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ASYMPTOTIC STATISTICAL PROPERTIES OF THE
NEOCLASSICAL OPTIMAL GROWTH MODEL

JOHN STACHURSKI

Abstract. The standard one-sector stochastic optimal growth

model is shown to be not just ergodic but geometrically ergodic.

In addition, it is proved that the time series generated by the opti-

mal path satisfy the Law of Large Numbers and the Central Limit

Theorem.

1. Introduction

Brock and Mirman (1972) is widely recognized to be one of the most

important studies in modern macroeconomics. The stochastic neo-

classical infinite horizon growth model they consider has become the

foundation and common language for a vast and growing literature,

spanning such fields as economic development, public finance, fiscal

policy, environmental and resource economics, monetary policy and

asset pricing.

A central result of Brock and Mirman’s study is that, given “Inada”

type conditions, the optimizing behavior of agents implies convergence

for the sequence of distributions describing per capita income (equiv-

alently, capital) to a unique limiting distribution, or stochastic steady

state, which is independent of initial income. In other words, the

Markov process for the state variable is ergodic.

This paper strengthens Brock and Mirman’s main conclusion in several

directions. First, we prove that the optimal process is not only ergodic

but geometrically ergodic. That is, for any given starting point, the

distance between the current distribution and the limiting distribution

decreases at a geometric rate.
1
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In addition, we prove under standard econometric assumptions on the

noise process that the series for the state variable also satisfies both

the Law of Large Numbers (LLN) and Central Limit Theorem (CLT).

The former states that sample means converge asymptotically to their

long-run expected value. The latter associates asymptotic distributions

to estimators, from which confidence intervals and hypothesis tests are

constructed.

It is shown in this paper that the number of moments of the optimal

income process for which the LLN and the CLT apply depend on the

number of finite moments possessed by the productivity shock. In the

empirical literature this shock is often taken to be lognormal. In that

case we have the remarkable conclusion that the LLN and the CLT

hold for moments of all orders.

An extensive list of references for ergodicity of the Brock–Mirman

model is given in Stachurski (2002). The majority of previous work

has used restrictions on the support of the productivity shocks, which

limits direct applicability to empirical macroeconomics. A notable ex-

ception is Mirman (1972).

LLN results for the stochastic Solow-Swan model were studied by Binder

and Pesaran (1999) when the shock is bounded away from zero. LLN

and CLT results for some stochastic growth models with unbounded

shocks were given in Stachurski (2003), but the assumptions imposed

on technology are too strict for the Brock–Mirman model. Evstigneev

and Fl̊am (1997) and Amir and Evstigneev (2000) have studied CLT

related properties of competitive equilibrium economies.

Geometric ergodicity has numerous theoretical and empirical applica-

tions in economics. As an example of the former, the rate at which

stochastically growing economies tend to their steady state is a central

component of the “convergence” debate; of the latter, geometric con-

vergence is required by Duffie and Singleton (1993) for consistency of

the Simulated Moments Estimator.
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Geometric ergodicity also has applications to numerical procedures:

When simulating time series drawn from a steady state distribution—as

in the real business cycle literature, say—bounds on run-times depend

on the rate of convergence for the distribution of the state variable to

that steady state (Santos, 2003).

The primary mathematical reference for this paper is the monograph of

Meyn and Tweedie (1993). We make use in particular of the powerful

notion of V -uniform ergodicity. Much of that theory for aperiodic

general-state Markov chains was developed only recently, by the same

authors.

2. The Model

All of the following assumptions are identical to Brock and Mirman

(1972) apart from the distribution of the shock (see comments in the

introduction). We can and do assume the existence of a single social

planner, who implements a state-contingent savings policy to maximize

the discounted sum of expected utilities. At the start of time t, the

agent observes income yt, which he or she divides between savings and

consumption. Savings is added one-for-one to the existing capital stock.

For simplicity we are going to assume that depreciation is total: current

savings and capital stock are identified. Labor is supplied inelastically,

and we normalize the total quantity to one.

After the time t investment decision is made a shock εt is drawn by

nature and revealed to the agent. Production then takes place, yielding

at the start of next period output

(1) yt+1 = f(kt) εt,

The sequence (εt)
∞
t=0 is uncorrelated; f describes technology. We can

think of the current shock εt as being realized during the production

process. As a result, (yt, kt) and εt are independent.
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Assumption 2.1. The function f : [0,∞) → [0,∞) is strictly increas-

ing, strictly concave, continuously differentiable and satisfies

(2) f(0) = 0, lim
k→0

f ′(k) = ∞, lim
k→∞

f ′(k) = 0.

Assumption 2.2. The shock ε is distributed according to ψ, a density

on [0,∞). The density ψ is continuous and strictly positive on the

interior of its domain. In addition, the moments E(εp) and E(ε−1) =

E(1/ε) are both finite for some p ∈ N.

For example, the entire class of lognormal distributions satisfies As-

sumption 2.2 for every p ∈ N.

In earlier studies it was commonly assumed that the shock ε only took

values in a closed interval [a, b] ⊂ (0,∞). In this case E(εp) and E(1/ε)

are automatically finite. For unbounded shocks the last two restrictions

can be interpreted as bounds on the size of the right and left hand tails

of ψ respectively. Without such bounds the stability of the economy is

jeopardized.

The larger p can be taken in Assumption 2.2, the tighter the conclusions

of the paper will be. For example, we prove that the Law of Large

Numbers holds for all moments of the optimal process up to order p,

and the Central Limit Theorem holds for all moments up to order q,

where q ≤ p/2.

To formalize uncertainty, let each random variable εt be defined on

a fixed probability space (Ω,F ,P), where Ω is the set of outcomes,

F is the set of events E ⊂ Ω, and P is a probability. By definition,

P{a ≤ εt ≤ b} =
∫ b

a
ψ(z)dz for all a, b and t. The notation EP means

integration with respect to P.

A feasible savings policy is a (Borel) function π from [0,∞) to itself

such that 0 ≤ π(y) ≤ y for all y. The set of all feasible policies will be

denoted by Π. Each π ∈ Π defines a Markov process on (Ω,F ,P) for
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income via the recursion

(3) yt+1 = f(π(yt)) εt.

The problem for the agent is

(4) max
π∈Π

EP

[
∞∑

t=0

βtu(ct)

]
, ct := yt − π(yt),

where, for given π, the sequence (yt)
∞
t=0 is determined by (3). The

number β ∈ (0, 1) is the discount factor, and u is the period utility

function.

Assumption 2.3. The function u : [0,∞) → [0,∞) is strictly increas-

ing, bounded, strictly concave, continuously differentiable, and satisfies

(5) lim
c→0

u′(c) = ∞.

It is now very well known that there is a unique solution to (4) in Π,

which for notational convenience we again refer to simply as π. This

optimal policy is continuous and nondecreasing. In addition, consump-

tion y−π(y) is also increasing in income. The policy is interior, in the

sense that 0 < π(y) < y for all y > 0. We take all these facts as given.

For proofs see Mirman and Zilcha (1975).

Once an initial condition for income is specified, the optimal policy

and the recursion (3) completely define the process (yt)
∞
t=0 for income.

Suppose for now that the initial condition y0 is a random variable,

with distribution equal to some density ϕ0 on [0,∞), independent of

the productivity shocks. It can then be shown that the distribution of

yt is a density ϕt for all t, and

(6) ϕt+1(y
′) =

∫
p(y, y′)ϕt(y)dy, t ≥ 0,

(7) where p(y, y′) := ψ

(
y′

f(π(y))

)
1

f(π(y))
.

Heuristically, p(y, y′)dy′ is the probability of moving from income y to

income y′ in one period. Equation (6) states that the probability of
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being at y′ next period is the probability of moving to y′ via y, summed

accross all y, weighted by the probability that current income is equal

to y. All of the above is discussed at some length in Stachurski (2002).

It is perhaps more natural to regard y0 as a single point, rather than a

random variable with a density. In this case, provided y0 > 0, one can

take ϕ1(·) = p(y0, ·), a density, and the remaining sequence of densities

is then defined inductively via (6). Let us agree to write ϕy0
t for the

t-th element so defined.

A density ϕ∗ is called stationary for the optimal process if it satisfies

(8) ϕ∗(y′) =

∫
p(y, y′)ϕ∗(y)dy, ∀y.

It is clear from (6) and (8) that if yt has distribution ϕ∗, then so does

yt+n for all n ∈ N. A density satisfying (8) is also called a stochas-

tic steady state. At such a long-run equilibrium the probabilities are

stationary over time, even though the state variable is not.

3. Results

The fundamental result of Brock and Mirman (1972) is ergodicity. That

is, for the optimal process there is a unique stationary distribution ϕ∗,

which under the current assumptions will be a density, and ‖ϕy
t−ϕ∗‖ →

0 as t→∞ for all y > 0. Here ‖ · ‖ is the L1 distance.1

Our first result strengthens this to geometric ergodicity. In the state-

ment of the theorem and much of what follows, we use the function

(9) V (y) :=
1

y
+ yp, p as defined in Assumption 2.2.

The role of V is comparable to that of a Lyapunov function. With this

definition we can state the first of our results.

1That is, ‖ϕt − ϕ∗‖ =
∫
|ϕt − ϕ∗|. Brock and Mirman (1972) used a slightly

weaker topology.
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Theorem 3.1. Let Assumptions 2.1–2.3 hold, and let (yt)
∞
t=0 be defined

by (3), where π is the optimal policy. Then (yt)
∞
t=0 is geometrically

ergodic. Precisely, there is a constant % ∈ (0, 1) and an R < ∞ such

that

(10) ‖ϕy
t − ϕ∗‖ ≤ %tRV (y), ∀ t ∈ N, y > 0,

where ϕ∗ is the unique stationary distribution for (yt)
∞
t=0.

For h a real function on the state space, define the random variable

Sn(h) :=
∑n

t=1 h ◦ yt. The LLN and CLT results are as follows.

Theorem 3.2. Let the hypotheses of Theorem 3.1 hold, and let ϕ∗ be

the stationary distribution. If h : (0,∞) → R is any Borel function

satisfying |h| ≤ V , then the Law of Large Numbers holds for h. That

is,

(11) Eϕ∗(h) :=

∫
h dϕ∗ <∞, and lim

n→∞

Sn(h)

n
= Eϕ∗(h).

If in addition h2 ≤ V , then the Central Limit theorem also holds for h.

Precisely, there is a constant σ2 ∈ [0,∞) such that

(12)
Sn(h− Eϕ∗(h))√

n

d→ N(0, σ2).

In the statement of the theorem the symbol
d→ means convergence in

distribution. If σ2 = 0 then the right hand side of (12) is interpreted as

the probability measure concentrated on zero. Also, (h−Eϕ∗(h))(yt) :=

h(yt)− Eϕ∗(h).

These results are in a rather convenient form. In particular, since

xp ≤ V (x) we see that all moments of the income process up to order p

satisfy the LLN, and all moments up to order q satisfy the CLT, where

q is the largest integer such that 2q ≤ p.

The proof centers on establishing that the optimal process is V -uniformly

ergodic for V specified by (9), where V -uniform ergodicity is defined

in Meyn and Tweedie (1993, Chapter 16). Essentially this requires
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geometric drift towards a subset of the state space which satisfies a

certain minorization condition. All of these properties are shown to

be satisfied from the model primitives and the restrictions implied by

optimizing behaviour.

4. Proofs

It is simplest in what follows to take the state space for the Markov

process (yt)
∞
t=0 to be (0,∞) rather than [0,∞). Since the optimal

process is interior and the shock is distributed according to a density,

(yt)
∞
t=0 remains in (0,∞) with probability one provided that y0 > 0,

which is always assumed to be true. The dynamics when y0 = 0 are

completely trivial so we can neglect to analyze them.

The following definitions are necessary. Let B be the Borel sets on

(0,∞), let M be the (Borel) measures on ((0,∞),B), and let P be

all ν ∈ M with ν(0,∞) = 1. For B ∈ B let 1B denote the indicator

function of B. Proofs of lemmas are given in the appendix.

Definition 4.1. The optimal process (yt)
∞
t=0 defined by (3) is called

µ-irreducible for µ ∈ P if

P{yt ∈ B for some t ∈ N} > 0, ∀ y0 > 0, B ∈ B with µ(B) > 0.

In other words, (yt)
∞
t=0 visits every set of positive µ-measure from every

starting point.

Lemma 4.1. Under Assumptions 2.1–2.3, the optimal process is µ-

irreducible for any µ ∈ P absolutely continuous with respect to Lebesgue

measure.

Definition 4.2. Following Meyn and Tweedie (1993, Chapter 5), a

set C ∈ B is called small with respect to the transition probability p

defined in (7) if there is a nontrivial ν ∈ M such that

(13)

∫
B

p(x, y) ≥ ν(B), ∀B ∈ B, x ∈ C.
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In fact their definition is a little weaker than this—but all small sets

in the sense of (13) are small in the sense of Meyn and Tweedie.

Definition 4.3. Let V be as in (9). The optimal process (yt)
∞
t=0 is

called V -uniformly ergodic (Meyn and Tweedie, 1993, Chapter 16)

if

(14) sup
y>0

{
‖ϕy

t − ϕ∗‖
V (y)

}
→ 0 as t→∞.

Almost all the results derived in this paper follow from

Proposition 4.1. Under Assumptions 2.1–2.3, the optimal process

(yt)
∞
t=0 is V -uniformly ergodic.

Proof. By Meyn and Tweedie (1993, Theorem 16.0.1), (yt)
∞
t=0 is V -

uniformly ergodic whenever it is µ-irreducible for some µ ∈ P, aperi-

odic, and there is a “petite” set C ∈ B, a % > 0 and a N < ∞ such

that

(15)

∫
V (y)p(x, y)dy − V (x) ≤ −%V (x) +N1C(x), ∀x ∈ (0,∞).

We have not defined the notions of petite sets or aperiodicity. See

Meyn and Tweedie (1993, Chapter 5) for both definitions. However,

small sets in the sense of Definition 4.2 are a special case of petite sets,

so in what follows establishing that a set is small will establish that it

is petite. Discussion of aperiodicity is given below.

By Meyn and Tweedie (1993, Lemma 15.2.8), the drift condition (15)

holds for a petite set if there is are positive constants λ < 1 and b <∞
such that

(16)

∫
V (y)p(x, y)dy ≤ λV (x) + b, ∀x ∈ (0,∞).

and, in addition, V is “unbounded off petite sets,” which in turn means

that {x : V (x) ≤ n} is petite for every n ∈ N (Meyn and Tweedie,

1993, Chapter 8). The next two lemmas establish that (16) holds, and

moreover, that that {x : V (x) ≤ n} is small and hence petite for each

n.
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Lemma 4.2. There are positive constants λ < 1 and b <∞ such that

(16) holds.

Lemma 4.3. The set {x : V (x) ≤ n} is small for each n ∈ N. More-

over, the optimal process (yt)
∞
t=0 is aperiodic.

These two results complete the proof of Proposition 4.1. �

Theorem 3.1 now follows immediately from Proposition 4.1 by Meyn

and Tweedie (1993, Theorem 16.0.1, Part (ii)).

It remains to establish Theorem 3.2. By Meyn and Tweedie (1993,

Theorem 17.0.1, Part (i)), the LLN holds for h provided that (yt)
∞
t=0

is positive Harris and
∫
|h|dϕ∗ < ∞. By positive Harris is meant

that (yt)
∞
t=0 has an invariant distribution and is Harris recurrent. For a

definition of Harris recurrent see Meyn and Tweedie (1993, Chapter 9).

For our purposes we note that by the same reference, Proposition 9.1.8,

Harris recurrence holds when {x : V (x) ≤ n} is small for each n ∈ N,

and that there is a small set C ⊂ (0,∞) such that

(17)

∫
V (y)p(x, y)dy ≤ V (x), ∀x /∈ C.

We have already shown that {x : V (x) ≤ n} is small for each n ∈ N
in Lemma 4.3. Regarding (17), let C := {x : V (x) ≤ N}, where

N ∈ N satisfies N ≥ b/(1− λ), and λ and b are the constants defined

in Lemma 4.2. If x /∈ C, then V (x) > b/(1− λ), and hence

∫
V (y)p(x, y)dy − V (x) ≤ λV (x) + b− V (x) ≤ 0,

where the first inequality is from Lemma 4.2. Therefore (yt)
∞
t=0 is pos-

itive Harris, and it remains only to show that
∫
|h|dϕ∗ < ∞. Clearly

it is sufficient to show that
∫
V dϕ∗ is finite.
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To see that this is the case, pick any intitial condition y0 = x. By the

recursion (6) and Lemma 4.2 we have∫
V (y)ϕx

t (y)dy =

∫
V (y)

[∫
p(z, y)ϕx

t−1(z)dz

]
dy

=

∫ [∫
V (y)p(z, y)dy

]
ϕx

t−1(z)dz

≤
∫

[λV (z) + b]ϕx
t−1(z)dz = λ

∫
V (z)ϕx

t−1(z)dz + b.

Iterating backwards in the same way gives us the bound

(18)

∫
V (y)ϕx

t (y)dy ≤ λtV (x) +
b

1− λ
≤M := V (x) +

b

1− λ
.

Now set Kn := 1[1/n,n]. By (18) we have∫
KnV (y)ϕx

t (y)dy ≤M, ∀ t, n.

Note that the product KnV is bounded, so, as L1 convergence implies

weak convergence, taking the limit with respect to t gives∫
KnV (y)ϕ∗(y)dy ≤M, ∀n.

Now taking limits with respect to n and using the Monotone Conver-

gence theorem gives
∫
V dϕ∗ <∞.

We have now established the LLN part of Theorem 3.2. The CLT com-

ponent is immediate from Meyn and Tweedie (1993, Theorem 17.0.1,

Parts (ii)–(iv)), given that (yt)
∞
t=0 has already been shown to be V -

uniformly ergodic. The constant σ2 is given by

σ2 = lim
n→∞

1

n
Eϕ∗ [(Sn(h− Eϕ∗(h))

2].

Appendix A

Proof of Lemma 4.1. Let µ be any probability on (0,∞) with a density.

Now take any B ⊂ (0,∞) with positive µ-measure and any y0 ∈ (0,∞).
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It is easy to check that the set [f(π(y0))]
−1 · B has positive Lebesgue

measure, so that from Assumption 2.2 we have

P{y1 ∈ B} =

∫
{z:f(π(y0))z∈B}

ψ(z)dz =

∫
[f(π(y0))]−1·B

ψ(z)dz > 0.

�

Proof of Lemma 4.2. From Stachurski [2002, Eq. (22), p. 46] there are

positive constants λ1 < 1 and b1 <∞ such that

(19)

∫
1

y
p(x, y)dy ≤ λ1

1

x
+ b1, ∀x > 0.

(In that paper, Stachurski (2002, Assumption 3) requires that E(1/ε) <

1. But if u, f and ε satisfy Assumutions 2.1–2.3 above then so do u,

(1/a)f and ε̂ := aε for any a > 0. Moreover, these two economies are

identical, as is clear from (1). Since in this paper E(1/ε) < ∞ holds,

we are free to choose a such that E(1/ε̂) = (1/a)E(1/ε) < 1.)

Next we prove that there are positive constants λ2 < 1 and b2 < ∞
such that

(20)

∫
ypp(x, y)dy ≤ λ2x

p + b2, ∀x > 0.

First choose γ ∈ (0, 1) so that γpE(εp) < 1. For such a γ we can

find a w < ∞ such that for all x > w, f(x) ≤ γ · x. (This follows

from concavity of f and f ′(∞) = 0.) For all x ∈ (0, w] we have

f(π(x)) ≤ f(x) ≤ f(w), and hence∫
ypp(x, y)dy =

∫
[f(π(x))z]pψ(z)dz ≤ f(w)pE(εp), ∀x ≤ w.

On the other hand, x > w implies f(π(x)) ≤ f(x) ≤ γx, so∫
ypp(x, y)dy =

∫
[f(π(x))z]pψ(z)dz ≤ γpE(εp)xp, ∀x > w.

Setting λ2 := γpE(εp) and b2 := f(w)E(εp) gives (20). Finally, combin-

ing (19) and (20) gives (16) when λ := min(λ1, λ2) and b := b1 +b2. �



OPTIMAL GROWTH 13

Proof of Lemma 4.3. For the first part of the lemma, evidently it is suf-

ficient to prove that every closed interval C := [a, b] ⊂ (0,∞) is small.

Since the optimal policy π is interior and continuous, and the density

ψ is strictly positive and continuous, it follows from the representa-

tion (7) that p is continous and strictly positive on (0,∞) × (0,∞).

Therefore we can find a δ > 0 such that

p(x, y) ≥ δ, ∀ (x, y) ∈ C × C.

∴
∫

B

p(x, y)dy ≥
∫

B

δ1C(y)dy, ∀x ∈ C.

Since the measure ν(B) :=
∫

B
δ1C(y)dy is nontrivial it follows that C

is ν-small.

Regarding aperiodicity, the existence of a ν-small set C in the sense of

Definition 4.2 is equivalent to strong aperiodicity in the sense of Meyn

and Tweedie (1993, Chapter 5), provided that ν(C) > 0. Clearly

ν(C) > 0 holds for the previous construction. Strong aperiodicity

implies aperiodicity. �
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