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Abstract 

We study the effects of growth volatility and inflation 

volatility on average rates of output growth and inflation for post-

war U.S. data in a multivariate asymmetric GARCH-M model. Our 

statistical model differs from other work in that we allow the 

conditional covariance of inflation and growth to be both non-

diagonal and asymmetric.  We show that the data reject diagonality 

and symmetry restrictions frequently imposed in the literature.  

Our results on the macroeconomic effects of uncertainty also differ 

from those in other recent studies using a more restrictive 

covariance model. Specifically, we find that increased growth 

uncertainty is associated with significantly higher average growth, 

and that higher inflation uncertainty is significantly negatively 

correlated with lower output growth and lower average inflation. 
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1. Introduction 

The relationship between inflation and real activity is one of the fundamental 

empirical issues in macroeconomics.  Recently, much attention has been focussed on 

relationships between uncertainty about these variables and their average outcomes, 

with researchers using a variety of time series models of the conditional variances to 

measure uncertainty. However, the great majority of empirical work is either 

univariate, or else uses a restrictive model of the covariance process.  Univariate 

models by definition do not allow study of the joint determination of the two series, 

and popular covariance-restricted multivariate models can be subject to severe 

specification error (see Kroner & Ng 1998).  Thus existing inferences about how 

inflation uncertainty and growth uncertainty affect average growth or inflation 

performance are possibly standing on shaky ground.  

In this paper we develop and estimate a fairly general model of the conditional 

covariance of inflation and output growth.  Using post-war US data, we test (and 

reject) the validity of the restrictions implied by several popular GARCH based 

covariance models, and further test (and fail to reject) the adequacy of our covariance 

structure for explaining the data.  We use this structure as part of an asymmetric, 

multivariate GARCH-M model to test four hypotheses about the effects of these 

conditional variances on the conditional means of output growth and inflation.  

Our main findings are (1) the conditional covariance process for inflation and 

growth is not diagonal.  That is to say, innovations in output growth (inflation) 

significantly affect the conditional variance of inflation (output growth). This finding 

implies that univariate models of either inflation or output growth volatility are 

misspecified. (2) The conditional covariance process displays significant asymmetries 
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that cannot be captured by conventional multivariate GARCH models. Positive and 

negative innovations of a given magnitude result in differing levels of inflation and 

output volatility. In particular our finding of covariance asymmetry suggests that the 

constant correlation specification often adopted in the literature is not a valid 

conditional characterisation of the data. (3) Increases in the conditional variance of 

inflation significantly lower both average output growth and average inflation.  (4) 

Increases in the conditional variance of output growth significantly raise average 

output growth.  

The paper is organized as follows. The next section describes the economic 

hypotheses we will test. Section 3 outlines the statistical model. The fourth section 

describes our data and the testing process we use to choose our covariance structure. 

Section 5 describes the conditional variance-covariance parameterisation used in this 

paper. In section 6 we report estimation results and diagnostic tests for model 

adequacy. Section 7 discusses the results of our hypothesis tests on the effects of 

uncertainty on inflation and output growth. Section 8 presents information about the 

quantitative effects of uncertainty in the model along with nature of the asymmetric 

effects of inflation and output growth shocks on uncertainty. The final section 

contains our conclusions and suggestions for further work. 

 

2. The effect of uncertainty on average macro performance 

In this section we present the four economic hypotheses that are tested below 

in the empirical section of the paper.  First we consider the effect of increased output 

growth uncertainty on average growth. While standard business cycle models assume 

these factors to be independent, there are theories that imply a positive relationship 
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and others that imply a negative relationship.1  The literature on irreversible 

investment and the option value of waiting predicts a negative relationship between 

growth uncertainty and average growth.  In these models, an increase in uncertainty 

about future profits raises the value of waiting, thus delaying investment and lowering 

growth.  

However, the work of Fisher Black (1987) implies a positive relationship 

between growth volatility and average growth.  He argues that technology choices are 

made from a menu of possibilities where the average rate of return and return 

volatility are positively correlated. In his model, technology that produces faster 

average growth is inherently more risky.  Another argument in favor of a positive 

relation comes from the theory of precautionary savings, where increased risk raises 

desired savings and thus investment and growth.2 

Second, we test the hypothesis that inflation uncertainty lowers output growth.  

As in the case of output growth volatility and average growth, standard macro models 

view growth as independent of the conditional variance of inflation.  However, if 

increased inflation uncertainty also increases the risk associated with future profits, 

the irreversible investment literature referred to above implies that increased inflation 

uncertainty should delay investment and lower growth.3  

                                                           
1   Ramey & Ramey (1995) and Grier & Perry (2000) discuss these issues in some detail. 
2 Previous work testing this hypothesis is extremely mixed. Using cross-country data, Ramey & Ramey 
(1995) find a significant negative relationship between the standard deviation of growth and average 
growth, while Kormendi & Meguire (1985) and Grier & Tullock (1989) find a significant positive 
relationship. Using a univariate GARCH model on US data, Caporale & McKiernan (1998) find a 
positive effect, while Henry & Olekalns (2001) find a negative relation using an asymmetric univariate 
GARCH model. Grier & Perry (2000) find no effect in a symmetric bivariate GARCH model of 
inflation and output growth, and Dawson & Stephenson (1997) reach the same conclusion from an 
examination of state level data. 
 
3 The idea that inflation uncertainty can lower output growth is often attributed to Friedman (1977) and 
Okun (1971) who present intuitive arguments to support their views. 
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The third and fourth hypotheses under consideration concern the effects of 

inflation uncertainty and output growth uncertainty on average inflation.  These 

effects are predicted by some recent political economy models of monetary policy.  

Cukierman (1992), and Cukierman & Meltzer (1986) show that if the money supply 

process has a stochastic element and the public is uncertain about the objective 

function of the policymaker, then a strategic policy maker will react to an increase in 

uncertainty about the supply process by raising the average level of inflation. Thus in 

their models, increased inflation uncertainty should raise average inflation. 4 

 Deveraux’s (1989) model also assumes that the Fed dislikes inflation but 

would like to raise output, and that there is a stochastic component to the money 

supply. He then shows that an exogenous increase in the unpredictability of real 

shocks will cause workers to lower the degree of indexing in labor contracts.  To the 

Fed, a lower degree of indexing makes surprise inflation a more effective tool to raise 

output. In equilibrium, the average level of inflation will rise.  Deveraux’s model thus 

predicts that increased real uncertainty should raise average inflation. 

 In what follows below, we test these hypotheses in a multivariate, asymmetric 

GARCH-M model of inflation and output growth.  The two existing papers closest to 

ours are Grier & Perry (2000) and Henry & Olekalns (2001).  Grier & Perry test the 

same four hypotheses with US data, using a restricted covariance model that we show 

can be rejected by the data.  Henry & Olekalns estimate an asymmetric univariate 

GARCH-M model for US output growth.  This univariate approach does not allow 

inflation (output growth) residuals to influence the conditional variance of output 

growth (inflation), an assumption that is also rejected by the data.  Beyond estimating 

                                                           
4  On the other hand, Holland (1994) argues that if high inflation raises uncertainty and increased 
uncertainty harms growth, then the Fed has a motive to stabilize inflation when uncertainty rises.  Grier 
& Perry (1998) using a univariate GARCH, two step process find that some G-7 countries exhibit a 
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a more general covariance process, our model gives answers that differ from those 

previously reported for some of the above hypotheses.   

3.  Econometric Model and Data Description                             

In section 4 below, we test these hypotheses in a single simultaneously 

estimated model. This section describes the data used in the empirical work, and then 

presents our model, explaining along the way why we think non-diagonality and 

asymmetry are possible outcomes in the conditional covariance matrix and how we 

test for their absence.   

A. Data 

The data used in this study are for the US, and were obtained from the FRED 

database at the Federal Reserve Bank of Saint Louis. The sample is monthly data over 

the period April 1947 to October 2000. We measure inflation, tπ , as the annualized, 

monthly difference of the logarithm of the producer price index.  Similarly we 

measure output growth, yt  , as the annualized, monthly difference of the logarithm of 

the index of industrial production.  These data are shown in Figure 1, and summary 

statistics for these data are presented in Table 1. 

-Figure 1 about here- 

- Table 1 about here - 

 Both output growth and inflation are positively skewed and display 

significant amounts of excess kurtosis with both series failing to satisfy the null 

hypothesis of the Bera-Jarque (1980) test for normality. A battery of augmented 

Dickey-Fuller unit root tests and Kwiatkowski, Phillips, Schmidt and Shin (1992) 

tests for stationarity suggest that both are I(0) series.   

                                                                                                                                                                      
positive relationship, some a negative relationship and in some cases, there is no significant 
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However a series of Ljung-Box tests for serial correlation suggests that there is 

a significant amount of serial dependence in the data. Similarly a Ljung-Box test for 

serial correlation in the squared data provides strong evidence of conditional 

heteroscedasticity in the data. Visual inspection of the time series plots of the data in 

Figure 1 would tend to support the view that the variances of output growth and 

inflation are not constant. 

B.  Statistical Model  

Equation 1 gives the specification we use for the means of inflation ( tπ ) and 

output growth ( yt ).  It is a VARMA (vector autoregressive moving average), 

GARCH in Mean model, where the conditional standard deviations of output growth 

and inflation are included as explanatory variables in each equation 
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relationship. 
5   We choose the values of p and q that minimize the Akai and Swartz information criteria. In the 
results below p=q=2. 
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Under the assumption | ~ (0, )Ht t tε Ω , where tΩ represents the information 

set available at time t, the model may be estimated using Maximum Likelihood 

methods, subject to the requirement that Ht , the conditional covariance matrix, be 

positive definite for all values of tε  in the sample.  

The difficulty of checking, let alone imposing, such a restriction led Engle and 

Kroner (1995) to propose the following parameterisation, usually referred to as the 

BEKK model: 

*' * *' ' * *' *
0 0 11 1 1 11 11 1 11H C C A A B H Bt t t tε ε= + +− − −    (2) 

The BEKK parameterisation requires estimation of only 11 free parameters in 

the conditional covariance structure and guarantees Ht  positive definite. 

Our covariance model allows for the innovations of inflation and output 

growth to have both non-diagonal and asymmetric effects on the conditional variances 

of each series and the conditional covariance.  The model nests simpler diagonal and 

symmetric models and we can provide a statistical test of their appropriateness.  

While the answer to the question of what covariance model is correct is ultimately 

empirical, there are good reasons to expect that the inflation – growth conditional 

covariance may be characterized by non-diagonality and asymmetry.   

A non-diagonal covariance matrix simply means that shocks to inflation (growth) 

affect the future predictability of growth (inflation).  Since the means of these series 

are frequently modeled as co-determined, both theoretically and empirically, it stands 

to reason that their conditional covariances might be codetermined as well.  

The BEKK model does allow for non-diagonality, however it is commonly 

imposed on the model by assuming that, * *
ij ijα β= =0 for i,j=1,2 and i≠j in equation 2 
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above. Some popular multivariate covariance models also impose further restrictions 

on the diagonal model (e.g. the constant correlation model of Bollerlsev (1990) or the 

Factor GARCH model).  If the diagonal covariance restriction is invalid, imposing it 

on the data creates a potentially serious specification error.6 

The idea that the covariance matrix may be asymmetric is not new. The 

EGARCH (Nelson 1991) GJR (Glosten, Jagannathan, & Runkle 1993) models both 

allow the sign of the lagged innovation as well as its size to affect uncertainty. It is a 

common finding in finance that “bad news” about stock returns (which is to say, a 

negative residual from the forecasting equation) raises the conditional variance by 

more than do equal sized positive residuals.  Further, Henry & Olekalns (2001) find 

the conditional variance of output growth to be significantly asymmetric in a 

univariate context.  Our empirical work allows for the possibility that macroeconomic 

“bad news” has asymmetric effects on average performance. 

If inflation is higher than expected, we take that to be bad news. In this case, 

the inflation residual will be positive. By contrast if output growth is lower than 

expected, we consider that to be bad news. Thus bad news about output growth is 

captured by a negative residual.  We therefore define ,y tξ as min{ ,0},y tε  which is to 

say the negative innovations, or bad news about growth. Similarly let , tξπ  be the 

max{ ,0}2, tε  (i.e. the positive inflation residuals), thus capturing bad news about 

inflation.7 We allow for asymmetric responses in the BEKK model in (2) using 

*' * *' ' * *' * *' ' *
0 0 11 1 1 11 11 1 11 11 1 1 11H C C A A B H B D Dt t t t t tε ε ξ ξ= + + +− − − − −  (3) 

                                                           
6   Kroner & Ng (1998) review the properties of many widely used multivariate GARCH models. 
7   As a preliminary test, we subject each of the two series to an Engle & Ng (1993) test for asymmetry 
in volatility, finding that output growth does exhibit negative sign and size bias while inflation exhibits 
positive size bias. Thus there is initial indicative evidence that allowing for asymmetry may be 
important and that macroeconomic “bad news” matters more than good news. 
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The symmetric BEKK model (5) is a special case of (6) for 0ijδ = , for all values of i 

and j. Just as in the case of diagonality, the symmetry restriction should be tested 

rather than imposed, because the invalid imposition of the restriction creates a 

potentially serious specification error.  

Non-diagonality and asymmetry can occur separately, together and also 

synergistically, which is to say that the innovations of inflation (output growth) could 

enter the conditional variance of output growth (inflation) in an asymmetric fashion.9 

 

4.  Results  

Table 2 reports parameter estimates for the full model given by equations (1) and 

(3) above. Preliminary results suggest that the assumption of normally distributed 

                                                           
 
8 Brooks and Henry (2000) and Brooks Henry and Persand (2001) have used this model. 
 
9 Kroner and Ng (1998) identify three possible forms of asymmetric behaviour. Firstly, the covariance 

matrix displays own variance asymmetry if ( ), ,h hy t tπ , the conditional variance of ( )yt tπ , is 

affected by the sign of the innovation in ( )yt tπ . Secondly, the covariance matrix displays cross 

variance asymmetry if the conditional variance of ( )yt tπ  is affected by the sign of the innovation in 

( )yt tπ . Finally if the conditional covariance, ,hy tπ is sensitive to the sign of the innovation for 

either variable then the model is said to display covariance asymmetry. It is only through a multivariate 
approach that the full range of potential asymmetries can be examined. 
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standardised innovations, /, , ,z hj t j t j tε= , for ,j y π= , may be tenuous. We thus 

follow Weiss (1986) and Bollerslev and Wooldridge (1992) who argue that 

asymptotically valid inference regarding normal quasi-maximum likelihood estimates 

may be based upon robustified versions of the standard test statistics.10  

- Table 2 about here – 
 

A. Specification tests 

Before discussing the results of our macroeconomic hypothesis tests, we consider 

tests on the form of the conditional covariance and the adequacy of the specification.  

First, there is significant conditional heteroskedasticity in these data.  

Homoskedasticity requires the * * *,  and 11 11 11A B D  coefficient matrices to be jointly 

insigificant, and they are actually jointly and individually significant at the 0.01 level. 

Second, the hypothesis of a diagonal covariance process requires the off-

diagonal elements of the same three coefficient matrices to be jointly insignificant and 

these estimated coefficients are jointly significant at the 0.05 level or better. To be 

more specific, the insignificance of the non-diagonal coefficients in the *
11A  matrix 

indicates that allowing for non-diagonality does not increase the persistence of the 

conditional variances.   However, the significance of the analogous coefficients in the 

*
11B  and *

11D  matrices, shows that the lagged squared innovations in each series do 

impact the conditional variance of the other series in some manner.  

 Third, the hypothesis of a symmetric covariance process requires the 

coefficient matrix *
11D  to be insignificant, and in our model all elements save *

12δ  are 

                                                           
10 Maximum likelihood estimation assuming a conditional Students-t distribution was also performed. 
The results were qualitatively unchanged and are not reported to conserve space. Details are available 
from the second author upon request. 
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individually significant, and the overall coefficient matrix is significant, at the 0.01 

level. In particular, the significance of *
22α  coupled with the significance of 

*
22δ indicates that inflation displays own variance asymmetry, implying that, ceteris 

paribus, a positive inflation innovation leads to more inflation volatility than a 

negative innovation of equal magnitude. In a similar manner, the fact that both *
11α  

and *
11δ  are significant suggests that, ceteris paribus, the response of output growth 

displays own variance asymmetry, negative growth shocks raise uncertainty more 

than positive shocks.  

The non-diagonal nature of our covariance structure allows the possibility of 

cross-variance asymmetry, where innovations to inflation (growth) affect the 

conditional variance of growth (inflation) asymmetrically. In our model the 

significance of *
12α coupled with the insignificance of *

12δ  implies an absence of 

cross variance asymmetry between inflation uncertainty to growth uncertainty. 

However the converse is true for the spillovers of growth uncertainty on inflation 

uncertainty; the insignificance of * * coupled with the significance of 12 21α δ indicates 

cross variance asymmetry. Bad news about growth will tend to raise inflation 

uncertainty. 

In sum, for these US postwar data, the inflation – output growth process thus 

is strongly conditionally heterskedastic, innovations to inflation (output growth) 

significantly influcence the conditional variance of output growth (inflation) and the 

sign as well of the size of both inflation and growth innovations are important.  
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Overall, the model appears well specified. The standardised residuals, 

/  for ,z h j yjt jt jtε π= = , and their corresponding squares, satisfy the null of no 

fourth order linear dependence of the Q(4) and Q2(4) tests. Similarly there is no 

evidence, at the 5% level, of twelfth order serial dependence in 2 and , ,z zy t y t .11 We 

also subject the standardized residuals to a series of tests based on moment conditions. 

In a well-specified model ( ) 0E zit =  and 2( ) 1E zit = . These conditions are supported 

at any level of significance.  The model also significantly reduces the degree of 

skewness and kurtosis in the standardised residuals when compared with the raw data. 

Similarly the model predicts that ( )2 for   ,, ,E h i yi t i tε π= = and 

, , ,E hy t t y tε επ π
  = 
 

. These conditions are not rejected by the data at the 0.05 level 

Appendix A reports the results of applying a battery of specification tests to 

variance covariance structure of the estimated model which we summarize here by 

noting that on balance, the estimated multivariate asymmetric GARCH-M model 

appears to provide a very reasonable characterisation of the data. 

- Figure 2 about here - 

 
 In Figure 2, we plot the respective conditional variances for the rates of inflation 

and output growth, as well as the conditional covariance, implied by our estimates. For output 

growth, volatility appears highest, on average, during the 1950s. The well-documented decline 

in output growth volatility over the 1990s is also apparent in these data. For inflation, the period 

of greatest volatility occurs in the mid-1970s, with the most benign volatility outcomes coming 

during the 1960s and mid 1990s.  

                                                           
11 On the basis of Q2(12) though, there is some evidence of twelfth order dependence in the squared 
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B.  Hypotheses tests 

The hypotheses we presented in section 2 imply that the conditional variances 

of inflation or output growth significantly affect the evolution of average inflation or 

output growth.  The relevant coefficients for testing these hypotheses are found in the 

estimated Ψ matrix of GARCH-M effects in Table 2. The first hypothesis, whether 

increased conditional volatility of output growth lowers or raises average growth, 

concerns the sign and significance of 11ψ , the upper left element of the coefficient 

matrix. This coefficient is positive and significant at all usual confidence levels with 

an asymptotic t-statistic of around 13.0.  We thus find strong evidence in favor of the 

correlation implied by Fisher Black’s ideas about technological adoption or the effects 

of uncertainty on optimal saving.  The hypothesis that increased output volatility 

lowers growth is clearly rejected in these data. 

 The second macroeconomic hypothesis, whether inflation uncertainty lowers 

output growth or not, is tested by the sign and significance of 12ψ  the second element 

in the first row of the coefficient matrix.  This coefficient is negative and again 

significant at all usual levels with a t-statistic of over 20.0.  We thus find confirmation 

of Friedman’s and Okun’s informal arguments about the pernicious real effects of 

inflation uncertainty.12 

         The relevant coefficient for testing the hypothesis that the Fed reacts to 

increased inflation uncertainty by raising the average inflation rate as in Cukierman & 

Meltzer is 22ψ , the lower right hand element of the of Ψ matrix.  This coefficient is 

                                                                                                                                                                      
standardised residuals of inflation 
12   Given these first two results, it is difficult to evaluate the hypothesis that uncertainty  delays 
investment and thus growth. Either inflation uncertainty is relevant for investment decisions and real 
uncertainty is not, or both inflation uncertainty and real uncertainty depress investment, but in the case 
of real uncertainty, the Black effect or the precautionary savings effect outweighs the delayed 
investment effect.  Another possibility is that uncertainty of the type measured here does not delay 
investment in either case. 
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negative and significant at the 0.01 level, indicating that higher inflation uncertainty is 

associated with lower, rather than higher, average inflation.13  The fourth hypothesis, 

that increased growth uncertainty raises average inflation receives no support from the 

data as can be seen from the negative, but small and only marginally significant 

coefficient of 21ψ , the first element in the second row of the of the Ψ coefficient 

matrix.14 

C.  On the quantitative importance of uncertainty  

The tests presented above establish the statistical significance of inflation and 

growth uncertainty for explaining the behavior of average inflation and growth, and 

explain which theoretical models receive statistical support.  Now we proceed to give 

an idea of the quantitative importance of inflation and growth uncertainty. Given the 

generality of our covariance matrix and the non-linearity and feedback that exists in 

the model, the task is not a simple one. Appendix B derives the individual equations 

for the conditional variances of each series and the conditional covariance.  

Figure 3 reports the effect of a 5 unit negative (bad news) growth residual in 

our model under the following simplifying assumptions. (1) All other shocks are set to 

zero, (2) insignificant coefficients in the model are set to zero, and (3) the MA terms 

in the mean equations are set to zero. The top half of the figure illustrates the strong 

effect of negative growth shocks on inflation uncertainty we find in the data, in that 

                                                           
13   In a series of univariate models for each of the G7 countries, Grier & Perry (1998) find the same 
result. They argue that if higher inflation raises uncertainty, a stabilizing Fed would react to increased 
uncertainty by lowering inflation. They found a similar result for the UK and Germany, and found 
results consistent with the models of Cukierman and Meltzer for Japan and France.   Holland (1995) 
also finds that increased inflation uncertainty lowers average inflation in US data, using a survey based 
uncertainty measure.  
14 To see the importance of allowing for non-diagonal and asymmetric responses of uncertainty to 
innovations,  it is instructive to compare the above results with those in Grier & Perry (2000) who 
investigate similar hypotheses using a bivariate GARCH-M model with diagonality and symmetry 
restrictions.  They too find that higher inflation uncertainty lowers growth, but the rest of their 
GARCH-M coefficients are insignificant. By relaxing their restrictions we find strong support for the 
hypothesis that real uncertainty and average growth are positively correlated and that inflation 
uncertainty and average inflation are negatively correlated. 
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the rise of the conditional variance of inflation from the growth shock is almost as 

large proportionately as the rise in the conditional variance of growth.  Given that a 

higher inflation variance lowers growth, but a higher growth variance raises it, and the 

growth shock substantially raises both variances, the net effect of the bad growth 

news on growth is small. As shown in the bottom half of the figure, the growth rate 

fall initially from 3.6 to 3.5, after nine months the growth rate is slightly higher than 

average, and from that point the effect disappears slowly. The inflation rate is hardly 

affected by the shock, falling only a very small amount and slowly returning to 

average afterward. 

Figure 4 shows the effects of a 5 unit positive inflation residual in our model 

under the same three assumptions listed above.  As can be seen in the top half of the 

figure, the bad inflation news causes a large (tiny) jump in the conditional variance of 

inflation (output growth) which decays slowly as these estimated conditional 

variances are somewhat persistent. These movements in the variances cause the 

movements in output growth and inflation depicted in the bottom half of the figure. 

Growth falls from its sample average of around 3.6 down to 3. This .5 percentage 

point drop is a 14% decline in the growth rate.  The effect disappears within 15 

months. The inflation rate falls slightly from its mean of 3 down to 2.9 (only a 3.5% 

decline). The effect disappears very slowly because the inflation process is very 

persistent. 

It is important to note that while the size of these individual shocks may seem 

large; they do not increase the conditional standard deviations by a large amount 

relative to its sample movements.  That is to say, even though it may appear that a big 

inflation shock has a relatively small effect on output growth, it is not correct to infer 

that inflation uncertainty has a relatively small effect. In the second experiment above 



. 17

the conditional standard deviation of inflation increased by roughly 1 unit (from 2.34 

to 3.3), which is a small move given its sample variability. A swing of 7 or 8 units is 

not at all uncommon (see Figure 2 above). Swings of this type would have large 

effects on the means of inflation and growth, but they cannot be generated from a 

single isolated shock. In our model, the inflation residual, the growth residual, and the 

cross product of the residuals each raise the conditional variances of inflation and 

output growth. Thus while the effect of a single isolated shock is relatively weak, 

uncertainty is derived from multiple shocks, and the overall effect of uncertainty is 

large.  

Consider an unspecified combination of shocks at a single point in time that 

raises the conditional standard deviation of inflation by 8 units. Using the same 

assumptions employed in the examples above, growth would fall by over 3 percentage 

points in 6 months, and after 20 months, the growth rate would still be depressed by 

around 1 percentage point. 

D. News Impact Surfaces 

The effect of innovations on the conditional variances is increasingly complex 

when we allow shocks to inflation and growth of different magnitudes, and the joint 

arrival of shocks. Therefore, we simulate the model over a range of different shocks to 

assess the relative importance of these asymmetries.  Following Kroner and Ng 

(1998), we treat innovations as a collective measure of news arriving between the end 

of period t-1 and the end of period t, and define the relationship between such 

innovations and the conditional variance-covariance structure as the news impact 

surface (a multivariate form of the news impact curve of Engle and Ng (1993)).  

In the figures that follow, we provide news impact surfaces, evaluated in the 

region [ ]5,5, −=tjε  ,j y π=  (following Engle and Ng 1993 and Kroner and Ng 
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1998). While the absence of extreme outliers in the data suggests that some caution 

should be exercised in interpreting the news impact surfaces for extreme values of 

tj ,ε , the asymmetry in variance and covariance is clear from each figure. 

Figures 5, 6 & 7 about here 

5.  Conclusions 

  This results in paper imply that virtually all existing ARCH or GARCH 

models of inflation or output growth are misspecified and therefore are suspect with 

regard to their inferences. We have shown that for the United States, the conditional 

volatilities of inflation and output growth exhibit significant non-diagonality and 

asymmetry with respect to the impact of lagged innovations.   Volatility in one series 

spills over into volatility in the other, and the size and sign of the innovation (our 

distinction between good and bad news) has a differential impact upon the estimated 

conditional variance-covariance matrix.   

Having found an adequate conditional characterization of the data, we then test 4 

recent macroeconomic hypotheses about the effects of inflation and output growth 

uncertainty on the conditional means of the two series. We find strong evidence in 

favor of the propositions that increased growth uncertainty is associated with a higher 

average rate of growth and that increased inflation uncertainty is associated with 

lower average growth rates. Contrary to the prediction that higher inflation 

uncertainty induces policymakers to raise the average inflation rate, we find that 

higher inflation uncertainty is associated with lower average inflation rates. We find 

no evidence that increased growth uncertainty increases the average rate of inflation.   
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 Appendix A: further specification testing 

     Define the generalised residual , , , ,v hy t y t t y tε επ π π= − . The distance between 

the covariance news impact surface and the realised data is measured by ,vy tπ  . 

Likewise define 2 2and, , , , , ,v h v hy t y t y t t t tε επ π π= − = − to measure the distances 

between the variance news impact surfaces and the realised data. Kroner and Ng 

(1998) suggest the use of indicator variables to detect misspecification of the 

conditional variance covariance matrix. Three types of misspecification may be 

detected using this method. Firstly, bias due to the sign of innovations is examined 

using the indicators m1, which identify negative innovations. Secondly, four quadrants 

0, 0, 1 , 1y t tε επ
 < < − − 

, 0, 0, 1 , 1y t tε επ
 > < − − 

, 0, 0, 1 , 1y t tε επ
 < > − − 

 

and 0, 0, 1 , 1y t tε επ
 > > − − 

 may be defined for the innovations. Indicator 

variables, labeled m2, may be used to detect quadrant bias. Finally a set of indicators, 

labeled m3, may be used to detect sensitivity to the sign and size of the innovations to 

the variables in the state vector, Yt . 

Table A1 presents the results of the robust conditional moment tests proposed 

by Kroner and Ng (1998). In the main, the model is well specified.  Only two of the 

thirty generalised residual test statistics are significant at the 5% level. The indicator 

,
3

ymπ , used to detect bias to the magnitude of , 1y tε −  when 0, tεπ <  is significant 

for ,vy t . Similarly for the conditional variance of inflation only the indicator 1
ym is 

significant indicating some bias to forecasts of inflation volatility when growth 
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innovations are negative. The conditional covariance equations display no evidence of 

quadrant and size/sign misspecification.  

 

-Table A1 about here- 
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Appendix B: The impact of news on the variance-covariance matrix  

The conditional variance-covariance structure may be written as: 

, ,

, ,

h hy t y t
Ht h hy t t

π

π π

 
 =
 
 

 

And 

*' * *' ' * *' * *' ' *
0 0 11 1 1 11 11 1 11 11 1 1 11H C C A A B H B D Dt t t t t tε ε ξ ξ= + + +− − − − −  (A.1) 

 

Where
* * * * * * * *
11 12 11 12 11 12 11 12* * * *; ; ;0 11 11 11* * * * * * *0 22 21 22 21 22 21 22

c c
C A B D

c

α α β β δ δ

α α β β δ δ

       
       = = = =       
                

 

Following Engle and Ng (1993) and Ng and Kroner (1998) we hold information at 

time t-1 and before constant, and evaluate the lagged elements of the conditional 

variance – covariance matrix at their corresponding unconditional levels, for example 

2
,y t yh σ= . The focus is therefore on the impact at time t of an innovation at time t-1. 

1. Impact of News on Output Growth Volatility 

 

Expanding A(1) for the 1,1 element of Ht yields  

2 2 2* * 2 * * * 22, 11 11 , 1 11 12 , 1 , 1 21 , 1
2 2* * * *211 , 1 11 12 , 1 21 , 1
2 2* 2 * * * 2211 , 1 11 12 , 1 , 1 21 , 1

h cy t y t y t t t

h h hy t y t t

y t y t t t

α ε α α ε ε α επ π

β β β βπ π

δ ξ δ δ ξ ξ δ ξπ π

= + + +− − − −

+ + +− − −

+ + +− − − −

 (A.2) 
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The impact of bad news about growth in period t-1 on growth volatility in period t, 

,hy t , is given by 

,

, 1

2 2* * * * * *2 2 2 211 , 1 11 12 , 1 11 , 1 11 12 , 1
y t

y t

h
y t t y t tα ε α α ε δ ξ α α ξπ πε −

∂
= + + +− − − −∂

 

If there is no news about inflation this reduces to: 

2 2, * *| 2 20 11 , 1 11 , 1, 1, 1

h y t
y t y tty t

α ε δ ξεε π

∂
= += − −∂ −−

  (A.4) 

Where there is “good news” about growth, 0,y tε > , and 0,y tξ = , the impact on 

output volatility is:  

2, *| 20 11 , 1, 1, 1

h y t
y tty t

α εεε π

∂
== −∂ −−

   (A.5) 

Thus for a unit shock to growth the impact of a negative innovation exceeds the 

impact of good news by the quantity 
2*2 11δ . 

Similarly the period t impact of bad news about inflation in period t-1 on 

output volatility is given by 

2, * * * * * *2 2 2 211 12 , 1 21 , 1 21 , 1 11 12 , 1
, 1

h y t
y t t t y t

t
α α ε α ε δ ξ α α ξπ πεπ

∂
= + + +− − − −∂ −

(A.6) 

Again, for simplicity, make the usual ceteris paribus assumption, that is 0,y tε =  and 

the impact of bad news in period t-1 about inflation in period t is 

2 2, * *| 2 20 21 , 1 21 , 1, 1, 1

h y t
t ty tt

α ε δ ξε π πεπ

∂
= += − −∂ −−

  (A.7) 
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For shocks to inflation and output growth of equal magnitude arriving in period t-1, 

bad news about inflation will therefore generate higher output growth volatility in 

period t if 
2 2 2 2* * * *

21 21 11 11α δ α δ+ > + . 

2. Impact of news on inflation volatility 

Expanding A(1) for the 2,2 element of Ht yields  

2 2 2 2* * * 2 * * * 22, 12 22 12 , 1 12 22 , 1 , 1 22 , 1
2 2* * * *212 , 1 12 22 , 1 22 , 1
2 2* 2 * * * 2212 , 1 12 12 , 1 , 1 22 , 1

h c ct y t y t t t

h h hy t y t t

y t y t t t

α ε α α ε ε α επ π π

β β β βπ π

δ ξ δ δ ξ ξ δ ξπ π

= + + + +− − − −

+ + +− − −

+ + +− − − −

(A.8) 

The impact of bad news about inflation in period t-1 on inflation volatility in period t, 

,h tπ , is given by 

2 2, * * * * * *2 2 2 212 22 , 1 22 , 1 12 22 , 1 22 , 1
, 1

h t
y t t y t t

t

π α α ε α ε δ δ ξ δ ξπ πεπ

∂
= + + +− − − −∂ −

 

 (A.9) 

Again, imposing the ceteris paribus assumption, then the differential impact of bad 

news about inflation, 0, 1tεπ >−  is 
2*2 22δ . The impact of bad news about growth in 

period t-1 on period t inflation volatility is given by 

2 2, * * * * * *2 2 2 212 , 1 12 22 , 1 12 22 , 1 12 , 1
, 1

h t
y t t t y t

y t

π α ε α α ε δ δ ξ δ ξπ πε

∂
= + + +− − − −∂ −

 
(A.10) 

For a unit shock to growth the impact of a negative innovation exceeds the impact of 

good news by the quantity 
2*2 12δ . For shocks to inflation and output growth of equal 
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magnitude, bad news about inflation will therefore generate higher levels of inflation 

volatility if 
2 2 2 2* * * *

22 22 12 12α δ α δ+ > + . 

3. Impact of News on Inflation-Output Growth Covariance 

Expanding A(1) for the 1,2 or 2,1 element of Ht yields  

( )
( )
( )

* * * * 2 * * * * * * 2
, 11 12 11 12 , 1 21 12 11 22 , 1 , 1 21 22 , 1

* * * * * * * *
11 12 , 1 21 12 11 22 , 1 21 22 , 1
* * 2 * * * * * * 2
11 12 , 1 21 12 11 22 , 1 , 1 21 22 , 1

h c cy t y t y t t t

h h hy t y t t

y t y t t t

α α ε α α α α ε ε α α επ π π

β β β β β β β βπ π

δ δ ξ δ δ δ δ ξ ξ δ δ ξπ π

= + + + +− − − −

+ + + +− − −

+ + + +− − − −

(A.11) 

The impact of bad news about growth in period t-1 on the growth-inflation covariance 

in period t, ,hy tπ , is given by 

( )
( )

, * * * * * *2 11 12 , 1 21 12 11 22 , 1
, 1
* * * * * *2 11 12 , 1 21 12 11 22 , 1

hy t
y t t

y t

y t t

π α α ε α α α α ε πε

δ δ ξ δ δ δ δ ξπ

∂
= + +− −∂ −

+ + +− −

  (A.12) 

Enforcing the ceteris paribus assumption shows that the differential impact of a 

negative shock to output growth in period t-1 on ,hy tπ , over a positive shock of 

equal magnitude is * *2 11 12δ δ .  Similarly the impact of news in period t-1 about 

inflation on the inflation growth covariance is  

( )
( )

, * * * * * *221 12 11 22 , 1 21 22 , 1
, 1
* * * * * *221 12 11 22 , 1 21 22 , 1

hy t
y t t

t

y t t

π α α α α ε α α ε πεπ

δ δ δ δ ξ δ δ ξπ

∂
= + +− −∂ −

+ + +− −

  (A.13) 
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The differential impact of a positive shock to inflation in period t-1 on ,hy tπ  over a 

negative shock of equal magnitude is * *2 21 22δ δ . For shocks to inflation and output 

growth of equal magnitude, bad news about inflation will therefore matter more if 

* * * * * * * *
21 22 21 22 11 12 11 12α α δ δ α α δ δ+ > +  in the sense that a positive period t-1 inflation 

innovation leads to a higher level of conditional covariance than a shock to growth of 

equal magnitude. 

 It follows from the above that bad news can raise uncertainty more than good 

news if any or all of the elements of *
11D  matrix are significant. In this sense no news, 

0, , , ,y t t y t tε ε ξ ξπ π= = = = , is good news as it leads to the minimum level of 

uncertainty in the following periods. 
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Figure 2: Estimated Conditional Standard Deviations and Conditional Covariance 
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Figure 3. 
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Table 1: Summary Statistics 
 Mean Variance Skewness Excess 

Kurtosis 
Bera-Jarque 
Normality 

Y 
 

3.6054 155.7047 0.2428 4.5962 562.4889 
[0.0000] 
 

π 3.0559 37.5103 1.1579 4.4310 658.2563 
[0.0000] 

      
Unit Root and Stationarity Tests 

 ADF(τ) ADF(µ) ADF KPSS(µ) KPSS(τ) 
 

Y -12.4483 -12.4438 -11.6179 0.07595 0.03498 
 

π -5.4309 -5.3842 -4.3728 0.4664 0.3975 
 

5 % C.V. -3.4191 -2.8664 -1.9399 0.463 0.146 
      

Tests for Serial Correlation and ARCH 
 Q(4) Q(12) Q2(4) Q2(12) 

 
ARCH(4) 

Y 165.3173 
[0.0000] 

192.0829 
[0.0000] 

88.1327 
[0.0000] 

97.4497 
[0.0000] 
 

52.1685 
[0.0000] 

π 321.3849 
[0.0000] 

682.6248 
[0.0000] 

136.8077 
[0.0000] 

463.0983 
[0.0000] 

62.7177 
[0.0000] 

      
 

      
      
      
 
Notes to Table1: Marginal significance levels displayed as [.] 
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Table 2: The Multivariate Asymmetric GARCH-in-Mean model 
Conditional Mean Equations 

1 1

1 11 12 11 12; ; ; ;
2 21 2221 22

, , 11 12; ;
,, 21 22

p q
Y Y ht i t i t j t j ti j

i iytYt i i it

j jhy t y t
ht t j j jh tt

µ ε ε

µ ψ ψ
µ

π µ ψ ψ

ε θ θ
ε

ε θ θππ

= + Γ + Ψ + Θ +∑ ∑− −= =

 Γ Γ           = = Γ = Ψ =      Γ Γ       
    
    = = Θ =    
       

 

( )

( )

1.2584
0.0545

0.0913
0.0172

µ

 
 
 
 =
 
 
   

 

( ) ( )

1

0.4385 0.04768
(0.0121) (0.0102)

0.0072 0.7794
0.0053 0.0047

 
 
 
 Γ =
 
 
  

 2

0.3339 0.1126
(0.0117) (0.0109)

0.0233 0.1939
(0.0045) (0.0046)

− 
 
 
 Γ =
 
 
  

 

( ) ( )

1

0.2525 0.1897
(0.0243) (0.0467)

0.0012 0.6225
0.0085 0.0246

− − 
 
 
 Θ =
 − 
    ( ) ( )

2

0.3131 0.0170
(0.0274) (0.0559)

0.0171 0.2006
0.0075 0.0241

− 
 
 
 Θ =
 − − 
    

( )

( ) ( )

0.23850.0846
(0.0065) 0.0113

0.0036 0.0209
0.0017 0.0037

− 
 
 
 Ψ =
 
− − 
   

 

Residual Diagnostics 
 Mean Variance Q(4) Q2(4) Q(12) Q2(12) 
1,tε  0.0140 

[0.7225] 
0.9932 

[0.9969] 
2.8898 

[0.5764] 
6.1466 

[0.1885] 
21.4150 
[0.0446] 

11.7959 
[0.4622] 

2,tε  0.0265 
[0.5035] 

1.0088 
[0.9991] 

1.9639 
[0.7474] 

5.6143 
[0.2298] 

11.4304 
[0.4924] 

26.9583 
[0.0078] 

Moment Based Tests 

 
( ), , ,E hy t t y tε επ π=  

 2( ), ,E hy t y tε =  
0.6317 

[0.4267] 

2( ), ,E ht tεπ π=  

3.6123 
[0.0574] 

2.0114 
[0.1561] 

 

Notes: Standard errors displayed as (.). Marginal significance levels displayed as [.]. Q(p) and Q2(p) are 
are Ljung_Box tests for pth order serial correlation in 2

,, and tjtj zz respectively for j =yt,πt. 
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Table 2 Continued: Estimates of the Multivariate Asymmetric GARCH Model  
Conditional Variance-Covariance Structure 

*' * *' ' * *' * *' ' *
0 0 11 1 1 11 11 1 11 11 1 1 11

min( ,0), 1 , 1
;1 1 max( ,0), 1 , 1

H C C A A B H B D Dt t t t t t

y t y t
t t

t t

ε ε ξ ξ

ε ε
ε ξ

ε επ π

= + + +− − − − −
   − −   = =− −   − −   

 

*
0

1.8064 0.6612
(0.0817) (0.1595)

1.2033
0

(0.0977)

C

 
 
 
 =
 
 
  

 

( )

*
11

0.9155 0.0024
(0.0026) (0.0213)

0.1414 0.8567
0.1088 (0.0064)

B

 
 
 
 =
 − − 
  

 

( )

*
11

0.0741 0.0627
(0.0255) (0.0139)

0.0202 0.3844
0.0818 (0.0179)

A

− 
 
 
 =
 
 
  

 

( )

*
11

0.5711 0.0123
(0.0147) (0.0176)

0.3409 0.2479
0.0745 (0.0518)

D

− 
 
 
 =
 
 
  

 

Diagonal VARMA 
0 12 21 12 21: 0i i i iH θ θΓ = Γ = = =  [0.0000] 

No GARCH-M 0 : 0 for all ,ijH i jψ =  [0.0000] 
No asymmetry: H0:δij=0 for i,j=1,2 [0.0000] 
Diagonal GARCH * * * * * *

0 12 21 12 21 12 21: 0H α α β β δ δ= = = = = =  [0.0000] 
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Table A1: Robust conditional moment tests 
Indicator 2

, , ,y t y t y tv hε= −  , , , ,y t y t t y tv hπ π πε ε= −  2
, , ,t t tv hπ π πε= −  

1
ym  0.2002 

[0.6546] 
 

1.1889 
[0.2756] 

6.0239 
[0.0014] 

1mπ  0.0007 
[0.9789] 

 

0.5253 
[0.4686] 

0.1048 
[0.7461] 

,
2m− −  4.4018 

[0.0359] 
 

0.4363 
[0.5089] 

0.2990 
[0.5845] 

,
2m− +  0.8892 

[0.3457] 
 

2.4581 
[0.1169] 

1.2379 
[0.2659] 

,
2m+ −  1.2342 

[0.2666] 
 

1.4946 
[0.2215] 

1.4946 
[0.2215] 

,
2m+ +  0.0004 

[0.9844] 
 

0.1814 
[0.6701] 

1.7098 
[0.1910] 

,
3
y ym  0.1471 

[0.7014] 
 

1.5014 
[0.2204] 

 

4.3499 
[0.0370] 

,
3
ym π  0.1358 

[0.7125] 
 

0.1792 
[0.6721] 

3.2139 
[0.0730] 

,
3

ymπ  0.8974 
[0.3435] 

 

0.0001 
[0.9941] 

0.5373 
[0.4636] 

,
3mπ π 0.7223 

[0.3954] 
0.6679 

[0.4138] 
1.0869 

[0.2972] 
Notes: All tests are distributed as ∼χ 2(1). Marginal significance levels displayed as [.]. The 
misspecification indicator is defined where I(*) takes the value 1 if the expression in the parentheses 
below is satisfied and zero otherwise. 

Sign Misspecification Quadrant Misspecification Size/ Sign 
Misspecification 

( )1 , 1 0y
y tm I ε −= <  ( ),

2 , 1 , 10, 0y t tm I πε ε− −
− −= < <
 

( ), 2
3 , 1 , 1 0y y

y t y tm Iε ε− −= <  

( )1 , 1 0tm Iπ
πε −= <  ( ),

2 , 1 , 10, 0y t tm I πε ε+ −
− −= > <

 
 

( ), 2
3 , 1 , 1 0y

y t tm Iπ
πε ε− −= <  

 ( ),
2 , 1 , 10, 0y t tm I πε ε− +

− −= < >
 
 

( ), 2
3 , 1 , 1 0y

t y tm Iπ
πε ε− −= <  

 ( ),
2 , 1 , 10, 0y t tm I πε ε+ +

− −= > >
 

( ), 2
3 , 1 2, 1 0t tm Iπ π

π πε ε− −= <  
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Figure 5: News Impact Surface for output volatility, ,hy t . 
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Figure 6: News Impact Surface for Inflation Volatility, ,h tπ  
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Figure 7: News Impact Surface for Inflation-Output Covariance, ,h y tπ . 


