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The Fieller Method for the construction of confidence intervals for ratios of the expected 

value of two normally distributed random variables has been shown by a number of authors 

to be a superior method to the delta approximation.  However, it is not widely used due in 

part, to the tendency to present the intervals only in a formula context.  In addition, potential 

users have been deterred by the potential difficulty in interpreting non-finite confidence 

intervals when the confidence level is less than 100%.  In this paper we present two graphical 

methods which can be easily constructed using two widely used statistical software packages 

(Eviews and Stata) for the representation of the Fieller intervals.  An application is presented 

to assess the results of a model of the non-accelerating inflation rate of unemployment 

(NAIRU).  
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I. Introduction 
 The Fieller method (Fieller 1932, 1954) provides a general procedure for constructing 

confidence limits for statistics defined as ratios of the expected values of normally distributed 

random variables.  Zerbe (1978) defines a generalized version of Fieller’s method in the 

regression context where the ratio is defined in terms of linear combinations of the regression 

parameters.  

 Drawing inferences from the ratio of regression coefficients is elemental in a number of 

statistical applications.  Generally, the results of Monte Carlo simulations to compare the 

Fieller method with other methods for the construction of confidence intervals indicated that 

the Fieller method works reasonably well under a range of assumptions including departures 

from normality, whereas the widely used Delta method was a consistently poor performer and 

often underestimated the limits of the intervals (see Hirschberg and Lye 2004).     

 Applications in the economics literature are common.  Dufour (1997) proposed that 

ratios of regression parameter problems be subject to confidence intervals based on the 

Fieller type methods.  Fieller estimates have been used to calculate confidence bounds: for 

long-run elasticities in dynamic energy demand models (Bernard et al. 2005); mean 

elasticities obtained from linear regression models (Valentine 1979); non-accelerating 

inflation rate of unemployment, the NAIRU (Staiger et al. 1997); steady state coefficients in 

models with lagged dependent variables (Blomqvist  1973) and the extremum of a quadratic 

model (Hirschberg and Lye 2004). 

 However the Fieller method is not routinely used, partly due to its apparent non-

intuitive form.  In this paper we present two graphical representations of the Fieller method 

which we feel provides the intuition for the Fieller.  Both these approaches can be 

implemented using existing routines in such widely used computer software such as Stata and 

Eviews.  

II. The Fieller method 

The Fieller method (Fieller 1932, 1954) provides a general procedure for constructing 

confidence limits for statistics defined as ratios.  In this paper we will concentrate on the case 

of the ratio of regression parameters. Zerbe (1978) defines a version of Fieller’s method in 

the regression context, where the ratio ψ K
L
′

=
′
β
β

 is defined in terms of linear combinations of 

the regression parameters from the same regression, 1 1 1T T k k T× × × ×= β + εY X , 1~ ( , ),T T T× ×ε σ20 I  

in which the OLS estimators for the parameters are 1ˆ ( )−′ ′β = X X X Y , ˆ ˆ ˆ ( ) ,ε ε T k2 ′σ = −  and 
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the vectors 1 1 and k k× ×K L are known constants.  Under the usual assumptions, the parameter 

estimates are asymptotically normally distributed according to ( )( )12ˆ ~ ,N X X −′β β σ .  The 

ratio ψ  is estimated as 
ˆ

ˆ ˆ
′β

ψ =
′β

K
L

. 

 A 100(1− α )% confidence interval for ψ  is determined by solving the quadratic 

equation 2 0a b cψ + ψ + = , where 
2

2 -1 2ˆ ˆ( ) ( )a tα′ ′ ′= β − σ2L L X X L , 

2

2 -1 2 ˆ ˆˆ2 ( ) ( )( )b tα⎡ ⎤′ ′ ′ ′= σ − β β⎣ ⎦K X X L K L  and 
2

2 2 -1 2ˆ ˆ( ) ( )c tα′ ′ ′= β − σK K X X K .   

 When 0,a > the two roots of the quadratic equation, ( ) 2

1 2
4

2, b b ac
a

− ± −ψ ψ = , define the 

finite confidence bounds of the parameter value. The condition 0,a >  is only applicable if 

the hypothesis test 0 : 0H L β′ = is rejected at the α level of significance (Buonaccorsi 1979).  

 That the Fieller method does not always result in finite confidence bounds is a crucial 

feature of this technique because in a number of applications the denominator may have a 

distribution with significant mass around zero.  The resulting confidence interval may be the 

complement of a finite interval (b2 – 4ac > 0, a < 0) or of the whole real line (b2 – 4ac < 0, a 

< 0).  These conditions are discussed in Scheffé (1970) and Zerbe (1982).   

III. Confidence Bounds of the Linear Combination (CBLC) Graphical 
Representation of Fieller Method 

Consider the line, 

( ) ( ){ }ˆ ˆg ′ ′= β − β ψK L           (1) 

where ,K  L and the estimated regression parameters β̂  are as defined in Section II. This line 

can be plotted as a function of ψ  along with a ( )100 1 %α−  confidence interval.  The 

confidence bounds for this line are given by: 

( ) ( ) ( ){ }
( ) ( ){ }2 -1 2 -1 2 -1 2

2

ˆ ˆ

ˆ ˆ ˆ             ( ) 2 ( ) ( )

CI g

tα

′ ′= β − β ψ

′ ′ ′ ′ ′ ′± σ − σ ψ + σ ψ

K L

K X X K K X X L L X X L
 (2) 

where 
2

tα  is the value from the t distribution with an ( )2 %α  level of significance and T− k 

degrees of freedom.  

 An estimate of the value of the ratio ( )ψ̂  is found by solving: 

    ( ) ( )ˆ ˆ ˆ = 0′ ′β − β ψK L        (3) 
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Similarly, the bounds defining the ( )100 1 %α−  on ψ̂  are found by solving: 

( ) ( ){ }
( ) ( ){ }2 -1 2 -1 2 -1 2

2

ˆ ˆ

ˆ ˆ ˆ       ( ) 2 ( ) ( ) 0

K L

K X X K K X X L L X X Ltα

′ ′β − β ψ

′ ′ ′ ′ ′ ′± σ − σ ψ + σ ψ =
  (4) 

which is equivalent to solving the roots of the equation: 

( ) ( ){ }
( ) ( ){ }

2

2

2 2 -1 2 -1 2 -1 2

ˆ ˆ

ˆ ˆ ˆ           - ( ) 2 ( ) ( ) 0

K L

K X X K K X X L L X X Ltα

′ ′β − β ψ

′ ′ ′ ′ ′ ′σ − σ ψ + σ ψ =
  (5) 

By rearranging the terms in (5), this can be written as the quadratic equation, 
2 0a b cψ + ψ + = , where a, b and c are defined as in the Fieller method described in Section 

II. An advantage of this approach is that it can provide a graphical representation of the 

various possible Fieller-type confidence intervals. In addition, it is easily implemented in any 

existing computing software that saves the estimated coefficients and variance-covariance 

matrix of the estimated coefficients after running a regression. It is also easily implemented 

in existing computer programs that allow for the prediction of out-of-sample values along 

with the standard errors of the mean prediction. Stata programs adopting these approaches are 

described in Appendix A1. 

 

IV. Confidence Ellipse (CE) Graphical Representation of Fieller Method 

If we partition the regression equation = β+ εY X  as 1 1 2 2= β + β + εY X X  where 1β is a 

{ }( )2 1k − × vector and 2β is a ( )2 1× vector containing the parameter coefficients 21β  and 22β  

we can define a ratio 21

22

,β
ψ =

β
 which is estimated as 21

22

ˆ
ˆ .ˆ

β
ψ =

β
 Define the ( )100 1 %−α  

confidence ellipse as: 

( ) ( )( ) ( )2
2 2 2 1 2 2 2

ˆ ˆˆ 1,X M X F T k−
α

′ ′β −β σ β −β ≤ −      (6) 

where ( )1 1 1 1 1.M I X X X X′ ′= −   

In Appendix B we show the solution to the constrained optimization problem defined as:  

( ) ( )
( )

21 2211 12
21 22 22 22

12 22 22 22

ˆ
ˆ ˆ 1,

ˆ
L F T k

⎛ ⎞⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥⎜ ⎟⎡ ⎤ ⎜ ⎟⎜ ⎟⎡ ⎤ ⎢ ⎥⎝ ⎠⎛ ⎞ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ α⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

β −ψβω ω
= ψ −λ β −ψβ β −β − −

ω ω β −β
 (7) 
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where ijω are elements of ( )2
2 1 2ˆ X M X− ′Ω = σ .  The solution to this optimization has two 

roots that are equivalent to the Fieller interval. 

Figure 1: An Example of Finite Confidence Bounds 
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 The constrained optimization problem can be investigated via an equivalent 

diagrammatic approach. Following von Luxburg and Franz (2004), the ratio 21

22

ˆ
ˆ
β

β
 is the slope 

of the line through the points (0,0) and ( 21 22
ˆ ˆ,β β ). If (0,0) is not within the ellipse, two 

tangents to the ellipse which go through the origin are constructed. If 0 22: 0H β =  is rejected 

at the %α  level of significance the finite confidence bounds are defined at the points of 

intersection between each tangent and where the x-axis equals 1 (see Figure 1). However, if 

0 22: 0H β =  cannot be rejected and the ellipse cuts either 0 axes lines, the complement of a 

finite interval is defined (see Figure 2). In Figure 2 the practical interpretation would be that 

the ratio has a lower bound but no upper bound. If (0,0) is within the ellipse the interval is 

then the whole real line.   
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Figure 2: An Example of A Complement of A Finite Interval 

-1

0

1

2

3

4

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

•

 Lower bound

22β̂

21β̂

21

22

ˆ
ˆ

β
β

 

 In many cases the ratio will be of the form 21

22

.d β
ψ =

β
  For example, when the 

regression equation includes a quadratic specification and ψ  corresponds to the extremum, 

then d= 1
2 .−  For ratios defined in this way, to determine the Fieller interval, the appropriate 

intersection is between each tangent and .x d=  In the more general case when the ratio is 

defined as sums of regression parameters, 
′β

ψ =
′β

K
L

, define new parameters as ′γ = βK   and 

 ′λ = βL , and reformulate the regression equation in terms of the new parameters γ  and λ . 

To define γ  and λ  stack the two linear independent combinations so that the matrix 

[ ]2R = K Lk×
′′ ′ and [ ]2 1 .=×

′ρ γ λ  Then we can show that the equivalent equation to 

= β+ εY X  is ( ) ( )Y XA XR+= θ+ ρ+ ε , where R+ is the generalized inverse of R and A  is 

the matrix of eigenvectors corresponding to the zero valued eigenvalues of R R′ . This then 

implies that 1 AX X=  and 2 R .X X +=  For further details see Hirschberg, Lye and Slottje 

(2005) 

 This approach is easily implemented in any computer program that plots the confidence 

ellipse provided the ellipse has the correct dimensions. Note that  

the confidence ellipse produced as part of the OLS options in Eviews 5.0 is specified as: 



 6

( ) ( )( ) ( )2
2 2 2 1 2 2 2

ˆ ˆˆ 2 2,X M X F T k−
α

′ ′β −β σ β −β ≤ −       (8) 

To obtain the appropriate confidence ellipse as in (6) specify the confidence level as ( )1 ,−α  

such that ( ) ( )1, 2 2, .F T k F T kα α− = −  For example, to obtain the appropriate 95% 

Confidence Ellipse when T k−  is large, specify the confidence level as 0.85 instead of the 

default 0.95. In Stata 8 when T k−  is large, the 95% Confidence Ellipse can be obtained by 

using the program ellip (Alexandersson 2004) by specifying the boundary constant using chi2 

with 1 degree of freedom. Both of these approaches are described in detail in Appendix A2.  

V. Example application for the estimation of the NAIRU 

The example is based on the estimating equation in Gruen et al. (1999). In this specification 

the rate of wage inflation, measured by the rate of change of unit labour costs, is a function of 

the level of unemployment, the change in the rate of unemployment and the expected rate of 

inflation. Gruen et al. (1999) also choose to model annual movements. Furthermore, a lagged 

dependent variable is added on the basis of its significance. We write this specification as: 

( )
( ) ( )

*
4 4 1 1 4 4 1 2 3 1

4 4 1 4 2 5 4 1 4 4 6

ln ln ln ln

       + ln ln ln ln

t t t t t t

t t t t

ULC P P P U U

ULC P ULC ULC

− − −

− − − −

Δ −Δ = Δ −Δ + + Δ

Δ −Δ + Δ −Δ + +

α α α

α α α ε
 (9) 

Where ULC = unit labour costs per person, and is equal to wages per person divided by non-

farm productivity per person; P = CPI, P* = expected price level; U = rate of unemployment; 

Δ= 1 period change; and 4Δ = 4 period change. An estimate of the NAIRU is given as 

* 6

2

ˆˆ
ˆ

aU
a

=
−

, where 6 2ˆ ˆ,  a a  are the corresponding OLS estimates of (9). 

Table 1: Phillips Curve Estimates for Australia 1985:1 – 2003:4 

Parameter Estimate Standard Error p-value 

1̂a  0.16716 0.07790 0.0354 

2â  -0.24589 0.11118 0.0303 

3â  -0.28008 0.47844 0.5602 

4â  0.58431 0.07351 0.0000 

5â  0.55623 0.10064 0.0000 

6â  1.32780 0.83375 0.1157 

2 6ˆ ˆˆ a aσ = -0.090 R2=0.693 Number of observations = 76 
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 Using quarterly Australian data from Lye and McDonald (2006) for the period 1985:1 – 

2003:4, (9) is estimated and the results are reported in Table 1. Using these estimates the 

estimated NAIRU is * 1.328
0.246

ˆ 5.40%.U −= =   

 The estimated variance of *Û based on the Delta method is given by (see, for example, 

Rao 1973, pp 385-389): 

6 2 6 2

2 2 2 2
ˆ ˆ ˆ ˆ2 2 6 6

4
2

ˆ ˆ ˆ ˆ2a a a aa a a a
a

σ − σ + σ
        (10) 

where 
6

2
âσ  is the variance of 6â , 

2

2
âσ  is the variance of 2â  and 

2 6ˆ ˆa aσ is the covariance between 

2â  and 6â .  A 100(1− α )% confidence interval for *U  based on the Delta method is given 

by: 

6 2 6 2

2

2 2 2 2
ˆ ˆ ˆ ˆ2 2 6 66

4
2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2ˆ
  

ˆ ˆ
a a a aa a a aa t

a aα

σ − σ + σ⎛ ⎞
±⎜ ⎟−⎝ ⎠

 (11) 

where 
2 6 2 6

2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ,  and a a a aσ σ σ  are the estimated values of 

2 6 2 6

2 2
ˆ ˆ ˆ ˆ,  and a a a aσ σ σ  respectively. The 95% 

Delta confidence bounds are then [3.120%, 7.682%] from which one would conclude that the 

NAIRU is significantly different from zero. 

 To obtain the 95% Fieller confidence bounds using the CBLE approach, in Figure 3a, 

we plot 

  { }*
6 2ˆ ˆg a a U= +          (12) 

along with the 95% confidence bounds of LY given by, 

{ } ( )6 2 6 22

2* 2 * 2 *
ˆ ˆ ˆ ˆ6 2ˆ ˆ ˆ ˆ( )    2a a a aCI g a a U t U U= + ± + +α σ σ σ   (13) 
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Figure 3a: The Estimated NAIRU and its Fieller Confidence bounds using Confidence 
Bounds Approach 
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The points where the confidence bounds are equal to 0 define an interval that is equivalent to 

the confidence interval associated with the 95% Fieller interval. From Figure 3a, the 95% 

Fieller Interval is [-10.11%, 6.91%], quite a different result from above which indicates that 

we have not found a lower bound that is consistent with economic theory. Figure 3b 

illustrates the same interval but obtained using the CE approach. In Figure 3b two tangents to 

the ellipse which go through the origin are plotted. The upper and lower limits of the Fieller 

interval in this case are finite and are defined at the points of intersection between each 

tangent and where the x-axis equals =-1. 
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Figure 3b: The Estimated NAIRU and its Fieller Confidence bounds using Confidence 

Ellipse Approach 
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 Figure 4 shows the bounds of the Fieller and Delta intervals for a range of confidence 

limits. At around the 97% Confidence Interval the lower bound of the Fieller interval 

becomes unbounded whereas the Delta and Fieller upper bounds are similar. In this case the 

Fieller interval is a complement of a finite interval.  At around the 99% Confidence level both 

bounds of the Fieller interval become unbounded and the Fieller interval is the whole real 

line.   
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Figure 4: A Comparison of Fieller and Delta for a range of Confidence Limits 
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VI. Conclusions 

 In this paper we demonstrate two graphical methods for the demonstration of the Fieller 

interval. From these graphical representations one can see how the distribution of the two 

variables which form the ratio influence the nature of the confidence interval. In the example 

we find that the Fieller although providing a finite upper bound does not necessarily result in 

a bounded lower bound. 
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Appendix A: Computer Programs 
 

 All of the programs discussed in this Appendix involve estimating Equation (8) defined 

as: 

( )
( ) ( )

*
4 4 1 1 4 4 1 2 3 1

4 4 1 4 2 5 4 1 4 4 6

ln ln ln ln

       + ln ln ln ln

t t t t t t

t t t t

ULC P P P U U

ULC P ULC ULC

− − −

− − − −

Δ −Δ = Δ −Δ + + Δ

Δ −Δ + Δ −Δ + +

α α α

α α α ε
 

In the Appendix we refer to the variables 4 4 1ln lnt tULC P−Δ − Δ as y; ( )*
4 4 1ln lnt tP P−Δ − Δ as 

x1; tU as x2; 1tU −Δ  as x3; ( )4 1 4 2ln lnt tULC P− −Δ −Δ  as x4 and ( )4 1 4 4ln lnt tULC ULC− −Δ −Δ  

as x5. 

Appendix A1: Confidence Bounds Approach 

Program 1: Using out-of-sample predictions approach 

Programs: phillips_stata1.dta; phillips_regress1.do1 

 In the program phillips_stata1.dta  we want to plot 

  { }*
6 2ˆ ˆLY a a U= +        

where 6â  is the estimated constant and 2â  is the estimated coefficient on the variable x2 and, 

in addition to also plot the corresponding confidence interval.  

 In the data file (phillips_stata1.dta) the first observations are the observations for 

estimation (the first 76 observations). The rest of the observations are to be used for the out-

of-sample predictions to obtain the values for LY and its corresponding confidence intervals 

(called up and low in the program). Set these observations up such that the dependent variable 

is missing (ie use na); the observations on x1, x3, x4, and x5 are all 0 and the observations for 

x2 correspond to the values over which LY is to be plotted. In this example we used values 

from -14 to 14.  A few lines from the data file are shown below which show the last two rows 

of data for the estimation period and the first two rows of observations to be used to obtain 

the out-of-sample predictions and corresponding confidence intervals:    

 

 

3.19777 0.11832 5.98071 0.06158 0.9285 1.95527

                                                 
1  All programs mentioned in Appendix A are available form the authors on request. 
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0.91987 0.50611 5.74786 -0.2045 3.19777 1.00789
Na 0 -14 0 0 0
Na 0 -13 0 0 0

 

In calculating the confidence bounds up and low using predict the appropriate 

standard error to use is the standard error of the mean prediction using predict’s stdp 

command. 
use "d:\stata\phillips_stata1.dta"  
gen zero = 0 
regress y x1 x2 x3 x4 x5 if _n<77 
predict double ly, xb 
predict double stdly, stdp 
scalar tval = invttail(e(df_r),0.025) 
generate double up = ly + tval*stdly 
generate double low = ly - tval*stdly 
tabdisp x2 if _n>76, cellvar(ly stdly low up) 
scatter zero ly low up x2 if _n>76, connect(l) msymbol(i) xlab(-12 -8 -4 0 
4 8) 

 

Program 2: Using saved estimates and variance-covariance matrix 

 

Programs:phillips_saved1.do; phillips_aus1.dta; us.dta 

 

 The 76 observations to estimate the model are in Phillips_aus1.dta and us.dta has a 

variable us which contains the values over which LY is to be calculated. We use 29 values of 

us ranging from -14 to 14 in steps of 1. In the program phillips_saved1.do, LY and the 

confidence bounds of LY, named up and low, are generated using saved values of the 

regression estimates(_b[_cons], _b[x2])and saved values of the standard errors (_se[_cons], 

_se[x2]). To obtain the covariance the appropriate element is accessed from the saved 

variance-covariance matrix (VCE). In the program this is named C26. 

 
use "d:\stata\phillips_aus1.dta"  
regress y x1 x2 x3 x4 x5 
use "d:\stata\us.dta"  
gen ly = _b[_cons]+_b[x2]*us 
gen zero = 0 
matrix V = get(VCE) 
matrix C26 = (vecdiag((V[2,6])*I(29)))' 
svmat C26, name(C26) 
gen varly = (_se[_cons])^2+(us^2)*(_se[x2]^2)+2*us*C26 
gen stdly = sqrt(varly) 
tabdisp us, cellvar(ly stdly) 
gen low = ly-invttail(e(df_r),.025)*stdly 
gen up = ly+invttail(e(df_r),.025)*stdly 
tabdisp us, cellvar(ly stdly low up) 
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scatter zero low up us, connect(l) msymbol(i) xlab(-12 -8 -4 0 4 8) 
 
 

Appendix A2: Confidence Ellipse Approach 

Stata Program 

Program:phill1.dta;ellipse1.do 

 The data file phill1.dta contains the regression data including data on a variable x6 

which takes values 1 corresponding to the constant term. The program ellipse1.do contains 3 

lines to generate a confidence ellipse although it calls upon the program “ellip” from 

Alexandersson (2004).  

 First the regression is estimated. In this case x6 takes values 1 as corresponds to the 

constant term so a regression is run with no constant.  For large samples, to obtain the 

appropriate dimensions of the confidence ellipse the appropriate boundary constant is a chi 

square with 1 degree of freedom. The options xlab and ylab are used to plot the ellipse over 

appropriate values. 

 
use "d:\stata\phill1.dta" 
regress y x6 x2 x1 x3 x4 x5, noc 
ellip x6 x2 ,coefs c(chi2 1) ylab(-12 -8 -4 0 4 8) xlab(0 -0.2 -0.4 -0.6 -
0.8 -1.0) 

 

Eviews Program (Eviews 2005). 

 The confidence ellipse produced as part of the OLS options in Eviews 5.1 (see Eviews 

2005 p 572) is specified as: 

( ) ( )( ) ( )2
2 2 2 1 2 2 2

ˆ ˆˆ 2 2,X M X F T k−
α

′ ′β −β σ β −β ≤ −    

However, the appropriate confidence ellipse is 

( ) ( )( ) ( )2
2 2 2 1 2 2 2

ˆ ˆˆ 1,X M X F T k−
α

′ ′β −β σ β −β ≤ −  

To obtain the appropriate confidence ellipse, specify the confidence level as ( )1 ,−α  such 

that ( ) ( )1, 2 2, .F T k F T kα α− = −  The Table below lists the appropriate confidence levels to 

use in the Eviews program   
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df ( )1−α ( )1−α ( )1−α ( )1−α
10 0.867 0.950 0.758 0.900 
20 0.860 0.950 0.750 0.900 
30 0.858 0.950 0.747 0.900 
40 0.856 0.950 0.746 0.900 
50 0.856 0.950 0.745 0.900 
60 0.856 0.950 0.744 0.900 
70 0.855 0.950 0.744 0.900 
80 0.855 0.950 0.744 0.900 
90 0.855 0.950 0.743 0.900 
100 0.855 0.950 0.743 0.900 
120 0.855 0.950 0.743 0.900 
150 0.854 0.950 0.743 0.900 
200 0.854 0.950 0.742 0.900 
300 0.854 0.950 0.742 0.900 
500 0.854 0.950 0.742 0.900 
1000 0.854 0.950 0.742 0.900 
5000 0.854 0.950 0.742 0.900 

 

The first step is to estimate the regression using Eviews as follows: 

 

Then to obtain the 95% Confidence Ellipse, we use Confidence Ellipse available 

under the View/Coefficient Tests option and specify ( )1 0.85−α =  as the Confidence level 

and the estimated coefficients correspond to c(2), the estimated coefficient of x2 and c(6), the 

estimated coefficient of c. 
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Appendix B The equivalence between the ratio restricted by the confidence ellipse and 
the Fieller Method. 
 
 The bounds of the ratio of the regression parameters where the restriction is defined by 

the confidence ellipsoid of the two parameters can be found from the solution to the 

following constrained optimization problem:  

( ) ( ) ( )
( )

11 1 112 21
1 1 2 2

2 212 222

b
L b b t

b

⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

ω ω −ββ
= −λ −β −β −

ω ω −ββ
  (B.1)2 

where λ is the Lagrange multiplier, 1b  and 2b  are the estimated parameters, ijω  are elements 

of the inverse of the covariance of the regression parameters, and 2t  is the critical value of 

the t-distribution for a two tailed test.  Alternatively writing this Lagrangian in terms of ψ  

where 1 2ψ = β /β  allows us to write 1 2β = β ψ , and we obtain: 

( )
( )1 211 12 2

1 2 2 2
2 212 22

b
L b b tb

⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟⎢ ⎥⎡ ⎤ ⎢ ⎥⎛ ⎞⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎛ ⎞⎢ ⎥⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦⎝ ⎠

−ψβω ω
= ψ −λ −ψβ −β −

−βω ω
  (B.2) 

or: 

( ) ( ) ( )
( ) ( ) ( )

2
2 2 22 2 2 12 1 2

1 2 12 2 2 11 1 2

t b b b
L

b b b

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟
⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− + −β ω −β +ω −ψβ
= ψ + λ

+ −ψβ ω −β +ω −ψβ
 

The first order partial derivatives are then defined as:  
2 2
2 12 2 2 12 1 2 11 2 112 2 2 2 1L b b∂

∂ψ = λβ ω − λ β ω − λ β ω + λψβ ω +   

                                                 
2 Note that the notation 2t  is used. It  is equivalent to ( )1, .F T kα −  
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L∂
∂λ =

1 2 12 1 2 12 2 2 22 1 2 11 2 2 12
2 2 2 2 2 2 2

1 11 2 22 2 22 2 12 2 11

2 2 2 2 2

2

b b b b b b

t b b

ω − β ω − β ω − ψ β ω − ψ β ω

− + ω + ω +β ω + ψβ ω +ψ β ω
  

2

2
2 22 2 22 1 12 1 11 2 12 2 12 2 112 2 2 2 2 4 2L b b b b∂

∂β = λβ ω − λ ω − λ ω − λψ ω − λψ ω + λψβ ω + λψ β ω   

The first order conditions for an optimum are given as:  

 2 2 1
1 2 11 2 2 12 2 12 2 11 2 0b b λβ ω + β ω −β ω −ψβ ω + =      (B.3) 

 
( )2

1 2 12 1 2 12 2 2 22 1 2 11 2 2 12 2 12

2 2 2 2 2 2
1 11 2 22 2 22 2 11

2

 0

b b b b b b

t b b

β ω − ω + β ω +ψ β ω +ψ β ω −ψβ ω

+ − ω − ω −β ω −ψ β ω =
  (B.4) 

 ( ) 2
2 22 2 22 1 12 2 12 1 11 2 12 2 112 0b b b bβ ω − ω − ω +ψ β ω − ω − ω +ψ β ω =   (B.5) 

First we can solve (B.5) for 2β  as 

 ( ) ( )12
2 22 12 11 1 12 2 22 1 11 2 122 b b b b

−
β = ω + ψω +ψ ω ω + ω +ψ ω +ψ ω  (B.6) 

Then we can use (B.6) to substitute for 2β  in (B.4) to get an expression only in ψ  and the 

other given values. 

2
22 12 11

2 2 3
12 22 22 11 22 11 12

2 2 2
1 2 12 1 11 2 22

2 2
1 2 12 22 1 2 11 22 1 2 12 1 11 12

2 2 2 2 2 21
2 12 22 1 2 11 12 1 12 2 222

2 2 2 2 2 2
1 11 2 12

1
4 2 4

2

4 4 4 4

4 4 2 2

2 2

t b b b b

b b b b b b b

b b b b b

b b
ω + ψω +ψ ω

ψω ω +ω + ψ ω ω + ψ ω ω

− ω − ω − ω

⎛ ⎞ω ω + ψ ω ω + ψ ω + ψ ω ω
⎜ ⎟

+ + ψ ω ω + ψ ω ω + ω + ω +⎜ ⎟
⎜ ⎟ψ ω + ψ ω⎝ ⎠

+ 2 2 4 2
12 11

2 2 2 2
1 2 12 22 1 2 11 22 1 2 12 22 1 11 12 22

2 2 3 2 2 2 2
1 2 11 12 22 2 22 1 12 22 2 12 22

3 2 3 2 4 2
1 2 11 12 1 2 11 22 1 2 11 124

3 2 4 2 3 2 2
2 11 12 22 1 11 1 11

2 2 2 2

4 2

2 2 2

2

b b b b b b b

b b b b b

b b b b b b

b b b
+ ψ ω +ψ ω

− ω ω − ψ ω ω − ψ ω ω − ψ ω ω ω

− ψ ω ω ω − ω − ω ω − ψ ω ω

− ψ ω ω − ψ ω ω − ψ ω ω

− ψ ω ω ω −ψ ω −ψ ω 2 2 2 2
12 1 11 22

3 2 2 2 2 2 2 2 2 4 2 2
1 11 12 2 11 22 2 12 22 2 11 122

b

b b b b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ω −ψ ω ω
⎜ ⎟
⎜ ⎟− ψ ω ω −ψ ω ω −ψ ω ω −ψ ω ω⎝ ⎠ (B.7)3 

 

A set of solutions is given by: 

 

4 2 4 2
11 22 1 2 11 12 22 12

2 2 2 3 2 2 2 2 2 2
1 2 11 22 12 1 2 12 1 2 12 1 11 12 1 11 22

2 2 2 2 2 2
2 11 22 2 12 22

2 2 2 2
11 2 11 22 2 12

2

2

i

t t b b t
b b t b b t b b t b t b

t b t b

t b b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

− ω ω + ω ω ω + ω

− ω ω − ω + ω ± − ω − ω ω + ω ω

+ ω ω − ω ω
ψ =

ω − ω ω + ω
   (B.8))4 

 

                                                 
3  This expression was expanded using Scientific Workplace 5.0. 
4 This set of solutions requires 11 0ω ≠  which would always be the case when we estimate the regression 
parameters. 
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 Alternatively, the Fieller method is defined as the solution for the values of ψ  from this 

case:  

 

( ) [ ]2 11 122
1 2

12 22

1
1 0tb b

⎡ σ σ ⎤⎡ ⎤ ⎡ ⎤
− −ψ =−ψ ⎢ ⎥⎢ ⎥ ⎢ ⎥σ σ −ψ⎣ ⎦⎣ ⎦⎣ ⎦

    (B.9) 

 

where ijσ  are elements of the covariance matrix for the parameters.  This can also be written 

as the quadratic equation in ψ  defined as:  

 
2 2 2 2 2 2

1 11 12 1 2 2 222 2 0b t t b b b t⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− σ +ψ σ − +ψ − σ =     (B.10) 

 

Again, in the case where we find two real roots the solution is given as:  

 

2 2
2 22

2 4 2 4 2 2 2 2 21
1 2 12 11 22 1 2 12 12 2 11 1 222

b t
b b t t t b b t t b t b⎛ ⎞

⎜ ⎟
⎜ ⎟− + σ ⎝ ⎠
− + σ ± − σ σ − σ + σ + σ + σ   (B.11) 

 

 In order to demonstrate the equivalence between these two methods we need to use the 

correspondence between the covariance matrix and its inverse defined as: 

 

22 12
2 2

11 22 12 11 22 12

12 11
2 2

11 22 12 11 22 12

1
11 1112 12

12 22 12 22

σ σ−⎡ ⎤ ⎡ ⎤
−σ σ +σ −σ σ +σ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ σ σ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ −σ σ +σ −σ σ +σ

⎡ ⎤−ω ω σ σ
⎢ ⎥= =

ω ω σ σ ⎢ ⎥−⎣ ⎦
    (B.12) 

 

We can show that the roots for the constrained optimization problem are then defined as 

shown below when written in terms of the elements of the covariance matrix:  

 

( )2
11 22 12

2 2
12 11 22 12 11 22

2 2
2 22

2
1 2 1 2 12

1

2 2 2 2 2 2
2 11 1 2 12 1 22 11 22 122

i b t

b b b b t

t b b b b t t

⎛ ⎞σ σ σ⎜ ⎟
⎜ ⎟σ −σ σ σ −σ σ− ⎜ ⎟
⎜ ⎟− σ

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− + σ
ψ =

± σ − σ + σ − σ σ + σ
    (B.13) 

 

It can then be shown that this is equal to the corresponding root for the quadratic as found 

from the Fieller method.  
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2 2
2 22

2 4 2 4 2 2 2 2 21
1 2 12 11 22 1 2 12 12 2 11 1 222i b t

b b t t t b b t t b t b⎛ ⎞
⎜ ⎟
⎜ ⎟− + σ ⎝ ⎠

ψ = − + σ ± − σ σ − σ + σ + σ + σ   (B.14) 

 

Although the roots of these two problems are the same the functions they satisfy are quite 

different.  To demonstrate this we have assumed the following values: 1 10b = , 2 4b = , 

1
11 31ω = + , 2

12 3ω = − , 1
22 31ω = + , 11 1σ = , 1

12 2σ = , 22 1σ = , and 2t = .  Using these parameter 

values we find that 1

2
2 5b

b = .  and the limits are defined as 1 7427.  and 4 5907. .   Figure B.1 

shown below has plotted the two functions to be solved the Fieller results in the parabola 

denoted by the dashed line and the solution to the constrained optimization is given by the 

thicker line.  
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ψ

 
Figure B1 The function defined by (B.7) (dark line) and the function (B.10) (dashed line) 

when the t-statistic is 2.  
 

 If we set the t-statistic for the case of a probability of a type one error to .0001 the t = 

3.891 we find the function in (B.7) as plotted in Figure B.2 below.  Note that the limits in this 

case are 1. 3319 to 74. 116 and the Fieller intervals parabola appears to be almost vertical 

lines. 
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Figure B2  The function defined by (B.7) (dark line) and the function (B.10) (thin line) when 

the t-statistic is 3.891. 
 

 In Figure B.3 the two functions are plotted assuming a t-statistic = 4.417 for a p-value 

of .00001.  Note that the (B.7) function remains negative as ψ goes to infinity. 
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Figure B3  The function defined by (B.7) (dark line) and the function (B.10) when the t-

statistic is 4.417 for a p-value of .00001. 
 

 In this case the two roots are -18.475 and 1.2417.  Recall that these are confidence 

intervals about the value of 2.5.  For practical purposes, the appropriate interpretation is that 

the upper bound goes to ∞ and the lower bound is 1.2412. 

 


