0.2546  1.0566  0.0880  0.3840  0.0460  0.1025  0.2538 

SM 0.9524  0.1559  0.0930  0.8243  0.1704  0.4705  0.3401  0.3026 

Dagum 0.5686  0.1418  0.2891  0.4898  0.0535  0.5632  0.3313  0.5118 

GGamma 1.4376  0.8576  2.0215  1.9490  1.3633  0.5218  0.8032  1.6572 

LogN 1.0282  0.6312  1.6683  1.5764  1.0951  0.2915  0.5702  0.9261 

 
 
 
 
 

Table 6: Gini and Theil Coefficients and Their Standard Errors 

   B2  SM  Dagum  GB2 

   Gini  SE  Gini  SE Gini SE Gini  SE 
China Rural 0.358  0.006  0.371 0.011 0.372 0.007 0.359  0.006

China Urban 0.347  0.006  0.348 0.007 0.351 0.007 0.348  0.012

India Rural 0.299  0.004  0.305 0.007 0.302 0.007 0.304  0.017

India Urban 0.377  0.007  0.385 0.010 0.384 0.008 0.376  0.007

Pakistan 0.308  0.007  0.313 0.007 0.311 0.007 0.312  0.013

Russia 0.375  0.006  0.376 0.007 0.384 0.007 0.375  0.007

Poland 0.349  0.006  0.350 0.007 0.355 0.007 0.349  0.007

Brazil 0.543  0.008  0.531 0.014 0.517 0.010 0.553  0.013

  Theil  SE  Theil SE Theil SE Theil  SE 
China Rural 0.236  0.011  0.323 0.027 0.290 0.015 0.241  0.013

China Urban 0.210  0.009  0.236 0.013 0.236 0.011 0.223  0.012

India Rural 0.159  0.005  0.197 0.013 0.180 0.010 0.191  0.013

India Urban 0.271  0.014  0.335 0.026 0.311 0.017 0.275  0.017

Pakistan 0.178  0.014  0.207 0.014 0.191 0.010 0.197  0.013

Russia 0.247  0.010  0.277 0.015 0.290 0.014 0.248  0.011

Poland 0.216  0.009  0.243 0.014 0.246 0.012 0.219  0.011

Brazil 0.603  0.029  0.614 0.056 0.581 0.034 0.672  0.113
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Table 7: Poverty Measures (%) and Their Standard Errors 
 

   B2  SM  Dagum  GB2 

   estimates  se  estimates  se  estimates  se  estimates  se 

China R 

HCR  24.742  0.242  23.138  3.293  24.212  0.312  24.445  0.391 

FGT2  2.162  0.064  1.639  1.222  1.922  0.061  2.152  0.065 

China U 

HCR  1.548  0.143  2.078  0.901  1.969  0.130  1.827  0.165 

FGT2  0.074  0.014  0.197  0.134  0.169  0.021  0.130  0.030 

India R 

HCR  41.786  0.102  42.819  2.860  43.158  0.535  42.999  0.558 

FGT2  3.672  0.091  3.371  1.356  3.466  0.078  3.418  0.085 

India U 

HCR  35.508  0.305  33.498  3.408  34.739  0.417  35.337  0.463 

FGT2  3.649  0.091  3.425  1.399  3.570  0.069  3.650  0.074 

Pakistan 

HCR  22.054  0.464  19.796  3.770  21.210  0.332  20.790  0.603 

FGT2  1.284  0.092  1.250  0.948  1.203  0.070  1.217  0.070 

Russia 

HCR  0.302  0.045  0.596  0.258  0.539  0.053  0.296  0.080 

FGT2  0.017  0.004  0.066  0.038  0.055  0.008  0.017  0.009 

Poland 

HCR  0.042  0.015  0.245  0.269  0.180  0.033  0.071  0.040 

FGT2  0.001  0.001  0.022  0.039  0.013  0.003  0.003  0.003 

Brazil 

HCR  7.530  0.071  7.226  1.163  7.054  0.071  7.411  0.111 

FGT2  1.325  0.037  1.488  N/A  1.499  0.036  1.393  0.047 
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Figure 2.  GB2-estimated pdfs for selected regions 
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Figure 3  GB2-estimated pdf and cdf for all of China 
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