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Abstract

We consider a model of the innovative environment where there is a distinction between ideas
for R&D investments and the investments themselves. We investigate the optimal reward
policy and how it depends on whether ideas are scarce or obvious. By foregoing investment
in a current idea, society as a whole preserves an option to invest in a better idea for the
same market niche, but with delay. Because successive ideas may occur to different people,
there is a conflict between private and social optimality. We argue that private incentives to
create socially valuable options can be achieved by giving higher rewards where "ideas are
scarce." We then explore how rewards should be structured when the value of an innovation
comes from its applications, and ideas for the innovation may be more or less scarce than
ideas for the applications.

JEL Classifications: O34, K00, L00
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1 Introduction

Patent law doctrine distinguishes innovations that deserve a patent from those that do not

according to the standards of novelty and nonobviousness. These doctrines feed a litigation

industry since it is hard to know what they mean, even in light of considerable case law,

and even harder to know what they should mean, when considered from the perspective of

optimal incentives. In this paper we study a new model in which “nonobvious” has a clear

meaning, linked to an exogenous parameter of the innovative environment. We illuminate

optimal reward schemes as they depend on nonobviousness.

Most economic models of the R&D environment begin with some sort of production

function for knowledge, which says how the investment of resources will accelerate innova-

tion, increase the probability that innovation happens, or otherwise lead to the invention

of new products or cost reductions. It is usually assumed that the production function is

common knowledge.

The production-function model of innovation is hard to square with legal doctrine. In

what sense is an innovation “nonobvious” if everyone knows how to achieve it? Legal

doctrine has disparaged mere “sweat of the brow” (cost) as a standard for patentability,

preferring some loftier ideal that involves creativity or imagination. It is hard to find

creativity or imagination in the production function for knowledge.

The model in this paper tries to bridge the gap. As in O’Donoghue, Scotchmer and

Thisse (1998), we distinguish between ideas and innovations. To innovate, the inventor

must first have an idea, which we interpret as an act of imagination, and then have an

incentive to invest in it. The notion is that “ideas” for innovations occur exogenously,

perhaps influenced by the social institutions in which potential innovators interact, but

that an idea is lost unless the recipient invests. The twist in this paper is that, if an idea

is rejected, the market niche may nevertheless be filled by someone else who comes along

later with a substitute idea that is even better.

We distinguish between obvious and nonobvious ideas on the basis of the frequency with

which substitute ideas occur to the population of innovators as a whole. We say that ideas
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are scarce if substitute ideas come along rarely. In contrast, an idea would be common

knowledge if the same idea were available to everyone at the same time.

If all the substitute ideas were available at a given time to a given person, there would

often be no conflict between the private incentive to invest and the socially efficient in-

vestment choice. It would be efficient from both points of view to invest in the best idea.

However, because the ideas occur to random people at random times, the private decision

problem is different from the social decision problem. The private investment decision is

simply to invest if the idea at hand will generate positive expected profit. The socially

efficient decision must account for the option created by not investing, namely, the option

to invest later when someone thinks of an even better idea. If substitute ideas are likely to

occur to different people, no individual will account for this option in his own investment

decision. The problem is compounded by the fact that ideas arrive at random times.

Our main conclusion is that, to mediate the conflict between private and social incen-

tives, patent rewards should reflect the scarcity of ideas. Specifically, patent rewards should

be larger in environments where ideas are scarce than in environments where substitute

ideas are likely to turn up. The legal doctrine of nonobviousness is a natural policy lever for

distinguishing among such environments. In economic environments where better ideas for

the same market niche come along rapidly, the option created by not investing is valuable.

Since other ideas will come along quickly, the patent reward should not tempt investment

in high-cost or inferior ways to fill the market niche. However, in economic environments

where ideas are scarce, there may be a large cost of delay in waiting for a better idea. The

reward system should therefore encourage investment in less good, or higher cost, ideas in

order to avoid delay.

Because there is often no record of ideas that are rejected as too costly, or of better

ideas that arrive after the market niche is filled, it is hard to track this phenomenon in

practice. However, the history of computers is suggestive. The essential concept in computer

hardware is a "switch" which can be set on or off. A switch codes bits (zeros or ones) and

many switches together can implement logic. The first conception of a general purpose
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computer (programming, logic, and memory) was by Babbage in the early 19th century.

His idea for a switch was to use brass gears, which were expensive and had to be machined

to very high precision. Although Babbage pursued his idea as a hobby, the cost could not be

justified by the main computational challenge of the day, which was to produce astronomical

tables for navigation. One hundred years later, urgent new computational problems had

emerged — notably including tables for aiming artillery pieces — and Professor Howard

Aiken of Harvard University had a cheaper way to make switches. Shortly afterward,

there emerged a better idea for switches, namely to use electrical devices. First these were

reed switches, then vacuum tubes, then transistors, and finally, integrated circuits. Today,

switches are printed onto silicon using lithographic techniques and have become so cheap

that the world produces more transistors than grains of rice.

In section 2, we present our main model and conclusions, first assuming that rewards can

be linked to the rate at which ideas occur, and then assuming that the rate must be inferred

from the delay in filling the market niche. The conclusions we draw about the optimal

reward structure can be applied equally well to prizes or patents. Section 3 asks whether

the possibility of keeping an innovation secret will subvert or reinforce our conclusions.

In section 4, we pay closer attention to patents as the incentive instrument. Section 4

asks whether a common set of patent instruments can be used to set optimal incentives

at two stages of innovation, where the main value of the first innovation is embodied in

the applications it engenders. In line with our basic model, we assume that ideas for the

innovation may be more or less scarce than ideas for the applications. In section 5, we discuss

the implications of our findings for the various policy levers of patent law, including the

nonobviousness standard, and how our findings relate to previous treatments of patentability

in the literature.
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2 Scarce ideas and optimal rewards

2.1 Model

There is market niche that may be filled with an innovation. There is an exogenous process

by which the potential innovators receive ideas for filling this market niche. Each idea

occurs at a random time, to a random recipient. Successive ideas for the given market niche

are imperfect substitutes and may require different R&D costs. We use v for the flow value

of having filled the market niche.

Each idea has associated to it an R&D cost that is drawn independently from a common

distribution F with support in [0,∞) and density f . To create an innovation, the recipient

of an idea must invest the cost. We assume that the ideas rain down on the population

according to a Poisson process with parameter λ, and we take the parameter λ as a measure

of scarcity. If the hit rate λ is low, ideas are scarce.

If the recipient of an idea discards it, it is not available to anyone else. If the recipient

of an idea invests in it, the process stops because the market niche has been filled.

The optimal policy will therefore operate by getting the population of potential innova-

tors to screen their ideas and discard those with costs that are too high. The social option

created by not investing in a given idea is that another idea might entail a lower cost. There

is thus a social trade-off between cost and delay. The policy objective is to manage this

trade-off in a way that is socially optimal.

The option for lower cost that is preserved by discarding an idea is a social option, but

not a private option for the recipient. We assume that each agent receives at most one idea.

This is an intentionally extreme assumption that highlights the main premise of the paper.

Ideas are scarce, not only for society as a whole, but especially from the perspective of any

individual.

The social policy is described by a threshold function c : R+ → R+ such that the

recipient of an idea at time t invests if the cost of the idea is less than c (t). A threshold

function is stationary if there exists c̄ in R+ such that c (t) = c̄ for all arrival times t. We

say an idea at time t is viable if it has cost less than c (t). The arrival rate of viable ideas at
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time t is λF (c (t)). The investment process ends when the first viable idea arrives because

the market niche is then filled.

The optimal threshold function will involve a trade-off between filling the market niche

at time t or waiting for a cheaper idea. The expected cost of a viable idea at time t is

EF (c (t)) =
R c(t)
0 ĉ

f (ĉ)

F (c (t))
dĉ. (1)

As seen from time t = 0, the probability that there is no viable idea before time t is

e−Λ(t,c) where Λ (t, c) =
Z t

0
λF

¡
c
¡
t̃
¢¢
dt̃

(Snyder and Miller, 1991, p. 51). As seen from time t, the probability that the first viable

idea arrives at time t̂ > t is the probability that no viable idea arrives between t and t̂ times

the probability that a viable idea arrives at time t̂, namely,

φ
¡
t̂|t, c, λ

¢
= λF

¡
c
¡
t̂
¢¢
e−[Λ(t̂,c)−Λ(t,c)] (2)

2.2 Known arrival rate: Rewards increase with the scarcity of ideas

We first assume that the Poisson arrival rate λ is known, and characterize the optimal

threshold function c, as well as optimal rewards. Our main result is that, given λ, the

optimal threshold function is stationary, and further, that the optimal stationary value

decreases with the arrival rate of ideas, λ.

Conditional on an arbitrary threshold function c, and assuming that no viable idea has

occurred before t, social welfare measured from time t is V, defined by

V (t, c, λ) =

Z ∞

t
e−r(t̂−t)

³v
r
−EF

¡
c
¡
t̂
¢¢´

φ
¡
t̂|t, c, λ

¢
dt̂

The threshold function c is optimal if (3) holds at each t.³v
r
− c (t)

´
= V (t, c, λ) (3)

The left hand side is the net social value of investing in the threshold idea at time t. The

right hand side is the expected, discounted value of waiting for a better idea. If the left
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hand side were greater than the right hand side, then social welfare could be improved by

increasing the threshold cost. If the right hand side were greater than the left hand side,

then social welfare could be increased by decreasing the threshold cost.

Taking the derivatives of (3), the optimal c satisfies the following at each t:

d

dt

³v
r
− c (t)

´
=

d

dt
V (t, c, λ) (4)

Proposition 1 Suppose that the arrival rate of ideas, λ, is fixed and known. Suppose that

c : R+ → R+ is the threshold function that maximizes V (0, ·, λ) . Then c is stationary.

This is proved in the appendix. In particular, we show that the optimized value of

V (t, c, λ) is the same at all starting times t, from which it follows, using (4), that the

optimal threshold function is stationary.

Welfare as a function of the stationary threshold c̄ can be written as

V̄ (t, c̄, λ) =

Z ∞

t
e−r(t̂−t)

³v
r
−EF (c̄)

´
φ
¡
t̂|t, c̄, λ

¢
dt̂

=
³v
r
−EF (c̄)

´Z ∞

t
e−r(t̂−t)λF (c̄) e−λF (c̄)(t̂−t)dt̂

=
³v
r
−EF (c̄)

´ λF (c̄)

λF (c̄) + r
(5)

This expression shows the trade-off faced by the policy maker. If a higher stationary cost

threshold c̄ is tolerated, the innovation will arrive sooner since the hit rate of viable ideas,

λF (c̄), is then higher, and the discounting expression, λF (c̄)
(λF (c̄)+r) , is larger.

Since the optimal threshold function is stationary, we can conceive of the optimal pol-

icy as a value c∗ (λ) ∈ R+, where c (t) = c∗ (λ) for each t. The first order condition for

maximizing (5) can be written for each λ as³v
r
− c∗ (λ)

´
− λF (c∗ (λ))

(λF (c∗ (λ)) + r)

³v
r
−EF (c

∗ (λ))
´
= 0. (6)

The (unique) solution c∗ (λ) has the property that investing in the marginal innovation

today, and receiving net value
¡
v
r − c∗ (λ)

¢
, is as valuable as waiting for the next viable

idea, which will occur with some delay, but may have a lower cost. If the arrival rate of
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ideas λ is larger, then the cost of waiting is reduced, and it is optimal to be more stringent in

the ideas that are accepted for investment. One can see this by differentiating (6) implicitly,

which leads to

Proposition 2 If the arrival rate of ideas, λ, is fixed and known, the optimal cost threshold

is stationary, and is decreasing with the arrival rate λ; that is c∗ (·) is decreasing.

To implement the optimal threshold function, let ρ : R+ → R+ be a reward function.

The reward function ρ implements the threshold function c if ρ = c. Then the recipient

finds it profitable to invest rather than discard the idea if and only if investment is optimal

according to the threshold function c. The reward function is stationary if ρ (t) = ρ̄ for

some ρ̄ ∈ R+, and the optimal stationary reward is ρ∗ (λ) = c∗ (λ) .

Proposition 3 When the hit rate of ideas is known and fixed, the optimal reward function

is stationary, and the optimal stationary value ρ∗ (·) is decreasing with the arrival rate λ.

We interpret this proposition as saying that rewards should be higher when ideas are

scarce. This is true even though the distribution of costs associated with ideas remains the

same.

2.3 Unknown arrival rate: Rewards increase with delay

Like all contracts, R&D incentives must depend on things that are verifiable. This is true

whether the R&D incentive is provided as a prize or a patent. Although we have shown

that the size of the reward should increase with the scarcity of ideas, the Poisson hit rate

cannot be verified. At best, the prize or patent authority knows the date that the innovation

materializes, but does not observe the distribution of arrival times or the arrival of ideas

that were rejected.

In this section we investigate what the prize or patent authority should do when λ is

unknown. We assume that the prize or patent authority takes the length of time without

arrival as a signal of λ. A long delay with no arrival should make the observer more

pessimistic about λ — it shifts the posterior distribution on λ toward lower values. However,
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the posterior distribution on λ must also account for the fact that some ideas are rejected.

Thus, the investment strategy by which recipients accept or reject ideas is an ingredient to

forming a posterior belief on λ.

We showed above that, when λ is known, the minimum acceptable cost to fill the market

niche is stationary. The stationary value is larger when ideas are scarce (λ is small) than

when ideas are obvious. The stationarity is essentially because the optimized value function

V is stationary, where V describes the social value of rejecting an idea and waiting for a

lower-cost idea.

We now show that, when the posterior distribution on λ is changing as time passes,

neither the optimized value function nor the optimal investment strategy is stationary. As

time passes, the posterior distribution on λ shifts toward lower values. This implies that

the (optimized) value of waiting for a better idea decreases with time. This in turn implies

that society should optimally be less discriminating about which ideas are accepted. The

socially optimal cost threshold is increasing instead of being stationary.

Let h̃ be the prior density function for the distribution of λ with support [0,∞). Then

the posterior density, conditional on a threshold function c, and conditional on no viable hit

having arrived by time t, is h (·|t, c) with cumulative distribution H (·|t, c) , where h (·|t, c)

satisfies

h (λ|t, c) = h̃ (λ) e−Λ(t,c)R
h̃ (λ) e−Λ(t,c)dλ

for each λ ∈ (0,∞)

The posterior depends on the threshold function c up to time t, through the value Λ (t, c) .

Hence, the prior distribution h̃ can be written h (·|0, c) for any threshold function c, since

at time 0 there is no prior history on which to condition a posterior, and Λ (0, c) = 0.

Let E (λ|t, c) be the expected value of λ:

E (λ|t, c) =
Z ∞

0
λh (λ|t, c) dλ

The following lemma is proved in the appendix.

Lemma 1 Given a threshold function c, if t1 < t2, then the distribution h (·|t1, c) stochas-

tically dominates h (·|t2, c), and E (λ|t2, c) < E (λ|t1, c).
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The probability that the first viable idea arrives at t̂, conditional on λ and conditional

on there being no viable idea before t, is given by (2). Then, φ
¡
t̂|t, c, λ

¢
h (λ|t, c) is the

joint density of λ and a first viable idea at time t̂, conditional on there being no viable idea

before t:

φ
¡
t̂|t, c, λ

¢
h (λ|t, c) = λF

¡
c
¡
t̂
¢¢
e−[Λ(t̂,c)−Λ(t,c)]h (λ|t, c)

Assuming that there has been no viable idea before t, the social value of continuing from

time t is given by the function Ṽ defined below. For generality and for use in the arguments

below, we have allowed that the threshold function c̃ that determines the posterior distri-

bution of λ can differ from the threshold function c that is relevant to the value Ṽ going

forward from time t. Since c̃ determines the posterior distribution on λ at time t, the only

relevant values are those that occur before t.

Ṽ (t, c, h (·|t, c̃)) =

Z ∞

0

Z ∞

t
e−r(t̂−t)

³v
r
−EF

¡
c
¡
t̂
¢¢´

φ
¡
t̂|t, c, λ

¢
h (λ|t, c̃) dt̂dλ

=

Z ∞

0
V (t, c, λ)h (λ|t, c̃) dλ

If the optimizing function c is followed at every t, the optimizing function determines

both the posterior on λ at each time t and the value V going forward. By the principle

of optimality, it will not be revised. Let c : R+ → R+ be the threshold function that

maximizes Ṽ
³
0, ·, h̃

´
. Then, analogously to (3) and (4) in the previous subsection, the

optimal threshold function c satisfies the following at each t:

v

r
− c (t) = Ṽ (t, c, h (·|t, c)) (7)

−c0 (t) = d

dt
Ṽ (t, c, h (·|t, c)) (8)

To show that c0 (t) > 0 at t, it is enough to show that d
dt Ṽ (t, c, h (·|t, c)) < 0, where c is the

optimal threshold function. The intuitive reason that Ṽ is decreasing is that the observer

becomes more and more pessimistic about the arrival rate of ideas as time continues without

a viable hit. Because of this pessimism, more delay is expected. To mitigate delay, it is

optimal to tolerate higher cost. That is why the optimal c is increasing. In the appendix

we prove the following result.

9



Proposition 4 Suppose that the arrival rate of ideas, λ, has a prior distribution h̃ with

support [0,∞), and suppose that the threshold function c maximizes Ṽ
³
0, ·, h̃

´
. Then c is

increasing.

The reward function that implements the optimal threshold function c is again ρ = c,

from which it follows that:

Proposition 5 Suppose that the optimal threshold function is increasing with the arrival

time of the innovation. Then the optimal reward is also increasing with the arrival time.

3 Optimal rewards, secrecy and scarce ideas

So far, we have assumed that the only compensation available to an innovator is the reward.

In this section, we consider environments where it is possible to appropriate the value of

the innovation, and ask whether the optimal reward must be modified if the innovator is

tempted to keep the innovation secret while marketing it instead of claiming the reward.

The key assumption is that the profit available from the secret innovation ends either when

it leaks out or when another firm gets the reward for an innovation which also fills the given

market niche. Hence, secrecy is more attractive precisely in those environments where ideas

are scarce.

We assume that the innovator cannot both get the reward and keep the innovation

secret. This is a reasonable assumption since the goal of most reward systems is to make

innovations public. Hence, if the innovator gets the reward, the innovation is disclosed.

Since secrecy creates rewards through monopoly power, we must make an assumption

about per-period profit. We will assume for simplicity that the monopolist collects the

whole social value v during the period of market incumbency. This assumption allows us

to focus on the aspect of efficiency discussed in this paper, which concerns the trade-off

between delay and cost, without being sidetracked into a discussion of deadweight loss. We

comment at the end on how these conclusions change if monopoly power entails deadweight

loss.
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Secrecy entails social costs, even in the absence of deadweight loss. In this setup,

secrecy may cause the market niche to be filled twice — first by the innovator who keeps

the innovation secret, and then possibly by a successor, who discloses his innovation.1

Surprisingly, we show that under the optimal reward structure derived in section 2, the first

innovator never has incentives to keep the innovation secret, even if he can earn the entire

social value during the period of secrecy.

For simplicity, we revert to the model where λ is known and fixed. We assume that

leakage occurs as a Poisson process with hit rate γ.2 The hit rate for ideas that will

displace the secret innovation is λF (ρ), where ρ is the reward.3 Consequently, if the per-

period reward is v, the expected revenue from keeping the innovation secret is

ρS (ρ, λ, γ) =
R∞
0 e−rt̂v

³
1− e−rt̂

´
(γ + λF (ρ)) e−(γ+λF (ρ))t̂dt̂

=
v

γ + λF (ρ) + r
. (9)

The profit from secrecy depends on the reward ρ because the reward determines the delay

before a disclosed, substitute product enters the market.

In the following proposition, we show that the innovator never prefers secrecy.

Proposition 6 Secrecy is never preferred to claiming the reward.

Proof: It holds that ρs (ρ∗ (λ) , λ, γ) < ρ∗ (λ) if

v

r

µ
1− γ + λF (ρ∗ (λ))

γ + λF (ρ∗ (λ)) + r

¶
< ρ∗ (λ)³v

r
− ρ∗ (λ)

´
−
µ

γ + λF (ρ∗ (λ))

γ + λF (ρ∗ (λ)) + r

¶
v

r
< 0

1 Implicitly we make the simplifying assumption that the second comer will not keep his innovation secret,
even if the first innovator does. This is because the duopoly profit is not very lucrative relative to the reward.

2Hence, in section 2, we were assuming that γ =∞ and leakage occurs immediately.
3Hence, we assume that if an innovation is kept secret, it does not prevent another innovator from

qualifying for the reward. In the case that the reward is given as a patent, this means that secret innovations
are not treated as prior art.
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Using (6) and
¡
v
r − ρ∗ (λ)

¢
=
¡
v
r − c∗ (λ)

¢
, this impliesµ

λF (ρ∗ (λ))

λF (ρ∗ (λ)) + r

¶³v
r
−EF (ρ

∗ (λ))
´
−
µ

γ + λF (ρ∗ (λ))

γ + λF (ρ∗ (λ)) + r

¶
v

r
< 0

v

r

µ
λF (ρ∗ (λ))

λF (ρ∗ (λ)) + r
− γ + λF (ρ∗ (λ))

γ + λF (ρ∗ (λ)) + r

¶
− λF (ρ∗ (λ))

λF (ρ∗ (λ)) + r
EF (ρ

∗ (λ)) < 0

which always holds. ¤

This proposition might be something of a surprise because the result does not depend

on the magnitudes of λ and γ. From (9), we see that the direct effect of a decrease in λ

or γ is to make secrecy more attractive at a given reward ρ. When ideas are scarce (λ is

low) or secrets are easy to keep (γ is low), secrecy may give the innovator more profit than

the reward, provided the reward is held fixed. However, as λ decreases, the policy maker

tries to compensate for the decrease in the arrival rate of ideas by making the reward more

attractive. Hence, when rewards are chosen optimally conditional on λ, secrecy is never

preferred.4

An intuition is that, although the innovator earns the full consumption value of the

innovation during the period of secrecy, he does not earn the full social value because he

does not collect as profit the expected costs that are saved by investing at present rather

than waiting. The optimal stationary reward ρ∗ (λ) grants the (larger) full social value.

The optimal stationary reward can be written as

ρ∗ (λ) =
v

λF (ρ∗ (λ)) + r
+

λF (ρ∗ (λ))

λF (ρ∗ (λ)) + r
EF (ρ

∗ (λ)) (10)

The middle term is the additional consumption value of investing in the current idea rather

than waiting, which is equal to the profit earned by the secret innovation when the leakage

rate is zero (γ = 0). (This is the most favorable circumstance for the secret innovation.)

The last term of (10) is the expected discounted cost of the next viable idea. By investing

now, society gets the interim social value (the middle term) and avoids the costs of investing

later. Thus, the optimal reward ρ∗ (λ) is the sum of both terms, and it is larger than the

profit available from secrecy, ρS (ρ∗ (λ) , λ, γ), which is only the middle term.

4This result is in contrast with that of Erkal (2005) who shows that it would be optimal to have a lenient
antitrust policy in industries where secrecy is an attractive option.
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If market power imposes deadweight loss, the conclusions so far are strengthened. There

is even less incentive to keep the innovation secret, and from a social point of view, secrecy

is even less desirable. This does not depend on whether the reward ρ is given as a prize or

a patent.

4 Balancing the rewards to basic innovations and applica-
tions

So far, we have argued in the context of a single innovation that the reward to innovation

should increase with the scarcity of ideas when λ is known, and with delay when λ is

unknown. We have assumed that the innovation has a fixed social value, v, per unit time

and asked how to incite optimal screening of ideas in a way that balances delay against

cost.

However, where innovation is cumulative, the social value of the innovation derives from

the social welfare of applications. The value created by an innovation depends on future

ideas to put the innovation to use. For example, the laser, which was patented in the 1950’s

and has no commercial value itself, has many applications with commercial value, such as

laser surgery.

Ideas for applications may be scarce or obvious themselves. The innovation policy must

then use a common set of policy levers to elicit investments at two stages. In the previous

sections, there was no suggestion that the reward is given as a patent. In fact, the easiest

interpretation is that the reward is a prize. In this section, we have in mind that the reward

is given as a patent.

Since the patent treatments of the two innovations are intertwined, one of the questions

is whether the first best can be achieved with the policy levers available. Suppose, in

particular, that ideas for the first innovation are scarce (the arrival rate is low). Then,

according to our conclusion in section 2, the reward to the first innovator should be high.

However, since the reward is bounded by the value of the application, it might not be possible

to give a high enough reward to the first innovator while also rewarding the application
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developer.

The balancing of incentives between the two generations has features in common with

other models of sequential innovation, but also differences. First, since both innovators

share a common pot of money — the value of the applications — infringement is a key

requirement for proper incentives. Without a claim on the profit generated by applications,

the first innovator would not invest and the applications might never materialize (or might

materialize with long delay) (Scotchmer, 1991). Second, there is a question of how to divide

the profit generated by the application, as well as a question of how much total profit

to create (Green and Scotchmer, 1995). Third, profit can be protected either because the

application has a patent or because the application infringes a prior patent (Scotchmer, 1996;

Denicolo, 2000). If both hold, the innovators must divide the profit. The difficulty added

in our model is that ideas for applications occur at random times, leading to randomness

in the periods of protection and infringement. Rewards for applications may therefore be

random. This may cause inefficiencies.

We first characterize the inefficiencies that may arise in the case of a single application,

and then investigate the extent to which they may be remedied when there are many

potential applications.

4.1 Single application

The parameter λ is the Poisson hit rate of ideas for the underlying innovation and δ is the

Poisson hit rate of ideas for the application. We assume that the substitute ideas for the

application have costs drawn independently from a common distribution G with density g.

As before, we first consider the optimal investment strategy. We then ask whether the

optimal investment strategy can be implemented in a patent regime. If the hit rates λ and δ

are fixed and known, the optimal investment strategies are stationary, as derived in Propo-

sition 1. There exist stationary threshold values, c∗A (δ) and c
∗
B (λ, δ), which maximize social

welfare, where the subscripts A and B refer to the application and the basic innovation.
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These are the values of c that maximize (11) and (12), respectively.

VA ( c; δ) =

Z ∞

0

³v
r
−EG ( c)

´
e−rtδG ( c) e−δG( c)t dt

=
δG ( c)

δG ( c) + r

³v
r
−EG ( c)

´
(11)

VB (c;λ, δ) =
λF ( c)

λF ( c) + r
(VA ( c

∗
A (δ) ; δ)−EF ( c)) (12)

We will assume throughout that the per-period value v of the application is fixed.

Proposition 7 [Social Optimum] Suppose that the innovation creates value only through an

application with per-period social value v. Suppose that substitute ideas for the innovation

occur at Poisson rate λ, with costs drawn independently from a distribution F, and that

substitute ideas for the application occur at Poisson rate δ, with costs drawn independently

from a distribution G. Then

(a) The optimal stationary cost thresholds (c∗A (δ) , c
∗
B (λ, δ)) are the unique values that

satisfy

0 =
³v
r
− c∗A (δ)

´
−
Ã

δG (c∗A (δ))

δG
¡
c∗A (δ)

¢
+ r

!³v
r
−EG (c

∗
A (δ))

´
(13)

0 = (VA (c
∗
A (δ) ; δ)− c∗B (λ, δ))−

Ã
λF (c∗B (λ, δ))

λF
¡
c∗B (λ, δ)

¢
+ r

!
(VA (c

∗
A (δ) ; δ)−EF (c

∗
B (λ, δ)))

(14)

(b) The optimal cost threshold c∗A (δ) decreases with δ, and the optimal cost threshold

c∗B (λ, δ) decreases with λ.

(c) The optimal cost threshold c∗B (λ, δ) increases with δ.

Proof: (a) The functions VA (c; δ) and VB (c;λ, δ) are strictly quasiconcave. These

characterizations follow from the first order conditions ∂
∂cVA (c; δ) = 0, evaluated at c =

c∗A (δ), and
∂
∂cVB (c;λ, δ) = 0, evaluated at c = c∗B (λ, δ).

(b) As in section 2, this follows from differentiating the first order conditions, (13) and

(14).
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(c) The optimizer c∗B (λ, β) of (12) increases with the value VA (c
∗
A (δ) , δ). It is easy to

see from (11) that the optimized value VA (c∗A (δ) , δ) is increasing with δ even though the

cost threshold c∗A (δ) is decreasing with δ. ¤

The only news in Proposition 7 is that, if the hit rate δ for the application is high, then

the optimal cost threshold for the basic innovation is also high, even though the optimal

cost threshold for the application is low.

The optimum can clearly be implemented by prizes that depend on the hit rates, namely

ρA (δ) = c∗A (δ) and ρB (λ, δ) = c∗B (λ, δ). We now turn to whether the optimal investment

strategies can be implemented with patent instruments, in particular, different patent lives

for the two innovations, and how that should depend on the scarcity of ideas at both stages.

We model the patent instruments in a flexible way as functions of the arrival date of

the application. This more general modelling approach is convenient because we are not

confined to constant patent lives. In fact, our first result is that if the patent lives for the

two innovations are constant, it is not possible to implement the efficient cost thresholds.

We therefore investigate whether it is possible to implement the efficient cost thresholds

with the more flexible patent instruments. We show that even with such instruments, it

may not be possible to implement the optimal cost thresholds. We comment in section 5

on how other levers of patent law might be used instead.

The flexible patent instruments are two patent-life functions (TB, TA), with values

TB (t) ≥ t and TA (t) ≥ 0, where t is the arrival date of the application, measured from the

date of the basic innovation. A value TB (t) > t expresses the notion that the application

infringes for the length of time TB (t)− t after the application arrives. The easiest interpre-

tation is that the patent on the basic innovation ends at TB (t). Another interpretation is

that the patent runs forever, and TB (t) is the date at which infringement ends. The value

TB (t) = t expresses the notion that the patent has expired when the application arrives, so

there is no period of infringement. TA (t) is the patent life of the application.

If an application developer has an idea at time t, the expected revenue from developing

the application is given by ΠA, defined in (15) below, assuming that the profit from the
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Figure 1: Patent-life functions

application is shared as (β, 1− β) during the period of infringement, where β ∈ (0, 1). (This

is an exogenous assumption about relative bargaining power in achieving a license.) The

revenue earned by the application depends on the arrival time t because both the length of

infringement TB (t)− t and the application patent life TA (t) may depend on t.

Profit is collected for a length of time that is the maximum of TB (t) − t and TA (t).

Figure 1 represents the two possible cases. In the first case, TA (t) ≤ TB (t)− t. The total

period of protection is determined by the length of the patent on the basic innovation. The

application developer pays a licensing fee to the first innovator until the application patent

expires. This is reflected in the first line in the definition of ΠA, given in (15). The first

innovator continues to earn the flow value v of the application until the patent on the first

innovation expires even if the patent on the application has expired. In the second case,

TA (t) > TB (t)− t. The total period of protection is determined by the length of the patent

on the application while the period of infringement is determined by TB (t)− t. As shown

in the second line in the definition of ΠA, during this period, the application developer and
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first innovator share the returns from the application. After this period, the application

developer keeps all the profits.

Given the patent-life functions (TB, TA) , it is useful to partition arrival times into two

sets, T ∪ T̄ = (0,∞). At arrival times t ∈ T , total profit is determined by the patent on

the application. At arrival times t ∈ T̄ , total profit is determined by the patent on the basic

innovation.

TA (t) ≤ TB (t)− t for each t ∈ T̄

TA (t) > TB (t)− t for each t ∈ T .

ΠA (t;TB, TA) (15)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− β) vr
¡
1− e−rTA(t)

¢
if

TA (t) ≤ TB (t)− t
(or t ∈ T̄ )

v
r

¡
1− e−r(TA(t))

¢
− β v

r

¡
1− e−r(TB(t)−t)

¢
if

TA (t) > TB (t)− t
(or t ∈ T )

The application is developed by the first person with an idea that would make non-

negative profit, namely, the first time t at which someone has an idea with cost less than

ΠA (t;TB, TA).

The profit available to the basic innovation is given by a function ΠB defined as

ΠB (TB, TA) =

Z
T̄

h
β
v

r

¡
1− e−rTA

¢
+

v

r

³
e−rTA − e−r(TB(t)−t)

´i
e−rtδG (c (t)) e−∆(t,c)dt

+

Z
T
β
v

r

³
1− e−r(TB(t)−t)

´
e−rtδG (c (t)) e−∆(t,c)dt (16)

where

∆ (t, c) =

Z t

0
δG
¡
c
¡
t̃
¢¢
dt̃

The basic innovation is developed by the first person whose idea has cost less thanΠB (TB, TA).

Hence, given (TB, TA) , the function ΠA (·;TB, TA) is a threshold cost function for in-

vesting in the application and ΠB (TB, TA) is a stationary threshold cost for investing in
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the basic innovation. We say that the patent-life functions (TB, TA) implement (cB, cA)

if ΠB (TB, TA) = cB and ΠA (t;TB, TA) = cA for each t. We say that the stationary cost

thresholds (cB, cA) are implementable if they are in the following set:

C = {(cB, cA) : there exist patent life functions (TB, TA) that implement (cB, cA)}

The most realistic restriction to put on the patent policy is that the patent lives are

constant. We say the patent life functions (TB, TA) are constant if for some T̄B ∈ R+ and

T̄A ∈ R+, the functions TB, TA satisfy TA (t) = T̄A for all t and TB (t) = T̄B for t ≤ T̄B and

TB (t) = t for t > T̄B.

We point out in Proposition 8 that constant patent lives cannot implement a stationary

cost threshold for the application. This is because the function ΠA (·, TB, TA) induces dif-

ferent cost thresholds at different arrival times t, even when the patent lives are constant.

An application with a later arrival date faces a shorter period of infringement and gets more

of the profit generated by its own patent.

Proposition 8 [Constant patent lives] Suppose that the value of the innovation resides in

an application with per-period value v. Assume that the application infringes the prior in-

novation’s patent during its patent life. There are no constant patent life functions (TB, TA)

that implement stationary cost thresholds.

When the arrival rates are fixed and known, by Proposition 7 the efficient cost thresholds

are stationary. Thus, constant patent lives cannot implement efficient outcomes.5 Of course,

we would not generally expect patent mechanisms to implement efficient outcomes due to

deadweight loss. However, deadweight loss is not the source of the inefficiency here since

we have assumed that patentholders earn the full value of the innovation during the patent

life. The source of the inefficiency is that the incentive to invest in the application depends

5This proposition shows that the economic conclusions are different in our environment where ideas are
scarce than in environments where ideas are common knowledge. Koo and Wright (2007) also study a model
of applications with constant patent lives, and assume that the potential application developers know at the
date of the first innovation how to achieve the application. Hence, inefficiencies may arise in their model,
not because ideas for applications arrive at random times, but rather because market structure may result
in delay or competitive rent dissipation.

19



on when the idea occurs. The recipient of a great idea may invest if it occurs late, but

may not invest earlier, due to the large licensing fees he would then owe to the prior patent

holder.6

Even though constant patent lives will not implement stationary cost thresholds, it can

be seen from (15) and (16) that other patent life functions (TB, TA) will do so. Lemma 2,

proved in the appendix, says that all patent life functions (TB, TA) that implement given

stationary thresholds (cB, cA) are equivalent to patent life functions for which the period

TB (t) − t is constant and the patent life for the application is constant (but the patent

life for the basic innovation is not constant). In Lemma 2, the constant k is the period of

infringement.

Lemma 2 [Patent lives that implement stationary cost thresholds] Suppose that the in-

novation gets value only through an application with per-period value v and that (cB, cA)

are stationary cost thresholds implemented by
³
T̃B, T̃A

´
. Then there exist (TA, TB) that

also implement (cB, cA) and satisfy the following for some k ∈ R+, T̄A ∈ R+ and every

t ∈ (0,∞):

TB (t)− t = k (17)

TA (t) = T̄A

However, it is still not obvious whether there exist (TB, TA) which implement the efficient

stationary thresholds. Proposition 9, proved in the appendix, characterizes the limits on

profit sharing, even with the very flexible patent instruments we consider. It focuses on

stationary thresholds (cB, cA) since stationarity is efficient.

Proposition 9 [Implementing the optimum with a single application] Suppose that an

innovation gets its value through an application with per-period value v. Suppose that sub-

stitute ideas for an application occur at Poisson rate δ, with costs drawn independently from

6 In a sequel to this paper, we will consider the possibility of banking ideas for later investment.

20



cB

cA

On the boundary,
0 < TB(t) – t < TA(t) = ¶

On the boundary, 
0 < TA(t) < TB(t) – t = ¶

( )1
v
r

β−
v
r

cB

cA

On the boundary,
0 < TB(t) – t < TA(t) = ¶

On the boundary, 
0 < TA(t) < TB(t) – t = ¶

( )1
v
r

β−
v
r

Figure 2: Implementable cost thresholds

a distribution G. Then the set C of implementable stationary thresholds is described by⎧⎪⎨⎪⎩(cB, cA) ∈ R+ ×R+
¯̄̄̄
¯̄̄ 0 ≤ cA ≤ v

r

0 ≤ cB ≤ δG(cA)
δG(cA)+r

¡
v
r − cA

¢
⎫⎪⎬⎪⎭ (18)

Figure 2 shows the set (18) of implementable stationary thresholds. The boundary

shows what is implementable when the two firms together collect the maximum possible

profit, v
r .
7 An increase in cA has two opposite effects on the values of cB that can be

implemented. First, since an increase in cA brings forward the expected arrival time of the

application, it increases the expected discounted profit of the first innovator. This is why

the boundary on the left side of Figure 2 (cA < (1− β) vr ) is increasing. The points on

the left side of the boundary are determined by setting TB (t) − t = ∞ for each t, and

letting the constant value T̄A (t) range from ∞ to 0. When cA is low, the maximum cB

which can be implemented is low because the innovator’s reward, which comes from the

application, is much delayed. The other effect arises because the firms are sharing a fixed

7Although the upper limit on cB is drawn in Figure 2 as a single-peaked function, this does not necessarily
hold.
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total payoff, which is the private value of the application. When the payoff to one firm

increases, the payoff to the other decreases. This is why the boundary on the right side

of Figure 2 (cA > (1− β) vr ) is decreasing. The points on this part of the boundary are

determined by setting T̄A =∞ and letting the constant value k = TB (t)− t range from ∞

to 0.

A first look at Figure 2 suggests that there will be problems in implementing the efficient

cost thresholds when innovation ideas are scarce but application ideas are frequent (λ is low

but δ is high). The optimal c∗B (λ, δ) is then high and the optimal c
∗
A (δ) is low. Problems

also seem likely in environments where both innovation and application ideas are scarce (λ

and δ are low), since the optimal c∗B (λ, δ) and c
∗
A (δ) are both high. However, the boundary

in Figure 2 shifts as δ changes. The following proposition, proved in the appendix, states

that, for any fixed λ, the efficient thresholds (c∗B (λ, δ) , c
∗
A (δ)) lie within the set in Figure

2 as δ → ∞ and δ → 0. As δ → ∞, the optimal reward to the application converges to

zero, so all the social value can be given to the first innovator. As δ → 0, the value of the

application becomes zero, so it is not optimal to support the basic innovation.

Nevertheless, efficiency may not always be achievable. We show this by considering what

happens as λ→ 0, with δ fixed. For low λ, efficient incentives require a high reward for the

first innovator. This may be inconsistent with giving adequate reward to the application

developer.

Proposition 10 Let (c∗B (λ, δ) , c
∗
A (δ)) stand for the efficient stationary cost thresholds. (i)

For given λ ∈ (0,∞), as δ → ∞ and as δ → 0, (c∗B (λ, δ) , c
∗
A (δ)) are implementable. (ii)

For given δ ∈ (0,∞), as λ→ 0, (c∗B (λ, δ) , c
∗
A (δ)) are not implementable.

4.2 Multiple applications

We now ask whether the problem of inefficiency stated in Proposition 10 is mitigated when

there are n applications rather than one. On one hand, if there are n applications, each

application developer only pays 1/n of the innovator’s total reward. Thus, even if ideas

for each application are frequent, so they optimally receive low rewards, the first innovator
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might be highly rewarded because he collects licensing fees from many applications. On the

other hand, the social value of the innovation increases proportionately with the number of

applications. Delay in achieving the first innovation becomes more costly, which calls for a

higher reward. This may restore the conflict.

We investigate which of these intuitions dominates. Proposition 11 shows a sense in

which, with many applications, the constraint described in Proposition 10(ii) will not bind

very severely as n becomes large, regardless of how low the reward to applications is.

If there are n applications, each with the same arrival rate of ideas δ, the same per-period

social value v, and the same distribution of costs, the optimized value of the applications

is nVA (c
∗
A (δ) ; δ) instead of VA (c

∗
A (δ) ; δ). Analogously to (14), the optimal investment

threshold for the basic innovation, c∗B,n (λ, δ), satisfies

0 =
¡
nVA (c

∗
A (δ) ; δ)− c∗B,n (λ, δ)

¢
(19)

−

⎛⎝ λF
³
c∗B,n (λ, δ)

´
λF

³
c∗B,n (λ, δ)

´
+ r

⎞⎠ ¡nVA (c∗A (δ) ; δ)−EF

¡
c∗B,n (λ, δ)

¢¢
Since the value of the innovation is n times its value with one application, there is more social

cost to delaying the innovation, and the innovation should be more highly rewarded. It is

easy to see from (19) that c∗B,n (λ, δ) is increasing in n and also that F
³
c∗B,n (λ, δ)

´
→ 1 as

n→∞. That is, with high probability, the first idea for the innovation should be accepted.

We now ask whether the optimal stationary cost thresholds
³
c∗B,n (λ, δ) , c

∗
A (δ)

´
can

be implemented. Given (TA, TB) , the first innovator’s profit scales with the number of

applications. Namely, it is nΠB (TB, TA) . Hence, the equilibrium cost threshold for the

underlying innovation also scales with the number of applications. With one application,

the cost threshold is ΠB (TA, TB). With n applications, the cost threshold is nΠB (TA, TB).

Proposition 11 shows that with many applications, the optimal stationary cost thresh-

olds can be implemented if the support of F is bounded. Even if the applications receive

a low reward, the first innovation’s reward will be high enough so that every cost from the

bounded support is accepted. The difficulty in sharing profit vanishes.

This is not true if the support of F is unbounded. The first idea that arrives may have

23



such high cost that it exceeds the profit available to the first innovator from licensing n

applications. However, as n grows, the probability that this happens becomes lower and

lower. The tails of the distribution F have only small probability if the mean of F is finite.

Therefore, the probability of discarding the first idea goes to zero. In expectation, the delay

in achieving the first innovation also goes to zero.

Proposition 11 [Implementing the optimum with many applications] Suppose that an in-

novation gets its value through n applications, each with per-period value v. Suppose that

substitute ideas for the innovation occur at Poisson rate λ, with costs drawn independently

from a distribution F , and that substitute ideas for each application occur at Poisson rate

δ, with costs drawn independently from a distribution G.

(a) If F has bounded support [c, c̄], then there exists n̄ such that if n > n̄, the optimal

stationary cost thresholds
³
c∗B,n (λ, δ) , c

∗
A (δ)

´
are implementable.

(b) If the support of F is [0,∞), there exist a sequence of implementable stationary cost

thresholds (c̄B,n, cA) such that
µ

λF(c̄B,n)
λF(c̄B,n)+r

¶
→
µ

λF(c∗B,n(λ,δ))
λF(c∗B,n(λ,δ))+r

¶
as n→∞.

Proof: With n applications, the following describes the thresholds (cB,n, cA) that can

be implemented, analogously to Proposition 9:

⎧⎪⎨⎪⎩(cB,n, cA) ∈ R+ ×R+
¯̄̄̄
¯̄̄ 0 ≤ cA ≤ v

r

0 ≤ cB,n
n ≤ δG(cA)

δG(cA)+r

¡
v
r − cA

¢
⎫⎪⎬⎪⎭ (20)

(a) Since c∗B,n (λ, δ) ≤ c̄, it holds that
c∗B,n(λ,δ)

n → 0 as n → ∞. Hence, since cA < v
r , it

follows directly from (20) that
³
c∗B,n (λ, δ) , c

∗
A (δ)

´
is implementable for sufficiently large n.

(b) The inequalities in (20) imply that
³
c∗B,n (λ, δ) , c

∗
A (δ)

´
are implementable if c∗B,n (λ, δ) ≤

c̄B,n, where c̄B,n = n

µ
δG(c∗A(δ))

δG(c∗A(δ))+r

¶£
v
r − c∗A (δ)

¤
. Then if c∗B,n (λ, δ) ≤ c̄B,n,

³
c∗B,n (λ, δ) , c

∗
A (δ)

´
are implementable. Suppose instead that c∗B,n (λ, δ) > c̄B,n for some large n. It follows

from (19) and the fact that nVA ( c∗A (δ) ; δ) → ∞ as n → ∞ that c∗B,n (λ, δ) → ∞ as

n → ∞. It also holds that c̄B,n → ∞. Therefore,
µ

λF(c∗B,n(λ,δ))
λF(c∗B,n(λ,δ))+r

¶
→

³
λ

λ+r

´
andµ

λF(c̄B,n)
λF(c̄B,n)+r

¶
→
³

λ
λ+r

´
, hence

µ
λF(c∗B,n(λ,δ))

λF(c∗B,n(λ,δ))+r

¶
→
µ

λF(c̄B,n)
λF(c̄B,n)+r

¶
. ¤
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Proposition 11 can be interpreted to mean that any conflict in rewarding the two gen-

erations of innovators almost vanishes when there are many applications. Even if each

application generates low revenue, the revenue earned by the first innovation can be high

since the innovator receives licensing fees from each application.

5 Economic Concepts and Legal Concepts

There are two sets of arguments in this paper. One set of arguments is about the optimal size

of rewards. The other is about how the rewards should be structured when two generations

of innovations are at stake.

We have argued that rewards (whether prizes or patents) should be higher in environ-

ments where ideas are scarce. If ideas are scarce, higher cost should be tolerated in order

to reduce delay. The same principle applies in the context of basic and applied research. If

rewards can be given separately for the two generations of innovations, then in each case,

the optimal reward depends on the scarcity of ideas for achieving it.

In the context of basic and applied research, there are two reasons that first-best in-

vestment incentives might not be achievable with intellectual property.8 The first is that

there is a natural problem of budget balance. Both generations of innovators must be re-

warded from the same pot of money, which is the value of the intellectual property right

on the applications. The second is that there is a problem of how to divide profit. Even if

applications provide enough revenue to reward both innovators optimally, the intellectual

property regime restricts how it can be divided (see Figure 2).

This paper has illuminated a new subtlety in the problem of dividing profit. Because

ideas for applications arrive at random times, different applications may face different pe-

riods of infringement, and thus receive different rewards. For this reason, a patent system

with constant patent lives cannot generally create optimal incentives. What matters for

incentives are the period of infringement and the patent life on the applications, but not

otherwise the length of the patent on the basic innovation.

8These also show up in other models of basic and applied research, e.g., Green and Scotchmer (1995),
Scotchmer (1996) and Denicolo (2000), and other papers referenced in chapter 5 of Scotchmer (2004).
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We now ask whether patent law has levers that can achieve our economic prescrip-

tions. The main requirements for obtaining a patent are novelty, nonobviousness, utility

and enablement. Nonobviousness governs the breadth of claims that are granted. When the

statutory patent life is the same for all patentable innovations, breadth is the main lever

to differentiate rewards. Our main prescription is that, when ideas are scarce, the nonobvi-

ousness requirement should be interpreted to grant generous claims, or broad patents.

In our model, a broad patent on a basic innovation is interpreted as a long period of

collecting license fees from applications developers. There is probably no policy lever to fine-

tune the period of infringement, but the same effect can be achieved by creating uncertainty

as to whether applications infringe, and providing for a higher probability of infringement

when ideas for the basic innovation are scarce. However it is achieved, a broad patent on

the basic innovation impinges on the profit of applications developers. This demonstrates

the basic conflict that arises when both innovators must be rewarded from the same pot

of money. The profit of the applications developers might be restored by lengthening or

broadening their own patents, but there is no provision in patent law that allows courts or

the PTO to adjust patents according to duties owed to previous patent holders.

Despite these limitations in patent law, there is one redeeming feature that we have

not yet mentioned. In our discussion of applications, we made the simplifying assumption

that ideas for every application arrive at the same rate δ, and therefore all applications

require the same reward. Suppose, however, that ideas for different applications arrive at

different rates and the time of arrival is a signal of the arrival rate. Then, as in section 2.3,

patent rewards should increase with the time of arrival. Rewards will automatically have

this feature if the patent lives of both the basic innovation and applications are constant.

Applications that arrive later will receive a higher reward because they face a shorter period

of infringement and smaller licensing fees.

We close this section by comparing our interpretation of nonobviousness to others pro-

posed by economists. Previous models which try to link economic concepts to novelty and

nonobviousness focus either on the amount of progress that is required for a patent (Scotch-
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mer and Green, 1990; O’Donoghue, 1998; Hunt, 2004), or the amount of progress that is

required to escape infringement (O’Donoghue, Scotchmer and Thisse, 1998). Our own no-

tion of nonobviousness is not defined by increments to progress, but rather by scarcity of

ideas for investment in the first instance.9

Our new interpretation is rooted in a different model of the R&D process. We interpret

ideas, and the fact that ideas are private, as a model of imagination or creativity. Ideas

have economic value because they are scarce. Because ideas are not common knowledge,

innovators make positive profit in expectation. This conclusion contrasts with most “racing”

models, where opportunities to invest are common knowledge and profit is dissipated by

entry. In those models, resources are scarce, but ideas are not.

Since our model of the ideas process is closely related to that of O’Donoghue, Scotchmer

and Thisse (1998), we clarify the differences. The policy variable in the earlier paper is the

quality difference between an earlier product and a later product such that the later product

does not infringe. They call this parameter “leading breadth.” Leading breadth governs the

length of time that an innovator remains the market incumbent, and also governs the per-

period profit during the period of incumbency. In the environment they consider, ideas come

in different “sizes” (increments to quality), and leading breadth establishes the minimum

size idea that will become an innovation.

In the model of this paper, ideas are distinguished by cost rather than quality. However,

that is not the essential difference. The essential difference is that we allow the patent

treatment to depend on the arrival rate of ideas, rather than on aspects of the realized

technology, such as the increment to progress, or the cost of achieving it. Our argument

thus lends support for the patent authority’s use of “long-felt need” as a standard for

patentability and a reason to be more generous with patents.10

9Like us, legal commentators have advocated that courts consider the innovative environment in addition
to the technology under consideration. Merges (1993) advocates that the court considers the uncertainty of
success, as well as rival technologies. Barton (2003) and Duffy (2007) argue, in a spirit similar to this paper,
that the court should be less generous in environments with rapid turnover.
10Patent offices instruct their examiners to consider long-felt need in deciding what merits a patent. See

European Patent Office (2007), Australian Patent Office (2007), and U.S. Patent and Trademark Office
(2007).
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6 Appendix

6.1 Proof of Proposition 1

We first show that the optimized value of V is stationary.

Claim 1 Given t1 < t2, let c1 : (t1,∞) → R+ be the function that maximizes V (t1, c, λ) ,

and let c2 : (t2,∞)→ R+ be the function that maximizes V (t2, c, λ) . Then V (t1, c1, λ) =

V (t2, c2, λ) .

Proof: Define a function c̃1 : (t1,∞)→ R+ by

c̃1
¡
t̂
¢
= c2

¡
t̂+ t2 − t1

¢
(21)

The function c̃1 is the same function as c2, except shifted to begin at t1 instead of t2. Then

by definition, V (t1, c1, λ) ≥ V (t1, c̃1, λ) , and by construction, V (t1, c̃1, λ) = V (t2, c2, λ).

Hence, V (t1, c1, λ) ≥ V (t2, c2, λ) .

Now reverse the roles and define a threshold function c̃2 : (t2,∞)→ R+ by

c̃2
¡
t̂
¢
= c1

¡
t̂− t2 + t1

¢
Then by definition, V (t2, c2, λ) ≥ V (t2, c̃2, λ) , and by construction, V (t2, c̃2, λ) = V (t1, c1, λ).

Hence, V (t2, c2, λ) ≥ V (t1, c1, λ). Together with V (t1, c1, λ) ≥ V (t2, c2, λ) , this proves the

result. ¤

Claim 1 implies that d
dtV (t, c, λ) = 0. Using (4), this implies that c

0 (t) = 0 at each t.

6.2 Proof of Lemma 1

We need to show that H (λ|t1, c) < H (λ|t2, c) for each λ in the interior of the support [0,∞)

and for each t2 > t1 ≥ 0, holding c fixed. It is enough to show that (d/dt)H (λ|t, c) > 0.

We use
d

dt
h (λ|t, c) = F (c (t))h (λ|t, c) [E (λ|t, c)− λ]

Define a function g by g
³
λ̂
´
=
h
E (λ|t, c)− λ̂

i
. Because g is decreasing, if λ is such that

g (λ) > 0, it holds that

d

dt
H (λ|t, c) =

Z λ

0

d

dt
h
³
λ̂|t, c

´
dλ̂ = F (c (t))

Z λ

0
h
³
λ̂|t, c

´
g
³
λ̂
´
dλ̂ > 0
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Now consider λ such that g (λ) ≤ 0. Then since

0 =
d

dt

Z ∞

0
h
³
λ̂|t, c

´
dλ̂ =

d

dt

Z λ

0
h
³
λ̂|t, c

´
dλ̂+

d

dt

Z ∞

λ
h
³
λ̂|t, c

´
dλ̂

and
d

dt

Z ∞

λ
h
³
λ̂|t, c

´
dλ̂ = F (c (t))

Z ∞

λ
h
³
λ̂|t, c

´
g
³
λ̂
´
dλ̂ < 0

it holds that

d

dt
H (λ|t, c) = d

dt

Z λ

0
h
³
λ̂|t, c

´
dλ̂ = F (c (t))

Z λ

0
h
³
λ̂|t, c

´
g
³
λ̂
´
dλ̂ > 0

Therefore, h (·|t1, c) stochastically dominates h (·|t2, c) and E (λ|t2, c) < E (λ|t1, c).

6.3 Proof of Proposition 4

The conclusion that c is increasing follows from (7) and (8), since we can show that Ṽ

is decreasing. For the derivative of Ṽ , we need the derivative of the conditional density

function at t̂ > t,

d

dt
φ
¡
t̂|t, c, λ

¢
h (λ|t, c) = F (c (t))E (λ|t, c)φ

¡
t̂|t, c, λ

¢
h (λ|t, c)

Differentiating Ṽ with respect to t gives

d

dt
Ṽ (t, c, h (·|t, c))

= −
³v
r
−EF (c (t))

´
F (c (t))E (λ|t, c) + rṼ (t, c, h (·|t, c))

+

Z ∞

t

Z ∞

0
e−r(t̂−t)

³v
r
−EF

¡
c
¡
t̂
¢¢´ d

dt

£
φ
¡
t̂|t, c, λ

¢
h (λ|t, c)

¤
dλ dt̂

= −
³v
r
−EF (c (t))

´
F (c (t))E (λ|t, c) + rṼ (t, c, h)

+F (c (t))E (λ|t, c)
Z ∞

t

Z ∞

0
e−r(t̂−t)

³v
r
−EF

¡
c
¡
t̂
¢¢´

φ
¡
t̂|t, c, λ

¢
h (λ|t, c) dλ dt̂

= −
³v
r
−EF (c (t))

´
F (c (t))E (λ|t, c) + (r + F (c (t))E (λ|t, c)) Ṽ (t, c, h (·|t, c))

= (r + F (c (t))E (λ|t, c))
∙
−
³v
r
−EF (c (t))

´ F (c (t))E (λ|t, c)
r + F (c (t))E (λ|t, c) + Ṽ (t, c, h (·|t, c))

¸
= (r + F (c (t))E (λ|t, c))

∙
−
³v
r
−EF (c (t))

´ F (c (t))E (λ|t, c)
(r + F (c (t))E (λ|t, c)) +

³v
r
− c (t)

´
(̧22)
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where the last line follows from (7).

First, the optimizing function c cannot be “U-shaped" on any domain. If the func-

tion c is “U-shaped” on some domain, there exist t1 and t2 such that t1 < t2, c (t1) =

c (t2) , and c0 (t1) < 0 < c0 (t2). However, this generates a contradiction. It holds that¡
v
r −EF (c (t1))

¢
=
¡
v
r −EF (c (t2))

¢
,
¡
v
r − c (t1)

¢
=
¡
v
r − c (t1)

¢
, F (c (t1)) = F (c (t2)) ,

and (using Lemma 1) E (λ|t1, c) > E (λ|t2, c). Hence, using (22), d
dt Ṽ (t1, c, h (·|t1, c)) <

d
dt Ṽ (t2, c, h (·|t2, c)). Together with c0 (t1) < 0 < c0 (t2) , this contradicts (8).

Proposition 4 then follows from Claim 2 and Claim 3 below. By Claim 3, if c is the

optimal threshold function, Ṽ (t, c, h (·|t, c)) is decreasing with t on a domain (t̄,∞). There-

fore, using (8), it also holds that c is increasing on that domain. But it then follows that

the entire function c is nondecreasing, since c cannot be U-shaped on any domain. And, in

fact, c is increasing because the derivative (22) is not constant on any interval.

Claim 2 Let c be the threshold function that maximizes V
³
0, ·, h̃

´
. Then there exists t̄ such

that the function t→ e−rt
¡
v
r −EF (c (t))

¢
is decreasing on the domain (t̄,∞) .

Proof of Claim 2: Because the optimal c cannot be U-shaped, it is either nonincreasing

or nondecreasing for sufficiently large t. Further, because c is bounded above and below,

it holds that c0 (t) → 0, c (t) → c∗, EF (c (t)) → EF (c
∗) for some c∗ ∈

£
0, vr

¤
. The result

follows because

d

dt
e−rt

³v
r
−EF (c (t))

´
= e−rt

∙
−r
³v
r
−EF (c (t))

´
− dEF (c (t))

dc (t)
c0 (t)

¸
→ − re−rt

³v
r
−EF (c

∗)
´

¤

To show that c is increasing for sufficiently large t, we show that Ṽ is decreasing for

sufficiently large t, when evaluated at the optimal c that satisfies (8).

Claim 3 Let c be the threshold function that maximizes V
³
0, ·, h̃

´
. Then there exists a

domain (t̄,∞) for which

Ṽ (t1, c, h (·|t1, c)) > Ṽ (t2, c, h (·|t2, c)) if t̄ ≤ t1 < t2
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Proof of Claim 3: Wewill take the domain (t̄,∞) as the domain on which e−rt
¡
v
r −EF (c (t))

¢
is decreasing, by Claim 2. We will show that

Ṽ (t1, c, h (·|t1, c)) ≥ Ṽ (t1, c̃, h (·|t1, c)) > Ṽ (t2, c, h (·|t2, c)) if t̄ ≤ t1 < t2 (23)

where c̃ is defined by c̃ (t) = c (t) for t < t1 and c̃ (t) = c (t+ t2 − t1) for t ≥ t1.

The first inequality in (23) is true by the principle of optimality. Beginning from time t1,

the optimizing function is still c, as it was when optimized from the beginning. If c̄ satisfies

Ṽ (t1, c̄, h (·|t1, c)) ≥ Ṽ (t1, ĉ, h (·|t1, c)) for all threshold functions ĉ, then c̄ (t) = c (t) for

every t ≥ t1.

It is the second inequality in (23) that we must show. The function c̃ in Ṽ (t1, c̃, h (·|t1, c))

is defined by the function c restricted to (t2,∞) and shifted back in time to t1. For a

fixed λ, it would therefore hold that V (t1, c̃, λ) = V (t2, c, λ). However, Ṽ (t1, c̃, h (·|t1, c)) 6=

Ṽ (t2, c, h (·|t2, c)) because λ is unknown, and the posterior distribution on λ is different at t1
than at t2. In particular, using Lemma 1, h (·|t1, c) puts relatively high weight on high values

of λ, where the value V (t1, c̃, λ) is relatively high (under the hypothesis that the integrand

e−rt
¡
v
r −EF (c (t))

¢
is decreasing), and h (·|t2, c) puts high weight on relatively low values of

λ, where V (t2, c, λ) is lower (under the hypothesis that the integrand e−rt
¡
v
r −EF (c (t))

¢
is decreasing). Thus, Ṽ (t1, c̃, h (·|t1, c)) > Ṽ (t2, c, h (·|t2, c)) .

We now show this formally.

Ṽ (t1, c̃, h (·|t1, c))

=

Z ∞

0

Z ∞

t1

e−r(t̂−t1)
³v
r
−EF

¡
c̃
¡
t̂
¢¢´

φ
¡
t̂|t1, c̃, λ

¢
h (λ|t1, c) dt̂dλ

=

Z ∞

0

Z ∞

t2

e−r(t̃−t2)
³v
r
−EF

¡
c̃
¡
t̃− t2 + t1

¢¢´
φ
¡
t̃− t2 + t1|t1, c̃, λ

¢
h (λ|t1, c) dt̃dλ

=

Z ∞

0

Z ∞

t2

e−r(t̃−t2)
³v
r
−EF

¡
c
¡
t̃
¢¢´

φ
¡
t̃|t2, c, λ

¢
h (λ|t1, c) dt̃dλ

=

Z ∞

0
h (λ|t1, c)V (t2, c, λ) dλ

Thus, to show (23), it is enough to show thatZ ∞

0
h (λ|t1, c)V (t2, c, λ) dλ >

Z ∞

0
h (λ|t2, c)V (t2, c, λ) dλ = Ṽ (t2, c, h) (24)
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Since e−r(t−t2)
¡
v
r −EF (c (t))

¢
is decreasing with t for t ∈ (t̄,∞) , V (t2, c, ·) increases with

λ. Then (24) follows because the distribution h (·|t1, c) stochastically dominates h (·|t2, c).

This means that h (·|t2, c) puts relatively more weight on low values of λ, where the value

of V (t2, c, λ) is low, and h (·|t1, c) puts relatively more weight on high values of λ, where

the value of V (t2, c, λ) is high. ¤

6.4 Proof of Lemma 2

Let c be the threshold function with stationary value cA. Let T̂A ∈ R+ be defined by

cA = (1− β)
v

r

³
1− e−rT̂A

´
Since

³
T̃B, T̃A

´
implement the stationary thresholds (cB, cA) , arrival times can be parti-

tioned into T ∪ T̄ = (0,∞) such that

T̃A (t) ≤ T̃B (t)− t and T̃A (t) = T̂A for each t ∈ T̄

T̃A (t) > T̃B (t)− t for each t ∈ T

Further, it holds that

cB =

Z
T̄

h
β
v

r

³
1− e−rT̂A

´
+

v

r

³
e−rT̂A − e−r(T̃B(t)−t)

´i
δG (cA) e

−(δG(cA)+r)tdt

+

Z
T
β
v

r

³
1− e−r(T̃B(t)−t)

´
δG (cA) e

−(δG(cA)+r)tdt

There are two cases.

Case (a). Suppose that

cB <

Z
T̄
β
v

r

³
1− e−rT̂A

´
δG (cA) e

−(δG(cA)+r)tdt

Choose k < T̂A and T̄A ∈
³
k, T̂A

´
such that

cB =

Z ∞

0
β
v

r

³
1− e−rk

´
δG (cA) e

−(δG(cA)+r)tdt

cA =
v

r

³
1− e−rT̄A

´
− β

v

r

³
1− e−rk

´
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Case (b). Suppose that

cB ≥
Z
T̄
β
v

r

³
1− e−rT̂A

´
δG (cA) e

−(δG(cA)+r)tdt

Choose T̄A = T̂A and k ≥ T̄A such that

cB =

Z ∞

0

h
β
v

r

³
1− e−rT̄A

´
+

v

r

³
e−rT̄A − e−rk

´i
δG (cA) e

−(δG(cA)+r)tdt

In each case, define the function TA by TA (t) = T̄A, and define the function TB by TB (t) =

k + t. Then the pair (TB, TA) satisfies (17) and implements (cB, cA).

6.5 Proof of Proposition 9

We must show that (cB, cA) is in the set (18) if and only if (cB, cA) ∈ C. We first assume

that (cB, cA) is in the set (18) and show that (cB, cA) ∈ C. Let (cB, cA) be an arbitrary

element of (18). Then, using Lemma 2, (cB, cA) ∈ C if it can be implemented by (TB, TA)

defined as TB (t) = k+ t for some k ∈ (0,∞) and TA (t) = T̄A for some T̄A ≥ 0. Thus, using

cA = Π
A (t;TB, TA) for each t and cB = ΠB (TB, TA) , the pair (cB, cA) can be implemented

if it holds for some k ≥ 0, T̄A ≥ 0 that

cA = (1− β)
v

r

³
1− e−rT̄A

´
if k ≥ T̄A (25)

cB =
δG (cA)

δG (cA) + r

∙
β

1− β
cA +

v

r

³
e−rT̄A − e−rk

´¸
if k ≥ T̄A (26)

or

cA =
v

r

³
1− e−rT̄A

´
− β

v

r

³
1− e−rk

´
if k ≤ T̄A (27)

cB =
δG (cA)

δG (cA) + r
β
v

r

³
1− e−rk

´
if k ≤ T̄A (28)

which also imply that

cB =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
δG(cA)

δG(cA)+r

£
v
r

¡
1− e−rk

¢
− cA

¤
if k ≥ T̄A

δG(cA)
δG(cA)+r

h
v
r

³
1− e−rT̄A

´
− cA

i
if k ≤ T̄A

(29)

35



We partition the set (18) into three subsets:

C1 =

½
(cB, cA) : cA ∈

h
0, (1− β)

v

r

i
, cB ∈

µ
δG (cA)

δG (cA) + r

µ
β

1− β
cA

¶
,

δG (cA)

δG (cA) + r

³v
r
− cA

´¸¾
C2 =

½
(cB, cA) : cA ∈

h
0, (1− β)

v

r

i
, cB ∈

∙
0,

δG (cA)

δG (cA) + r

µ
β

1− β
cA

¶¸¾
C3 =

½
(cB, cA) : cA ∈ ((1− β)

v

r
,
v

r
), cB ∈

∙
0,

δG (cA)

δG (cA) + r

³v
r
− cA

´¸¾
If (cB, cA) ∈ C1, the pair (cB, cA) can be implemented by choosing T̄A such that (25)

holds, and k ≥ T̄A such that (26) holds. As k ranges between T̄A and∞, cB ranges between
δG(cA)

δG(cA)+r

³
β
1−β cA

´
and δG(cA)

δG(cA)+r

¡
v
r − cA

¢
. Thus, every pair in C1 can be implemented.

If (cB, cA) ∈ C2 ∪ C3, the pair (cB, cA) can be implemented by k such that (28) holds,

and T̄A ≥ k such that (27) holds. As T̄A ranges between k and ∞, cA ranges between
δG(cA)+r
δG(cA)

³
1−β
β cB

´
and v

r −
δG(cA)+r
δG(cA)

cB. Thus, every pair in C2 and C3 can be implemented.

We now show that if (cB, cA) ∈ C, then (cB, cA) is in the set defined by (18). Using

Lemma 2, we show the converse instead: If (cB, cA) is not in the set (18), then (cB, cA)

cannot be implemented by any (TB, TA) defined by k ∈ R+ and T̄A ∈ R+. Given cA > v
r

and any cB, it follows from (25) that the pair (cB, cA) cannot be implemented. Given

cA ∈
£
0, vr

¤
and cB > δG(cA)

δG(cA)+r

¡
v
r − cA

¢
, it follows from (29) that the pair (cB, cA) cannot

be implemented.

6.6 Proof of Proposition 10

Since VA (c; δ) and VB (c;λ, δ) are strictly quasiconcave functions of c, the solutions that

satisfy the first order conditions (13) and (14) are unique, namely, (c∗B (λ, δ) , c
∗
A (δ)).

(i) First consider δ →∞. The first order condition (13) implies that
µ

δG(c∗A(δ))
δG(c∗A(δ))+r

¶
→ 1,

since it holds that c∗A (δ)→ 0 and EG (c
∗
A (δ))→ 0 as δ →∞.

From Proposition 9, the set C of implementable stationary thresholds is defined by (18).

For each cA, let cB (cA) stand for the upper bound on the stationary cB values that can be

implemented:

cB (cA) =
δG (cA)

δG (cA) + r

³v
r
− cA

´
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As δ → ∞, cB (cA) → v
r for each cA. (The boundary of Figure 2 converges to a line at

height v
r .) Since the efficient c

∗
B (λ, δ) cannot be larger than the gross social value created,

v
r , the efficient cost thresholds are implementable.

Now consider δ → 0, which implies VA (c∗A (δ) ; δ) → 0. Since the first derivative of

VB (c;λ, δ) with respect to c would be negative for any positive value of c, c∗B (λ, δ)→ 0.

(ii) Taking the first derivative of VB (c;λ, δ) with respect to c gives

∂

∂c
VB (c;λ, δ) =

λf (c)

λF (c) + r

µ
VA (c

∗
A (δ) ; δ)− c− λF (c)

λF (c) + r
(VA (c

∗
A (δ) ; δ)−EF (c))

¶
.

Evaluating at cB (c∗A (δ)) yields

∂

∂c
VB (c;λ, δ)

¯̄̄̄
c=cB(c∗A(δ))

(30)

=
λf (cB)

λF (cB) + r

"
VA (c

∗
A (δ) ; δ)−

δG (c∗A (δ))

δG
¡
c∗A (δ)

¢
+ r

³v
r
− c∗A (δ)

´
− λF (cB)

λF (cB) + r
(VA (c

∗
A (δ) ; δ)−EF (cB))

#
.

Substituting from (13),

∂

∂c
VB (c;λ, δ)

¯̄̄̄
c=cB(c∗A(δ))

=
λf (cB)

λF (cB) + r

"
VA (c

∗
A (δ) ; δ)

Ã
1− δG (c∗A (δ))

δG
¡
c∗A (δ)

¢
+ r

!
− λF (cB)

λF (cB) + r
(VA (c

∗
A (δ) ; δ)−EF (cB))

#
.

The bracketed term is positive as λ→ 0, and therefore (using quasiconcavity of VB (c;λ, δ))

positive for all c ≤ c̄B (c
∗
A (δ)). Hence, the efficient c

∗
B (λ, δ) will be higher than cB (c

∗
A (δ))

as λ→ 0.
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