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Abstract 

 Quadratic functions are often used in regression to infer the existence of an extremum in a 

relationship although tests of the location of the extremum are rarely performed.  We investigate the 

construction of the following confidence intervals: Delta, Fieller, estimated first derivative, 

bootstrapping, Bayesian and likelihood ratio. We propose interpretations for the unbounded 

intervals that may be generated by some of these methods. The coverage of the confidence intervals 

is assessed by Monte Carlo; the Delta and studentized bootstrap can perform quite poorly. Of all the 

methods, the first derivative method is easiest to implement. 
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1. Introduction  

 Quadratic specifications have found a wide application when it is desirable for a linear 

regression to allow the relationship between the regressor and the dependent variable to exhibit a 

limited degree of nonlinearity.  It can be shown that half the negative ratio of the linear to the 

squared coefficients in a quadratic specification define the extremum or turning point of the 

relationship between the regressor and the dependent variable.  In this paper, we examine various 

methods for constructing the confidence interval for this ratio. 

 Drawing inferences from the ratio of regression coefficients is elemental in a number of 

statistical applications.  These applications include statistical calibration, slope-ratio assay, parallel- 

line assay, cost-effectiveness, surrogate endpoints and the extremum of a quadratic regression.  

Monte Carlo experiments to assess the performance of a number of different methods have been 

performed by Jones et al. (1996) for statistical calibration, Williams (1986) and Sitter and Wu 

(1993) in bioassay, Polsky et al. (1997) and Briggs et al. (1999) for cost-effectiveness ratios and 

Freedman (2001) for intermediate or surrogate endpoints.  

 Generally, the results from these Monte Carlo simulations indicate that the Fieller-based 

methods work reasonably well under a range of assumptions including departures from normality.  

The delta-based method is a consistent poor performer and often underestimates the upper limit of 

the intervals.  These studies also found merit in alternative methods including bootstrap approaches, 

and for bioassay, the interval based on the likelihood ratio approach. 

 Examples of the estimation of quadratic relationships in the economics literature are 

common. The Kuznets curve proposes that the relationship between income inequality and per 

capita income is characterized by an inverted U-shaped relationship (Kuznets 1955) and the related 

environmental Kuznets curve proposes the same relationship between the level of environmental 

degradation and per capita income. Wage profiles display the characteristic of a diminishing effect 

of increased experience on wages (Murphy and Welch, 1990). The Laffer curve relates the level of 

national income to the rate of taxation (Hsing, 1996). The relationship between alcohol 
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consumption and income implies that income increases until the level of consumption interferes 

with the ability to work (Berger and Leigh 1988, Lye and Hirschberg 2004). The economies of scale 

of a production technology suggests that as the scale of production increases, average costs decrease 

before starting to increase (Thompson and Wolf 1993).  Regressions in which a continuous 

regressor is included as a quadratic imply either a convex or concave relationship.  However, for  

these results to imply that the relationship between the regressor and the dependent variable changes 

sign the extremum point must be feasible or finite.  We propose that this can best be achieved by  

constructing the appropriate confidence interval for the extremum. 

 In this paper, we investigate the application of a number of different methods for 

constructing confidence intervals for ratios of regression parameters to determine the location of the 

extremum of a quadratic regression specification.  These methods include: the Delta method; 

Fieller’s confidence interval; a confidence interval for the 1st derivative function; the percentile and 

studentized bootstrap; a Bayesian method that assumes normally distributed regression disturbances 

with a Jeffreys’ prior; and a confidence interval based on the distribution of the likelihood ratio.   

 This paper proceeds as follows.  First, we discuss the location and relevance of the 

extremum point of the quadratic specification.  Then, we describe alternative methods for  

constructing confidence intervals.  To highlight differences between these methods two empirical 

applications based on typical data are presented.  To compare the performance of the different 

confidence intervals, we then perform a simulation experiment to study the coverage of these 

confidence bounds for a typical application.  Finally, conclusions are presented. 

 

2. The location and relevance of the extrema points in a quadratic specification 

  The regression is of the form: 

   2
1 2 0

4

k

t t t j jt t
j

y x x z
=

 
= β +β + β + β + ε 

 
∑     (1) 
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where we assume that there is a single regressor x entered as a quadratic function, k−4 linearly 

related regressors denoted by zj, and T observations.  By setting the first derivative of ( )E ,y x z  

with respect to x, ( )E ,
1 22 ,y x z

tx x∂
∂ = β + β equal to zero, we can derive the value of x at the extremum 

as 1

22
−β
βθ = . θ  is either the maximum (when 2 0β < ) or the minimum (when 2 0β > ).  The usual 

estimate of the extremum is 1

2

ˆ
ˆ2

ˆ ,−β

β
θ =  where 1β̂  and 2β̂  are the OLS estimates of 1β  and 2β  in (1) 

respectively. 

 Once θ̂  is determined it is necessary to establish if this is a relevant value in the context of 

the application.  This depends on whether θ̂  falls within the range of values that the regressor can 

take.  Although all quadratic functions, when estimated by regression, result in an extremum value 

(provided 2β̂ is not equal to 0), θ̂  may be too distant from the range of the regressor to be 

meaningful in the context of the analysis.  In addition, since the estimate of the extremum point ( θ̂ ) 

is a random variable, confidence intervals can be used to determine if it is a feasible value for x.    

Typically, when determining if a quadratic relationship is warranted, one first establishes if 

the estimate for 2β  is significantly different from zero.  Thus, the standard t-test of the null 

hypothesis that 2 0β = would indicate whether one could reject the null hypothesis of linearity.  In 

the analysis below, we demonstrate the importance of this test statistic for defining the confidence 

band of the extremum. 

3. Confidence Intervals for the Value of the Extremum 

The extremum value from the quadratic regression specification is found from a ratio of the 

parameters.  However, as is well known, in a ratio of random variables, that the denominator can  

take values close to zero.  If this occurs, the moments of the random variable defined by the ratio 

are undefined, as in the case of the Cauchy distribution, which is formed from the ratio of two 

independent standard normal random variables.  In the present case, the denominator is the estimate 

of the parameter on the squared regressor 2
ˆ( ).β  In this paper, we assume that this parameter is 



 5

significantly different from 0 and thus the denominator has a very low probability of taking a value 

of zero.  However, it will be shown that the level of significance on this parameter may be of 

greater importance than usually assumed when deciding whether a quadratic function is warranted. 

3.1 The Delta Method  

 The estimated variance of θ̂ based on the Delta method is given by (see, for example, Rao 

1973, pp 385-389): 

 ( ) ( ) ( )
( )

21
2

2 2 1
2
2

-12 2 2 2 2ˆˆ 1 12 1 2 1 2 12 1 2-1
ˆ ˆ 2 4ˆ

12 2 2ˆ

ˆ ˆ ˆ ˆ2¼ ˆ4
ββ

β β β

β

 
 σ σ σ β − β β σ +β σ   =      σ σ β    

    (2) 

where 2
1σ  is the variance of 1β̂ , 2

2σ  is the variance of 2β̂  and σ12 is the covariance between 1β̂  and 

2β̂ .  A 100(1− α )% confidence interval for θ  is  given by: 

 

2

2 2 2 2
1 2 1 2 12 1 2

4
2

ˆ ˆ ˆ ˆˆ ˆ ˆ2ˆ   ˆ4
tα

σ β − β β σ +β σ
θ ±

β
  (3)  

where 
2

tα  is the value from the t distribution with an ( )2 %α  level of significance and T− k degrees 

of freedom and 2 2
1 2 12ˆ ˆ ˆ,  and σ σ σ  are the estimated values of 2 2

1 2 12,  and ,σ σ σ  respectively. 

3.2 A Nonlinear Least Squares Estimation of the Extremum 

 An alternative approach to using the Delta method is to redefine the quadratic model in a 

nonlinear form in which the extremum value is estimated as a parameter of the model.  Define the 

extremum in the quadratic case as the parameter ( )1

22,  where ,−β
βθ θ =  and rewrite (1) by using the 

result that 1 22β = − θβ  to derive the form of the equation as: 

 ( ) 2
2 2 0

4

2
k

t t t j jt t
j

y x x z
=

 
= β θ − +β + β + β + ε 

 
∑       (4) 

When (4) is estimated by using a Gauss-Newton algorithm (as applied in most software packages), 

the estimate of the covariance between the parameters typically employs the outer product of the 



 6

gradient of the nonlinear function evaluated at each of the observations.  It can be shown that this 

covariance matrix is the same as the estimated standard error from the Delta method for the 

extremum point θ̂  (see, for example, Mikulich et al. 2003). 

3.3 The Fieller method  

 The Fieller method (Fieller 1932, 1954) provides a general procedure for constructing 

confidence limits for statistics defined as ratios.  Zerbe (1978) defines a version of Fieller’s method 

in the regression context, where the ratio βψ
β
′

=
′

K
L

 is defined in terms of linear combinations of the 

regression parameters from the same regression, 1 1 1T T k k T× × × ×= β + εY X , 1~ ( , ),T T T× ×ε σ20 I  in which 

the OLS estimators for the parameters are 1ˆ ( )−′ ′β = X X X Y , ˆ ( ) ,T k2 ′σ = −ε ε  and the vectors 

1 1 and k k× ×K L are known constants.  Under the usual assumptions, the parameter estimates are 

asymptotically normally distributed according to ( )( )12ˆ ~ ,N X X −′β β σ .  A 100(1− α )% confidence 

interval for ψ  is determined by solving the quadratic equation 2 0a b cψ + ψ + = , where 

2

2 -1 2ˆ ˆ( ) ( )a tα′ ′ ′= β − σ2L L X X L , 
2

2 -1 2 ˆ ˆˆ2 ( ) ( )( )b tα ′ ′ ′ ′= σ − β β K X X L K L  and 

2

2 2 -1 2ˆ ˆ( ) ( )c tα′ ′ ′= β − σK K X X K .  The two roots of the quadratic equation, ( ) 2

1 2
4

2, b b ac
a

− ± −ψ ψ = , 

define the confidence bounds of the parameter value.  In the case of the extremum of the quadratic 

regression equation in (1), the values of these terms can be shown to be as 

follows: ( )
2

2 2 2
2 2

ˆ ˆ 4a tα= β − σ , ( )
2

2
1 2 12

ˆ ˆ ˆ4b tα= β β − σ  and 
2

2 2 2
1 1

ˆ ˆc tα= β − σ .  We can redefine a and c 

as: ( )
2

2 2 2
2 2̂ˆ 4  a t tα= σ −  and ( )

2

2 2 2
1 1̂ˆ ,c t tα= σ −  where 1

1

ˆ
ˆ1̂t

β
σ= and 2

2

ˆ
ˆ2̂t

β
σ= . Then, the roots can be 

defined as: 

 ( )
( ) ( )( )

( )
2 2 2 2

2

2
2 2 2 2 2 2 2 2

12 1 2 1 2 12 2 1 2 1

1 2 2 2 2
2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
,

ˆˆ2

t t t t t t

t t

α α α α

α

σ −β β ± β β − σ −σ σ − −
ψ ψ =

σ −
   (5) 
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If 
2

2 2
2̂t tα>  (5) has two real roots and one can construct a finite confidence interval.  This condition 

corresponds to being able to reject 0 2H : 0β ≠ when α  is the level of significance (Buonaccorsi 

1979).  In addition to the finite interval case, the resulting confidence interval may be the 

complement of a finite interval when (b2 – 4ac > 0, a < 0) or of the whole real line when b2 – 4ac < 

0, a < 0.  These conditions are discussed in Scheffé (1970) and Zerbe (1982).   

3.4 The confidence bounds of the first derivative function  

 For the quadratic model defined by (1), the first derivative of y with respect to x defines a 

linear relationship for the slope of the quadratic function given by ( )E ,
1 22y x z

x x∂
∂ = β + β .  An estimate 

of the first derivative as a function of x can be plotted with a 100(1−α )% confidence interval 

defined as:  

  ( )( ) ( ) ( )
2

E , 2 2 2
1 2 1 12 2

ˆ ˆ ˆ ˆ ˆCI 2    + 4  + 4y x z
x x t x xα

∂
∂ = β + β ± σ σ σ    (6) 

An estimate of the extremum value, ˆ,x = θ  is found by solving 1 2
ˆ ˆ ˆ2  0β + β θ = .  Similarly, the bounds 

that define a 100(1−α )% confidence interval onθ  are found by solving for x in the relationship: 

  ( ) ( )
2

2 2 2
1 2 1 12 2

ˆ ˆ ˆ ˆ ˆ2    + 4  + 4 0x t x xαβ + β ± σ σ σ =     (7) 

which is equivalent to solving the roots of the equation:  

  ( ) ( )
2

2
2 2 2 2

1 2 1 12 2
ˆ ˆ ˆ ˆ ˆ2  -  + 4  + 4 0x t x xαβ + β σ σ σ = .     (8) 

By rearranging the terms in (8), this can be written as the quadratic equation, 2  +  +  = 0,ax bx c  

where a, b and c are defined as in the Fieller method described in Section 3.3.  This result follows 

analogously from Miller (1981 pp. 117-120).  In this case, we are considering only one possible 

value of the dependent variable.  Hence, the confidence limits found in this way for the quadratic 

specification are identical to those found by using the Fieller method.  An advantage of this 

approach is that it can provide a graphical representation of the various possible Fieller-type 

confidence intervals (see also Williams 1959, pp. 110-113). 
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3.5  Bayesian Inference 

 A number of authors have applied Bayesian techniques to draw inferences about the ratio of 

regression parameters (see, for example, Zellner 1978, Buonaccorsi and Gatsonis 1988 and Ghosh 

et al. 2003). 

 Following Buonaccorsi and Gatsonis (1988), if θ  is the extremum of a quadratic regression, 

then a locally flat prior on θ  seems an appropriate expression of the investigator’s lack of 

information.  A Jeffreys’ prior is a reference prior when all regression parameters in the model are 

treated as being equally important.  We assume a Jeffreys’ prior given by: 

 ( ) ( )
J -(( +1)+1) 1  k

Q
 π θ ∝ σ  θ 

        (9) 

where ( ) 2
11 12 22Q c +2c +cθ = θ θ , 11 12 -1

11 12 22 21
12 22

c c
A -A A A ,C

c c
 

= = 
 

 

11 12
11

12 22

A ,
s s
s s
 

=  
 

13 1
12 21

23 2

A =A ,
s s

k

k

s s 
′ =  

 
 

33 3

22

3

s s
A = ,

s s

k

k kk

 
 
 
 
 

 11 12

21 22

A A
X X=

A A
T
 ′  
 

 and 

-1
ij il

1
,  , 1

T

jl
i

s T x x j l k
=

= =∑ .  For the quadratic model defined in (1), A11 is the 2 by 2 sub-matrix of 

the cross products of the regressor (x) and the regressor squared.  Ghosh et al. (2003) show that the 

marginal posterior distribution of ,θ  assuming the regression model in (1), where tε  are i.i.d. 

( )20, ,N σ and given a Jeffreys’ prior, is:  

  ( )J / yπ θ ∝ ( )
( )

( )

1
2 2

2 1
ˆ ˆC 2

1 

T

T
SSEQ Q

+

 β θ+β   +  θ θ    

    (10) 

where SSE is the sum of squared residuals from regression (1).  In our applications below, we 

numerically integrate the density implied by (10) to determine the confidence intervals. 
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3.6  The Bootstrap Approach 

 The bootstrap method estimates the sampling distribution of a statistic based on resampling 

with replacement from the original data (see Efron, 1979).  The empirical estimate of the sampling 

distribution can then be used to construct confidence intervals.  While this approach does not rely 

on parametric assumptions concerning the underlying distribution, it can be computationally 

intensive and may require special purpose programs.  Using a conditional bootstrap for regression 

parameters (Freedman, 1981) we use both the percentile and the studentized methods for 

constructing confidence intervals. 

 The percentile method uses the ( )2100 α and ( )2100 1 α− percentile values of the bootstrap 

sampling distribution as the upper and lower confidence limits.  Although implementation is 

straight-forward, the percentile method assumes that the bootstrap replicates are unbiased, whereas 

in this application, the ratio estimates are biased but consistent (Briggs et al.  1999).   

 The studentized bootstrap or bootstrap-t (see, for example, Efron and Tibshirani 1993, p. 

160) is a widely proposed alternative to the percentile method and has been employed in a study of 

the calibration problem by Jones et al (1996).  In this approach, the bootstrap estimates of the 

extremum, ˆ ,iθ  and its estimated standard error, ˆ( ),ise θ  are used to create a new vector that has 

elements defined as: 

   
( )ˆ ˆ

ˆ
ˆ( )

i

i

i

t
se

θ −θ
=

θ
        (11) 

The ( )2100 α and ( )2100 1 α− percentile values of the vector ît  are used as the ‘t-statistics’ for defining 

the upper and lower confidence limits. A crucial assumption underlying this method is that an 

appropriate estimate of the standard error exists; in most cases, the delta method would be used to 

obtain this. 
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3.7 The Likelihood Ratio Interval 

 The likelihood ratio interval for θ consists of all values of θ  for which the null hypothesis 

0H :θ = θ  is not rejected in favour of the alternative 1H :θ ≠ θ  by means of a likelihood ratio test.  

We define the likelihood ratio statistic as ( )1 0
2 ,H HLogL LogLλ = − −  which has a chi-squared 

distribution with one degree of freedom.  
0HLogL  is the value of the log likelihood from the 

reparameterized model defined by (4), and 
1HLogL is the value of the log likelihood obtained after 

setting the value of θ  in (4) to a range of alternative values.  A 100(1−α )% likelihood ratio 

confidence interval is defined by all values of θ  that satisfy ( )2
1 ,λ < χ α  where ( )2

1χ α is the upper 

α value of the chi-squared distribution with one degree of freedom.  Following a procedure similar 

to Fieller’s, as outlined by Morgan (1992, p. 63), one can define a confidence interval by finding 

those values of θ  where ( )2
1λ = χ α .  In our applications, we assume that tε in (4) is normally 

distributed. 

4. Empirical Applications 

 To illustrate differences between confidence limits based on the different methods, we look 

at two standard textbook examples that estimate quadratic functional forms.   

4.1 The Californian Test Score Data Set  

  The data set taken from Stock and Watson (2003, p. 134) contains data for 1998 for 420 

school districts.  The data set contains data on fifth grade test scores (y) and the average annual per 

capita income in the school district (district income) measured in thousands of 1998 dollars (x). The 

median district income is 13.7 and ranges from 5.3 to 55.3.   

 A scatter plot of y against x (presented in Figure 1) indicates a curved relationship between 

the two.  To allow for this curvature, test scores can be modelled as a function of income and its 

square.  In this case, one would be interested to know if scores decline from a particular income 

level.  Estimation results for a  quadratic regression obtained by using Eviews 5 software are 

presented in Table 1. 
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  Figure 1 Scatter plot district income (y) against fifth-grade test scores (x)   
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Table 1  Regression results for Californian Test Score Data Set 

Observations: 420 
Variable Coefficient Std.  Error t-Statistic Prob.  

C 607.302 3.046 199.362 .000  
X 3.851 0.304 12.657 .000  
X2 -0.042 0.006 -6.758 .000  

R-squared 0.556 S.E.  of regression 12.724  
 
The p-value on the squared income term is significant given a t-statistic of -6.76, which indicates 

that the null hypothesis that the population regression function is linear can be rejected against the 

alternative that it is quadratic.  The extremum of the quadratic function is estimated as 45.511; its 

estimated standard error based on the Delta method is 3.438.  The 95% confidence interval implied 

by the Delta method is from 38.771 to 52.251.  The corresponding 95% confidence interval based 

on the Fieller method is from 40.218 to 54.881. 

 Figure 2 plots both the estimated relationship between income and test scores and the 

straight line that defines the first derivative function and its associated 95% confidence bounds.  In 

Section 3.4, we showed that the points at which the confidence bounds of the first derivative 

function are equal to zero define an interval that is equivalent to the confidence interval associated 
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with the Fieller method.  We have also plotted the estimated confidence interval based on the Delta 

method. 

 Figure 2  The plot of the first derivative function and the 95% confidence bounds. 
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 Using a conditional bootstrap with a pseudo sample size of 1000 and a first-order balanced 

draw that ensures all observations have an equal probability of being drawn, as proposed by 

Davison et al. (1986), we obtain an interval of 40.022 to 55.290 by using the percentile method.  

Using the Delta method to approximate the standard errors for the studentized bootstrap for the 

same draws yields a 95% interval of 37.036 to 50.478.  The Bayesian method, based on assuming a 

Jeffreys’ prior and normally distributed disturbances yields an interval of 40.210 to 54.886.  The 

likelihood ratio interval is computed as 40.224 to 54.861.  Table 2 provides a summary of the 

bounds associated with the different methods for constructing the confidence intervals. From Table 

2, the Fieller, the Bayesian, the likelihood ratio and the percentile bootstrap intervals are quite 

similar.  While the Delta and the studentized bootstrap intervals, both of which rely on the same 

estimate of the standard error, yield lower bounds. 
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Table 2  Summary of Confidence Interval Bounds for Californian Test Score Data 

Method Lower Bound Upper Bound 
Delta 38.771 52.251 
Fieller 40.218 54.881 
Studentized 37.036 50.240 
Percentile 40.022 55.240 
Bayesian 40.040 54.886 
Likelihood  40.224 54.861 

. 

4.2 Deforestation Example 

 As a counter example, we look at a case in which the evidence is less strong for the 

existence of an extremum point.  Figure 3 is a scatter plot of deforestation (y) and population 

density (x) for 70 tropical countries based on data from Koop (2000, p. 24).  The scatter plot 

indicates no obvious nonlinear relationship between the two variables although there are a number 

of outlying observations; the minimum value of x is 0.89, the maximum value is 2,769 and the 

median is 354.  In this case, a maximum would imply that once a country reaches a certain density,  

deforestation declines.   

Figure 3 Scatter plot of deforestation (y) against population density (x)   
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Table 3 reports the results for the quadratic regression. In Table 3 the t-statistic on the 

squared term is not significant at the 5% level. The estimated extremum of the quadratic function is 
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3,406. The Delta method 95% confidence interval is from -226  to 7,038;  the upper bound is more 

than twice the maximum. 

Table 3 Regression results for Deforestation example. 

Observations: 70 
Variable Coefficient Std.  Error t-Statistic Prob. 

C 0.480 0.150 3.197 0.002
X 0.001 0.000 3.222 0.002
X2 -1.92E-07 1.60E-07 -1.199 0.235

R-squared 0.446 S.E.  of regression 0.701
  

 The bounds defined by a percentile bootstrap are given by -11,373 and 17,915.  The latter 

bound is well above the maximum data point. However, the 95% confidence interval based on the 

studentized bootstrap, which is from -5,923 to 3,998 is much narrower. The estimated standard 

errors of the extremum values in the bootstrap pseudo samples are larger the greater the estimates of 

coefficients, which results in a very compressed distribution for the ît .  The Bayesian interval based 

on the assumption of a Jeffreys’ prior and normally distributed disturbances is from -6,227 to 

12,377, which is wider than the Delta interval.  These methods yield finite confidence intervals even 

if they are inappropriate. 

 When the Fieller method is used to construct the 95% confidence limit for the maximum 

value, we have a case where
2

2 2
2̂( ) 0t tα− <  (see equation 5). However, the quadratic equation that 

defines the Fieller interval still has two real roots.  This occurs when the interval is the complement 

of a finite interval. In this case the complement of a finite interval is the entire real line excluding 

the interval from -2,036 to 1,987. A plot of the confidence bounds on the first derivative function 

clarifies the situation.  

 The likelihood ratio based confidence interval is similar to that of the Fieller, given a lower 

bound of 2,001.42 and no upper bound. In this case, the first derivative result clearly shows that the 

data do not support the hypothesis of a finite extremum in this regression.  Although we cannot 

reject the hypothesis that the quadratic term in the regression is zero at any significance level below 

23.5%, the Fieller interval indicates that we can reject the hypothesis that the lower bound of the 
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plateau is less than 1,987 at the 5% level.  This is consistent with the hypothesis that deforestation is 

monotonically related to population density up to a certain point. Using both of these methods, the 

data indicate that there is no extremum point at which the positive relationship between 

deforestation and population density ceases and goes into reverse.  Table 4 lists the confidence 

bounds estimated for the deforestation case. 

Table 4 Summary of Confidence Interval Bounds for Deforestation Example 

Method Lower Bound Upper Bound 
Delta -226 7,038 
Fieller 1,987 ∞ 
Studentized -5,923 3,998 
Percentile -11,373 17,915 
Bayesian  -6,227 12,377 
Likelihood  2,001 ∞ 

 

 Figure 4 shows that the lower confidence bound for the first derivative function cuts the zero 

axis twice while the upper confidence bound for the first derivative function does not cross the zero 

axis.  When the confidence interval cuts the zero axis at -2,036, since the first derivative function 

does not approach zero, the range from -2,036 and below is not relevant for defining the lower 

bound. Hence, the bound at 1,986 can be viewed as the relevant lower bound for the first derivative 

function and the upper bound is infinite. 
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Figure 4  The first derivative function and the Fieller and Delta method confidence bounds when 
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5. Monte Carlo Experiments to compare the coverage of Confidence bounds. 

 Monte Carlo experiments were performed to investigate the properties of the confidence 

intervals generated by the methods outlined in Section 3.  The model used in the experiments is 

quadratic in a single regressor with an intercept: 2
0 1 2= + +  t t t ty x xβ β β + ε , where ( )2

t ~ N 0,ε σ  and 

the Californian test score data (from Section 4.1) is used.   In each experiment, 1β  is set to the value 

estimated in Section 4.1; that is, 3.851. The values of x range from 10 to 65 and we set values of θ  

over the range of x. That is, we modify the location of the extremum by varying the values of 2.β 0β  

is varied so that the mean of the dependent variable has the same value in each experiment. We set 

2σ  so that 2
2
2

β
σ

, the ‘true’ t-statistic for 2 ,β  equals -1.96, where 2
2σ is the variance of 2β .  

 For each value of the extremum point, 10,000 replications were computed using 

( )2 2
t 0 1 t 2 t t t

ˆy  =  + x  + x  + ,  where ~ N 0,β β β ε ε σ .  Once the simulated set of ty  were calculated, the 

regressions were run and the estimated extremum value was generated along with 95% confidence 
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bounds based on the Delta method, the Fieller method, the percentile bootstrap, the studentized 

bootstrap (with 1000 pseudo samples), the Bayesian method with a Jeffreys’ prior and the 

likelihood ratio method based on a regression with normal errors.  The coverage, which is the  

percentage of replications that resulted in confidence intervals that included the true extremum 

value (θ ), was determined. Table 5 reports the coverage of each confidence interval and the 

average t-statistic on the quadratic term obtained from each Monte Carlo experiment. 

 Table 5 The Coverage of the confidence intervals from various methods when the location 
 of the extremum varies. 

BS True 
Max 

Avg t-stat in 
simulations 

Delta Fieller
% t-stat

Bayes L Ratio 

10 -2.71 0.76 0.94 0.94 0.45 0.95 0.94 
15 -2.71 0.81 0.94 0.94 0.58 0.96 0.94 
20 -2.70 0.94 0.95 0.96 0.92 0.97 0.95 
25 -2.70 0.98 0.95 0.96 0.99 0.98 0.95 
30 -2.72 0.85 0.94 0.94 0.65 0.96 0.94 
35 -2.71 0.77 0.94 0.94 0.48 0.94 0.94 
40 -2.70 0.75 0.94 0.94 0.39 0.94 0.94 
45 -2.71 0.74 0.94 0.94 0.34 0.94 0.94 
50 -2.70 0.74 0.94 0.94 0.32 0.94 0.94 
55 -2.70 0.73 0.94 0.94 0.31 0.94 0.94 
60 -2.70 0.74 0.94 0.94 0.30 0.94 0.94 
65 -2.71 0.73 0.95 0.94 0.28 0.94 0.94 

 

 These results indicate that the coverage of the Fieller, percentile bootstrap, Bayesian and 

likelihood ratio methods are consistently close to 95% while the Delta method and the studentized 

bootstrap method, which uses the Delta method to estimate the standard error of the estimated ,θ  

yield confidence intervals that vary considerably with the value of ;θ  in some cases the true 

percentage is well below 95%.  Figure 5 provides a plot of the coverage from this experiment. 
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Figure 5  The coverage of the various confidence bounds when the location of the extreme varies. 
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 In the next set of Monte Carlo experiments we vary the value of 2.σ  The location of the 

extremum is set to the value obtained when the actual data for y and x  was used in Section 4.1. That 

is, we set the location of the maximum at the value 45.551, by setting 1β  =3.851 and 2β  =-0.042.  

0β  is varied so that the mean of the dependent variable has the same value in each experiment. In 

each experiment the value of 2σ  is set to yield a value for the ‘true’ t-statistic for 2 ,β  

( )2
2
2

that is, ,β
σ

 that varies from -3 to -12. The coverage estimated from this simulation is displayed 

in Table 6 and Figure 6.  For values of 2
2
2

β
σ

 equal to -6.758 or less, there is very little difference in 

the confidence bounds. However, the studentized bootstrap continues to provide coverage that is 

well below that of the other methods.  As the values of 2
2
2

β
σ

 goes down to -4,  the coverage of the 

confidence intervals based on the Delta and studentized bootstrap methods tend to be much less 

than 95%, while the coverage of  other methods slightly exceeds 95%. 2 

                                                 
2 Another set of Monte Carlo experiments was performed by using data on production costs in which the location of a 
minimum was of interest. Similar results to those reported here were obtained relating to the coverage of the confidence 
intervals for each of the intervals.  
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Table 6  The Coverage of the confidence intervals from various methods when the ‘true’ t-statistic 
 on 2β is varied. 
 

BS “true” t-stat
for 2β  

Avg t-stat in 
simulations 

Delta Fieller
% t-stat

Bayes L Ratio 

-3.0 -3.27 0.90 0.97 0.97 0.74 0.97 0.97 
-4.0 -4.06 0.92 0.96 0.97 0.82 0.97 0.96 
-5.0 -5.02 0.94 0.95 0.95 0.86 0.95 0.95 
-6.0 -6.00 0.94 0.95 0.95 0.89 0.95 0.95 
-7.0 -7.00 0.95 0.95 0.95 0.90 0.95 0.95 
-8.0 -8.01 0.95 0.95 0.95 0.90 0.95 0.95 
-9.0 -9.02 0.95 0.95 0.95 0.91 0.95 0.95 

-10.0 -10.03 0.95 0.95 0.95 0.92 0.95 0.95 
-11.0 -11.03 0.95 0.95 0.95 0.93 0.95 0.95 
-12.0 -12.04 0.95 0.95 0.95 0.93 0.95 0.95 

 

Figure 6  The coverage of the various confidence bounds when the ‘true’ t-statistic on 2β is varied. 
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6. Conclusions 

 In this paper we propose that inferences about the extremum value of a U- shaped or 

inverted U- shaped relationship based on the application of a quadratic regression can be made by  
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examining  its confidence interval.  We investigated the properties of the following methods for this 

confidence interval: the Delta method/nonlinear regression; the Fieller method/confidence interval 

for the first derivative function; the likelihood ratio test interval; the percentile and studentized 

bootstrap confidence intervals; and a Bayesian posterior distribution.  These methods have been 

proposed in related literature on statistical calibration, slope-ratio assay, parallel-line assay, cost-

effectiveness and surrogate endpoints. 

 From a simulation experiment based on typical data, we found that the methods that rely on 

a first order Taylor series expansion to approximate the variance of a ratio of regression parameters 

(namely the Delta method and the studentized bootstrap), have poor coverage of the confidence 

interval; particularly the studentized bootstrap.  When the coefficient on the square of the regressor 

( 2β in equation 1) is estimated with p-values of up to .001,  coverage for the Delta method is similar 

to that of any other method.  However, when this is not the case, we recommend that researchers 

avoid relying on the readily available Wald test for a ratio of parameters of a regression or a 

nonlinear regression in which the extremum is a parameter.   

 The alternative methods can be categorized by the level of computational and programming 

effort required to implement them and whether they provide finite intervals in every case.  Both the 

Bayesian method proposed here and the percentile bootstrap method, yielded finite confidence 

intervals with good coverage in the simulation.  The Fieller/first derivative function method and the 

likelihood ratio method also provided good coverage, and they may produce confidence intervals in 

which one or both of the limits are infinite.   

 Of the methods we applied, the percentile bootstrap relies on the fewest assumptions but 

requires a high level of computational effort.  The Bayesian method assumes specific distributions 

and requires the use of a complex expression and numerical integration.  Alternative Bayesian 

methods, such as, those employing Gibbs Sampling would involve more computations and 

specialized software.  The likelihood ratio interval for a linear regression with a normal error can be 

obtained similarly to the way the Fieller interval is obtained by solving a quadratic equation.  Any 
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likelihood function can be used to generate bounds by searching over the repeated evaluation of the 

likelihood ratio with alternative values of the extremum. A computational advantage of the Fieller 

method is that the equivalent first derivative function confidence bounds can be plotted by 

generating out-of-sample predictions and confidence bounds from the estimated regression. 

 A crucial feature of the Fieller-related and likelihood ratio methods is their ability to 

generate bounds that may not be finite.  This feature may be more useful than the estimation of very 

large finite bounds.  In Section 4.2, we analyzed a case in which the Fieller and the likelihood ratio 

methods implied the existence of a plateau, which is a value of the regressor beyond which it has no 

relationship to the dependent variable. Of the techniques that provide good coverage, the method 

based on the estimated first derivative function is the easiest to implement with existing computer 

software. 
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