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Abstract

This paper develops an industry evolution model to explore the quantitative im-
plications of endogenous financing constraints for job reallocation. In the model firms
finance entry costs and per period labor costs with long-term financial contracts signed
with banks, which are subject to asymmetric information and limited commitment
problems. Financing constraints arise as a feature of the optimal contract. The model
generates endogenous firm exit and job reallocation in a stationary industry equilib-
rium. A quantitative analysis shows that endogenous financing constraints can account
for a substantial amount of job reallocation observed in U.S. manufacturing and the
observed negative relationship between job reallocation rates and firm size as measured
by employment.

Keywords: Asymmetric information; Limited liability; Limited commitment; Dynamic
contract; Job reallocation; Stationary competitive equilibrium; Stationary firm distri-
bution.

JEL classification: E24, D82, L14
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1 Introduction

This paper explores the quantitative implications of financial frictions for simultaneous ex-
pansion and contraction across firms and the resultant reallocation of employment. The
quantitative significance of such reallocation is reflected in the high turnover rates of jobs
and firms. Davis, Haltiwanger and Schuh (1998) document that on average 10.3 percent of
manufacturing jobs were destroyed and 9.1 percent were created per annum during the 1973-
88 period. And during the same period, according to the Census of Manufactures, over forty
percent of the manufacturing firms disappeared over five year periods and were replaced
by new ones. Empirical studies, such as Evans (1987), Hall (1987), Dunne, Roberts and
Samuelson (1989), and Davis, et al (1996), also find interesting regularities in the turnover.
Notably, firm exit rates, job creation, destruction and reallocation rates are decreasing in
firm size (measured by employment) and age.

Despite the economic and social significance, economic theories underlying the turnover
have not been fully developed. Existing labor market theories, including labor demand
models with adjustment costs of labor and search theories of equilibrium job flows, have
difficulty accounting for the negative size and age dependence of gross employment flows.
Recent developments in the theory of firm dynamics and industry evolution have shed some
light on this problem. The learning theory of Jovanovic (1982) has the potential to account
for the negative age dependence of the turnover. Hopenhayn (1992) introduces persistent
idiosyncratic technology shocks to drive the entry, exit and size dynamics of firms. This
model can explain the negative dependence of firm exit rates on firm size. However, as
pointed out by Cooley and Quadrini (2001), without some restrictions on the transition
probabilities of the shock process, it is hard to derive a general pattern of job reallocation
on firm size.

This paper studies firm dynamics from another angle: frictions in firm financing and the
resultant financing constraints. There is considerable empirical evidence suggesting that fi-
nancing constraints might be important determinants of firm dynamics (see Fazzari, Hubbard
and Peterson (1988), Gilchrist and Himmelberg (1995) and Whited (1992)). Recent work by
Cooley and Quadrini (2001), Albuquerque and Hopenhayn (2004), Clementi and Hopenhayn
(2006), and etc., have also shown that models of firm dynamics that incorporate exogenous
or endogenous financing constraints into a firm’s decisions are qualitatively consistent with
some stylized facts on the growth and survival of firms. In particular, Cooley and Quadrini
(2001) introduce financial market frictions into the basic framework of Hopenhayn (1992)
and show that the integration of persistent technology shocks and financial frictions allow
the model to generate simultaneous dependence of firm dynamics on size and age1. This
paper follows the same line of research as these studies, but aims to quantitatively evaluate
the significance of financing constraints for job reallocation, something that has not been
addressed in the literature so far. Specifically, two quantitative questions are addressed.
First, how much job reallocation can be accounted for by financing constraints? Second,
how much of the negative size and age dependence of job reallocation can be accounted for
by financing constraints?

1In Cooley and Quadrini (2001), firm size is measured by capital. Since labor and capital are assumed
to be complements, the size dependence also holds if size is measured by employment.
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To address these questions, this paper develops an industry equilibrium model in which
firms’ entry, exit, expansion and contraction are driven by financing constraints. A com-
parison with Cooley and Quadrini (2001) is that we explicitly model the micro foundations
of financing constraints while there the financing constraints in one-period external finance
arise from two exogenous assumptions on financial market imperfections and firm exit is
assumed to be exogenous. In the model constructed, firms’ growth and failure are fully
driven by the endogenous financing constraints, and firm entry, exit and job reallocation
emerge in a stationary industry equilibrium. The model is then calibrated and simulations
are implemented to answer the quantitative questions outlined earlier.

In the model, firms are endowed with identical risky projects that require a fixed initial
investment that firms cannot afford with their initial wealth and per period labor inputs to
produce a homogeneous product at each period. Entrepreneurs are assumed to have private
information about the outcomes of their production, where the idiosyncratic production
shocks are assumed to be i.i.d. across firms and time. A firm can be liquidated at the
beginning of a period and generate a positive scrap value. Upon entry, a firm signs a long-
term financial contract with a competitive bank which finances its initial investment and
per period wage bills in exchange for repayments from the firm in every period. A firm’s
life cycle (employment growth and failure) is completely regulated by the optimal financial
contract in relation to its shock realizations.

The contracting problem is a modification of Clementi and Hopenhayn (Hereafter C-H)
(2006), where they model borrowing constraints as an equilibrium outcome of a long-term
borrowing/lending contract with asymmetric information between a firm and a bank and
characterize the firm dynamics implied by the optimal contract. The model predicts that on
average smaller firms are more financially constrained, grow faster but the growth is more
volatile, and have higher probability of being liquidated. These implications are consistent
with the qualitative properties of firm dynamics documented recently. However, the contract
predicts that the firm repays all revenues to the bank until it is liquidated or it grows to
a stage where the bank advances the unconstrained efficient amount of working capital to
the firm in every period while the firm pays nothing back to the bank. This feature of the
contract has several implications that are inconsistent with the data. First, it implies that
a firm, if not liquidated at an early stage of its life, will grow in finite periods to reach its
unconstrained efficient size and never be liquidated. While in the data, one observes even
large firms going bankrupt and adjusting scales of operation. Second, once a firm grows
to the unconstrained stage, the bank it signs the contract with will lose from the contract
forever. It seems unrealistic that banks do not impose any control over this situation in
the first place or renegotiate the contract afterwards considering that the Clementi and
Hopenhayn contract is not renegotiation-proof2. Finally, in an industry equilibrium model,
if firms are financed by this type of contracts, all incumbent firms would eventually attain
the same efficient size. There would be no firm entry, exit, or job reallocation in a stationary
industry equilibrium.

The assumption underlying this result is the full commitment of the bank. In Clementi

2The existence of people’s retirement account may be used against this argument since its balance may
become negative when people draw from this account after retirement such that the bank loses from this
account until the person dies. However, a key difference here is that people have a finite life-span while firms
that grow to that stage last forever.
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and Hopenhayn (2006) the entrepreneur is assumed to have limited commitment in the sense
that she has limited liability for repayments in every period, while the bank is assumed to
be able to keep her promises under all circumstances. Despite that full commitment is
typically assumed for banks (the principal) in existing literature on optimal lending contract
between firms and banks (e.g. see Albuquerque and Hopenhayn (2004), Quadrini (2003),
and Cooley and Quadrini (2004)), it implies unlimited liability of the bank in the current
context, which is far from being realistic. As pointed out in Sinn (2001), banks enjoy the
privilege of limited liability (BLOOS rule) as all corporations do3. To account for this, we
modify the Clementi and Hopenhayn contract by assuming that a bank is guaranteed a
zero continuation value from a contract from every period onward, as an entrepreneur does
(the limited liability of firms imply a nonnegative continuation value of a contract to an
entrepreneur from every period onward). That is, the continuation value of a contract to a
bank at the beginning of any period is required to be nonnegative. A zero lower bound may
seem arbitrary or restrictive. However, assuming a negative lower bound on the continuation
value of a contract to a bank would not change the crucial features of the model as long as the
lower bound is greater than the continuation value of the Clementi and Hopenhayn contract
to the bank when the firm grows to the unconstrained stage. With this modification, firms
will never reach the unconstrained stage where banks lose from the contracts forever.

Technically, this constraint is equivalent to assuming that banks have limited commit-
ment for the Clementi and Hopenhayn contract such that a bank would renege on a contract
without punishment if the continuation value of the contract to herself falls below zero. For
this reason we will refer to this constraint as limited commitment of banks. However it
should be emphasized that this does not contradict the common belief that banks can fully
honor their contracts since banks do have full commitment for the modified contract. A
lemma shows that the limited commitment constraint for banks can be reduced to an upper
bound on the value of the contract to an entrepreneur (the state variable in the recursive
formulation of the dynamic contract), which ensures the tractability of the contracting prob-
lem. Firm dynamics implied by the optimal contract share some features as C-H (2006), for
instance, smaller firms tend to be more financially constrained and have higher probability of
being liquidated. However, the limiting behavior has been changed by the assumed limited
commitment of banks. That is, a firm is financing constrained and has positive probabili-
ties of being liquidated throughout its life cycle. These features are crucial for generating
endogenous firm entry, exit and job reallocation in the stationary industry equilibrium. The
optimal contract also predicts more realistic decision rules concerning a firm’s dividend and
repayment policy.

Notice that the contracting problem considered here is one with repeated moral hazard
and two-sided limited commitment. This provides a theoretical contribution to existing
literature on risk sharing contracts between an agent and a principal, where most studies
assume full commitment of both parties (e.g., see Green (1987), Atkeson and Lucas (1992),
and Spear and Srivastava (1987)) or lack of commitment on the agent’s side (e.g., see Phelan
(1995) and Krueger and Uhlig (2006)). This paper considers lack of commitment on the

3Limited liability of banks is often characterized by the term “BLOOS rule” after the English proverb
“You can’t get blood out of a stone”. There is substantial work on implications of limited liability of banks
for bank behavior, financial crises, banking regulations and so on (e.g. see Repullo (2004), Sinn (2001), and
Gollier, et al. (1997)).

5



principal’s side in the context of C-H (2006), justified by limited liability of banks, and shows
that it implies interesting firm dynamics that are in line with the data. A key novelty here is
that the limited commitment assumption for the principal puts an upper bound on expected
utilities of the agent (value of the contract to the firm) so as to generate a nondegenerate
limiting distribution of agents with mobility. This is an alternative to existing approaches in
the literature, where nondegenerate limiting distributions are obtained by imposing different
discount rates for the principal and the agent (see Aiyagari and Willamson (1999)) or a lower
bound on expected utilities of agents (see Atkeson and Lucas (1995) and Phelan (1995)).

The model is shown to possess a unique stationary competitive equilibrium with firm
entry and exit in which aggregate employment is constant while individual firms continu-
ally adjust employment levels. In contrast, the equilibrium without the financing frictions
exhibits no firm entry or exit, with all firms employing the same efficient amount of labor.
Therefore, the employment dynamics in the model are fully driven by the financial frictions.
The baseline calibration picks key parameters to match the exit rate, employment share and
relative size of exiting firms due to bankruptcy and liquidation for the U.S. manufacturing.
The model generates an annual job reallocation rate of 9.5%, which is nearly 50% of the
job reallocation rate (19.4%) documented in the data. Furthermore, the correlation coeffi-
cient between average firm size and job reallocation rate is −0.51, slightly lower than its data
counterpart (−0.59) in magnitude, which implies that 87% of the negative size dependence of
job reallocation can be accounted for by the financial frictions in the model. The model also
generates an unconditional negative age dependence of job reallocation (But once controlled
for firm size, age dependence disappears).

Finally, it should be emphasized that contrary to the creative nature of job reallocation
driven by technology shocks, as in Hopenhayn and Rogerson (1993), job reallocation in this
model is not creative or efficient. Firms in the model have identical technology. Without the
financial frictions, they would produce at the same efficient level, and no firm would exit.
The presence of financial frictions causes inefficient job reallocation across firms, and results
in considerable losses in aggregate output and employment. The quantitative significance
of these impacts may justify the intensified exercise of government watchdog accounting
procedures at the Securities and Exchange Commission. A comparative static analysis is
also implemented to see how these impacts vary with the discount factor, project riskiness,
and other primitives of the model. The results show that the model exhibits comparative
static properties that are consistent with the data and existing literature.

The rest of the paper is arranged as follows. Section 2 describes the model. Section
3 characterizes the equilibrium, in particular, the optimal financial contract. Section 4
describes the results of the quantitative analysis. Section 5 concludes.

2 The Environment

Time is discrete and the horizon is infinite. The industry is composed of a continuum of
firms and banks. In each period, a continuum of infinitely lived entrepreneurs are born with
net worth M and a risky project, which requires an initial fixed investment I > M and
per-period labor input to produce a homogeneous product. The labor cost must be paid
before production. Projects are subject to idiosyncratic production shocks θt in each period,

6



where θt ∈ {H,L} with prob{θ = H} = π. If θt = H, a project produces output f(lt), where
lt is the number of workers employed in period t. The function f is continuous, strictly
increasing and strictly concave. If θt = L, output in period t is zero. Production shocks
are assumed to be independent across time and projects. A project can be scrapped at the
beginning of a period, in which case it generates a positive scrap value S. It is assumed that
S < I − M .

As in C-H (2006), realizations of production shocks are assumed to be private information
of the entrepreneur who manages the project. Outsiders cannot observe or verify it. Since
I > M , an entrepreneur needs the financial services of banks to undertake her project. As
discussed in C-H(2006), the presence of asymmetric information gives rise to a long-term
credit relationship between an entrepreneur and a bank, under which the bank provides
funds for the entrepreneur to finance the initial investment and per-period labor cost of the
project in exchange for repayments from the entrepreneur. In every period an entrepreneur
is assumed to be liable for repayments only to the extent of current revenues. This is the
limited liability constraint for entrepreneurs. The remaining revenues are fully consumed by
the entrepreneur (dividends of the firm). The assumed limited commitment constraint for
banks that is crucial for the model states that the continuation value of a contract to a bank
at the beginning of any period is required to be nonnegative. The optimal contract subject
to these constraints is carefully defined and characterized in Section 3.

Banks are competitive and infinitely-lived. They participate in the long-term credit
market in which they provide funds for entrepreneurs in exchange for repayments. They also
have access to an external one-period credit market which opens at the end of each period,
where they can freely borrow or lend funds at interest rate r. Entrepreneurs are excluded
from this market 4. Throughout the discussion, banks are summarized into a single agent
that contracts with all entrepreneurs.

In every period a new-born entrepreneur is offered with lifetime contracts by the bank.
If she accepts a contract, her project gets financed and a new firm enters the industry. From
then on, she simply follows the contract for labor, repayment and dividend decisions. If
her firm gets liquidated, the entrepreneur exits the industry and never enters again. If she
does not accept any contract, she stays out of the industry and simply consumes her initial
wealth.

Incumbent firms behave competitively, taking prices in the output(p) and labor(w) mar-
kets as given. Aggregate demand for the product is given by the inverse demand func-
tion, p = D(Q), where the function D is continuous, strictly decreasing, and satisfies
limQ→∞ D(Q) = 0. Following Hopenhayn and Rogerson (1993), the wage rate is normal-
ized to be 1, w = 1.

Both entrepreneurs and banks are risk neutral, and discount future cash flows at the
same rate β = 1/(1 + r).

The timing of events in one period is summarized as follows. At the beginning of a
period, some incumbent firms are scrapped and exit the industry, and some new firms enter.
Firms then hire labor from the competitive labor market and pay wage bills with loans
from the bank. Production is undertaken and production shocks are realized for every

4Actually due to the information structure, one-period credit relationship with entrepreneurs is not fea-
sible.
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firm. Entrepreneurs sell output in the product market, and make reports about production
outcomes to the bank. Conditional on their reports, revenues are divided between the bank
and entrepreneurs. Finally, the bank borrows or lends in the re-opened one-period credit
market.

3 Equilibrium

A stationary equilibrium is considered. Since there is no aggregate uncertainty, a constant
output price of p is assumed. To facilitate an understanding of how the presence of asym-
metric information affects the dynamics of a firm and the industry, we first consider the case
of symmetric information, where the bank also observes the production shocks of firms.

3.1 Symmetric Information

Since all entrepreneurs are identical at birth, the bank offers them the same optimal lifetime
contract in equilibrium. Once an entrepreneur accepts the contract, the bank provides funds
of I−M to help finance the initial investment of her project. The contract also specifies how
much funds the bank provides in each period for the firm to employ labor, how much the
firm has to repay the bank in each period, and under what conditions the firm is scrapped.
With symmetric information, the optimal contract achieves the first-best outcome, i.e., the
bank provides an entrepreneur with funds to employ the unconstrained efficient amount of
labor in each period, which is given by

l?(p) ≡ argmaxl πpf(l) − l. (1)

Then the total value of the contract, defined as the total expected discounted value of future
net cash flows from the project, is given by

W̃ (p) =
πpf(l?(p)) − l?(p)

1 − β
. (2)

It is divided between the bank and the entrepreneur. Denote the value of the contract to the
entrepreneur (the entrepreneur’s claim to future cash flows) by V . Following C-H (2006), V
is also called the firm’s equity value throughout the discussion. Then

V =
π(pf(l?(p)) − τ )

1 − β
, (3)

where τ is the entrepreneur’s repayment to the bank in a period if her production is successful
in that period (Due to limited liability, the entrepreneur does not need to pay anything if
her project fails in that period). For a given p, τ can be determined by (3) and the free entry
condition of firms, which equates the value of the contract to the entrepreneur to her initial
wealth,

V = M. (4)

To determine the equilibrium output price p, consider the value of the contract to the bank,

B(V ) = W̃ (p) − V. (5)
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Competition among banks imply that

B(V ) = I − M. (6)

Recall that I −M is what the bank has to pay to undertake the project 5, so (6) states that
there is no gain for the bank from participating in the contract. Since I > M , B(V ) > 0,
and hence the limited commitment constraint for the bank is satisfied. Eq. (4)-(6) imply
that

W̃ (p) = I. (7)

This pins down the equilibrium output price p. The total demand for the output is thus
given by

Q = D−1(p).

The size of the industry or the total mass of incumbent firms N is then determined by

Q = Nπf(l?(p)).

Since S < I−M , the bank never scraps an incumbent firm. So in equilibrium, firms with
total mass of N stay in the industry, hiring the efficient amount of labor and producing the
efficient level of output in every period. There is no firm entry and exit. Incumbent firms
never expand or contract. Hence there is no job creation or destruction.

3.2 The Optimal Financial Contract with Asymmetric Informa-

tion

Again since entrepreneurs are ex-ante identical, in equilibrium the bank offers them the same
optimal contract. Without loss of generality, consider the contracting problem between the
bank and an entrepreneur born at period 0. Conditional on the history of reports of the
entrepreneur, ht = (θ̂0, θ̂1, ..., θ̂t), the contract specifies a contingent policy of liquidation
probabilities αt(h

t−1), transfers from the bank to the entrepreneur in case of liquidation
Xt(h

t−1), labor input lt(h
t−1), and repayments from the entrepreneur to the bank in case of

no liquidation τt(h
t) to maximize the value of the contract to the bank, subject to a set of

conditions.
Without the limited commitment constraint for the bank, the contracting problem would

essentially be the same as C-H (2006). It possesses a recursive formulation, taking the en-
trepreneur’s value entitlement (the value of the contract to the entrepreneur) at the beginning
of a period, V , as the state variable. With limited commitment of the bank, a recursive for-
mulation is not so straightforward. The optimal contract must be such that the value of
the contract to the bank at the beginning of any period is non-negative conditional on any
history of reports of the entrepreneur. A contract like C-H(2006) does not satisfy this con-
straint. For instance, it predicts that if the project is not scrapped at an early stage, V will
eventually reach Ṽ (p) ≡ πpf(l?(p))

1−β
. Thereafter, the firm will produce at the unconstrained

efficient level in every period. Note that at Ṽ (p), the value of the contract to the bank is

5If instead the bank invests this amount of funds in the one-period credit market, the present value of
this investment to the bank would also be I − M , since β = 1

1+r .
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W̃ (p)− Ṽ (p) < 0. Intuitively, the limited commitment constraint is equivalent to putting an
upper bound on the value of the contract to the entrepreneur at the beginning of any period,
since the total value of the contract is bounded above by W̃ (p), which is the total value of
the unconstrained efficient contract as defined in Eq. (2). Denote this upper bound as V̄
and take it as given for the moment. Then the optimal contract has a recursive formulation
with V ≤ V̄ as the state variable. This argument is consistent with Phelan (1995), where
he considers an insurance contract between a firm and an agent with privately observed en-
dowments, assuming that both parties can walk away from the contract at the beginning of
a period (with or without cost), and he shows that the two limited commitment constraints
can boil down to a restriction on the set of feasible continuation utilities for the agent such
that the efficient contract is recursive.

Note that V is also bounded below by zero because the limited liability constraint ensures
the entrepreneur a non-negative net cash flow in every period. For a given V ∈ [0, V̄ ], the
bank’s problem is to choose the choice variables to maximize B(V ), the value of the contract
to herself, or equivalently, to maximize the total value, W (V ) ≡ V + B(V ). The first choice
to be made is whether to liquidate the project, obtaining the scrap value S, or keep it
in operation. If the project is not scrapped, the problem for the continuation stage is to
choose labor input, repayment to the bank, and etc. For a given output price p, a recursive
formulation for the liquidation problem is given by

(P1) W (V ; p) = max
α∈[0,1],X,Vc

{
αS + (1 − α)Ŵ (Vc; p)

}

subject to

V = αX + (1 − α)Vc (8)

X ≥ 0, Vc ≥ 0.

Here, α is the liquidation probability. As argued in C-H(2006), a stochastic liquidation
would be optimal due to the non-convexity introduced by a constant scrap value. X is the
transfer from the bank to the entrepreneur in case of liquidation. Vc is the value entitlement
to the entrepreneur at the continuation stage if her firm is not liquidated. Eq. (8) is a
promise-keeping constraint, stating that the contract delivers an expected value equal to V
to the entrepreneur such that the bank’s promise to the entrepreneur is fulfilled.

A recursive formulation for the continuation problem is given by

(P2) Ŵ (Vc; p) = max
l,τ,V H ,V L

{
πpf(l) − l + β{πW (V H ; p) + (1 − π)W (V L; p)}

}

subject to

Vc = π(pf(l) − τ ) + β{πV H + (1 − π)V L} (9)

τ ≤ β(V H − V L), (10)

τ ≤ pf(l), (11)

V H ≤ V̄ , (12)

V L ≤ V̄ , (13)

l, τ, V H , V L ≥ 0.

Here the state variable is Vc, the value entitlement to the entrepreneur at the continuation
stage of a period. l is the amount of labor the firm hires with funds from the bank. τ is
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the repayment to the bank if a high production shock is reported. V H and V L are the
continuation value entitlements to the entrepreneur at the beginning of next period if she
reports a high or a low shock respectively. Eq. (9) is the promising-keeping constraint. Eq.
(10) is the short version of the incentive compatibility constraint

pf(l) − τ + βV H ≥ pf(l) + βV L.

This constraint ensures that the entrepreneur truthfully reports when a high shock is realized.
Note that the entrepreneur cannot misreport when a low shock is realized. Eq. (11) is the
limited liability constraint for the entrepreneur. Eq. (12) and (13) are imposed to ensure
that the limited commitment constraint for the bank is satisfied.

Given p and V̄ , by standard argument of dynamic programming, one can show the
existence and uniqueness of the value function W (V ; p) and Ŵ (Vc; p), and can also show that
the policy functions α(V ; p), X(V ; p), Vc(V ; p), l(Vc; p), τ (Vc; p), V H(Vc; p) and V L(Vc; p) are
single-valued and continuous.

The upper bound on feasible value entitlements, V̄ , which has been taken as given so far,
must satisfy

B[0,V̄ ](V̄ ; p) = W[0,V̄ ](V̄ ; p) − V̄ = 0,

where the subscript [0, V̄ ] is imposed to highlight the state space associated with the value
functions. If B[0,V̄ ](V̄ ; p) < 0, the limited commitment constraint for the bank is violated. If
B[0,V̄ ](V̄ ; p) > 0, then competition among banks would drive the bank to promise a higher
value than V̄ , in which case V̄ is not the highest possible value entitlement to the en-
trepreneur. Using this result, Lemma 1 proves the existence and uniqueness of V̄ .

Lemma 1 For a given p > 0, there exists a unique upper bound on feasible value entitlement
to an entrepreneur, V̄ (p).
PROOF: See Appendix B.

The following Lemmas and Propositions characterize the features of the optimal contract.
Consider problem (P1) first. As in C-H(2006), there exists a stochastic liquidation region,
[0, Vr], where 0 < Vr ≤ V̄ 6. For values V ∈ [0, Vr], it is optimal to give the entrepreneur a
lottery with values of X = 0 in case of liquidation and Vc = Vr in case of continuation. The
probability of liquidation, α(V ) is decreasing in the entrepreneur’s value entitlement. The
total value of the contract in this region is given by a linear combination of S and Ŵ (Vr; p),
with weights α(V ) and 1−α(V ) respectively. These results are summarized in Proposition
1.

Proposition 1 There exists 0 < Vr ≤ V̄ , such that

(i) α(V ) = 1 − V
Vr

for V ∈ [0, Vr], and α(V ) = 0 for V ∈ [Vr, V̄ ];

(ii) X(V ) = 0 for V ∈ [0, V̄ ];

(iii) Vc(V ) = Vr for V ∈ [0, Vr], and Vc(V ) = V for V ∈ [Vr, V̄ ];

(iv) W (V ) = S + Ŵ (Vr;p)−S
Vr

V , for V ∈ [0, Vr], and W (V ; p) = Ŵ (V ; p) for V ∈ [Vr, V̄ ].

6Actually, Vr < V̄ , which will be established in Lemma 3.
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Now consider problem (P2). By Proposition 1 (iii), the state variable Vc lies in [Vr, V̄ ]
in equilibrium. But we consider a larger space [0, V̄ ] for Vc to establish the results. Since f
is strictly concave, it’s not hard to establish the following result.

Proposition 2 Ŵ (Vc) is strictly increasing and strictly concave for Vc ∈ [0, V̄ ]. And
W (V ; p) is linearly increasing for V ∈ [0, Vr] and strictly increasing and strictly concave
for V ∈ [Vr, V̄ ].

For a given Vc ∈ [0, V̄ ], if the limited commitment constraints (12) and (13) are not
binding, the continuation problem (P2) would be essentially the same as that of C-H(2006)
and shares similar properties. The following Lemma defines such a region.

Lemma 2 There exists 0 < V1 ≤ V̄ , such that V H(V1) = V̄ . For any Vc < V1, V H(Vc) < V̄
and V L(Vc) < V̄ .
PROOF: See Appendix B.

It can be shown that Vr < V1 < V̄ . This relationship is established after we charac-
terize the contract for Vc ∈ [0, V1]. Basically, since the limited commitment constraints are
not binding on this region, the contract shares same features as those of C-H(2006): the en-
trepreneur is borrowing constrained, transfers all revenues to the bank and consumes nothing
(zero dividends).

Proposition 3 For Vc ∈ [0, V1],

(i) the limited liability constraint (11) is binding;

(ii) the incentive compatibility constraint (10) is binding;

(iii) l(Vc) < l?(p);

(iv) V L(Vc) < Vc < V H(Vc) as long as Vc > 0, V H(Vc) is strictly increasing and V L(Vc) is
non-decreasing;

PROOF: See Appendix B.

The repayment policy stated in Part (i) implies a zero dividend policy for the firm. This
allows the equity value of the firm to reach its upper bound V̄ in the shortest possible time.
Part (iii) says that the firm is borrowing constrained in the sense that its employment is less
than the unconstrained efficient level as defined in (1). This result follows from a binding
incentive compatibility constraint. Part (iv) implies that the bank promises the entrepreneur
a higher beginning-of-next-period value entitlement if a high shock is reported today, and a
lower value entitlement if a low shock is reported today. Such report-dependent future value
entitlements are crucial for inducing a truthful report from the entrepreneur. Since V H is
less than V̄ on this region, it is strictly increasing. V L is nondecreasing. Furthermore, since
V L is bounded below by zero, there might exist a region of Vc where V L is zero.

The following lemma states the relationship between Vr, V1 and V̄ .

Lemma 3 Vr < V1 < V̄ .
PROOF: See Appendix B.
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For V > V1, the limited commitment constraint in a good state (12) becomes binding. So
the contracting problem exhibits different features, which are summarized in the following
proposition.

Proposition 4 For Vc ∈ [V1, V̄ ],

(i) V H(Vc) = V̄ , i.e., the limited commit constraint (12) is binding;

(ii) the incentive compatibility constraint (10) is binding;

(iii) l(Vc) < l?(p);

(iv) V L(Vc) < Vc, and V L(Vc) is strictly increasing in Vc;

(v) τ (Vc) > 0 and strictly decreasing in Vc;

(vi) there exists V̂ ∈ [V1, βV̄ )7 such that for Vc ∈ [V1, V̂ ], the limited liability constraint
(11) is binding; for Vc ∈ (V̂ , V̄ ], (11) is not binding, and l(Vc) is strictly increasing.

PROOF: See Appendix B.

Part (i) actually establishes that the limited commitment constraint (12) is binding for
Vc > V1. Part (ii) and (iii) show that the incentive compatibility constraint is still binding and
as a result borrowing is constrained. Part (iv) is the most crucial result for generating steady
state firm exit and job reallocation. Without the limited commitment commitment for the
bank, as in C-H (2006), when V reaches the threshold Ṽ (p), we would have V H(Ṽ (p)) ≥ Ṽ (p)
and V L(Ṽ (p)) = Ṽ (p). This implies that once a firm’s equity value reaches Ṽ (p), it will never
fall down. As a result the firm ceases to be borrowing constrained and will never be liquidated
(α(Ṽ (p)) = 0). Similarly as implied by the Clementi and Hopenhayn contract, the evolution
process of equity values would have two absorbing states, V = 0 and V ≥ Ṽ (p). ”Eventually,
either the first one is reached and the firm is liquidated, or the second one is reached and
borrowing constraints cease forever”, as wrote in C-H(2006). If firms are financed by this
type of contract, in a stationary industry equilibrium, all incumbent firms would reach the
second state, where they employ the efficient amount of labor and produce at the efficient
level in every period. There would be no job creation or destruction, and no firm entry
or exit. With the limited commitment assumption, however, part (iv) together with (iv) of
Proposition 3 shows that V L(Vc) < Vc for all feasible values of Vc, including the highest value
V̄ . So starting from any level, the equity value of a firm can fall down to the liquidation
region following a sequence of bad shock realizations. In other words, a firm faces a positive
liquidation probability from the perspective of any stage of its life. It is this feature that
generates endogenous firm exit, firm heterogeneity and job reallocation in the stationary
industry equilibrium to be described next.

Part (v) and (vi) imply different repayment and dividend policies from C-H(2006), where
the firm transfers all the revenues to the bank and pays zero dividends until its equity
value reaches the unconstrained efficient level (Ṽ (p) in our context) and thereafter the firm

7There is no simple analytical result for the value of V̂ . Computation shows that it is very close to V1

under various parameterizations.
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pays nothing back to the bank and all revenues are paid as dividends. Here, for Vc > V̂ ,
d(Vc) ≡ pf(l(Vc))−τ (Vc) > 0, and d(Vc) is strictly increasing since l(Vc) is strictly increasing
and τ (Vc) is strictly decreasing. So as its equity value reaches V̂ , the firm ceases to transfer all
revenues to the bank and begins to pay dividends in a good state and the amount of dividends
is strictly increasing in the firm’s equity value. This seems a more realistic dividend policy
than implied by the Clementi and Hopenhayn contract.

The optimal contract is solved numerically (see Appendix B for the solution method) and
figures 1-6 of Appendix A plot the value functions and the policy functions for the baseline
calibration to be described later. Among the features of the optimal contract, a notable one
is the endogenous borrowing constraint: employment is strictly less than its unconstrained
efficient level for all feasible equity values. Even though monotonicity of employment does
not hold throughout the whole range of equity values, a firm with large equity values tends
to employ more workers (see Fig. 5). In other words, the endogenous financing constraints
tend to relax as the firm’s equity value grows. This feature combined with the evolution
dynamics of equity values drives the job reallocation process. If a firm receives a high
production shock this period, its equity value for next period will increase, which would
dictate more employment for next period (except in the small decreasing regions), i.e., the
firm will create jobs. On the contrary, if a firm receives a bad shock, its equity value for next
period will decrease, which would dictate the firm to lay off workers. If the equity value falls
to the liquidation region, the firm may be liquidated and exit the industry. In both cases,
the firm destroys jobs. Such job creation and destruction is an ongoing process during a
firm’s life cycle, since the optimal contract dictates that a firm never reaches a stage where
such process stops until the firm is liquidated.

3.3 Entry of New Firms

In every period, new born entrepreneurs are offered lifetime contracts by banks and may
accept whatever contracts give them the highest expected discounted value. In equilibrium
they are offered the same contract ex-ante, which is the optimal contract characterized
previously. If an entrepreneur accepts the contract, her project gets financed and a new
firm enters the industry. Because of competition among banks, the value entitlement to an
entrepreneur upon entry or the initial equity value of a new firm, V0, is determined by

(P3) max
V0∈[0,V̄ (p)]

V0

s.t. B̂(V0; p) ≡ Ŵ (V0; p) − V0 ≥ I − M, (14)

where (14) is the participation constraint for the bank. For a given p, if a solution to
(P3) does not exist, the project is not financially feasible. Since Ŵ (·; p) is concave and
B̂(0; p) = βS < I − M , B̂(V ; p) is hump-shaped, as shown in Fig. 7. Notice that there
exists a region of V such that the value of the contract to the bank increases with the
value of the contract to the firm, so both parties would find it beneficial to renegotiate the
contract once the firm’s equity value evolves to this region. Therefore the contract is not
renegotiation-proof8.

8Renegotiation-proof contracts with repeated moral hazard are studied in Wang (2000) and Quadrini
(2004), where renegotiation-proofness is obtained by imposing some lower bound on attainable expected
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Denote the solution to (P3) as V0(p). Then (14) is binding at V0(p), i.e., there is no gain
to the bank by entering the contractual relationship with an entrepreneur. Once the initial
equity value V0(p) is determined, the evolution of a new firm’s equity value is completely
dictated by the contract in relation to its production shock realizations. The firm simply
follows the contract for its decisions on employment, repayments, dividends, and whether to
exit or not.

The following lemma establishes the dependence of V0(p) on the output price p. It is to
be used for establishing the existence and uniqueness of a stationary equilibrium with entry
and exit.

Lemma 4 V0(p) is continuous and strictly increasing in p.
PROOF: See Appendix B.

3.4 Evolution of the Industry

As shown in the characterization of the optimal contract, the state of an incumbent firm is
fully described by its equity value at the continuation stage of a period, Vc. So the state of
the industry can be described by the distribution of all incumbent firms over Vc. The state
of the industry can also be described by the distribution of firms over equity values at the
beginning of a period. The former is chosen for simplicity since it is the distribution directly
related to aggregate production. Let µt(Vc; p) denote the distribution of incumbent firms
over equity values at the continuation stage of period t, and denote the total mass of new
entrant firms at the beginning of period t by Et. Then µ satisfies the law of motion

µt+1(A; p) =
∫ {

π
(
1 − α(V H(V ))

)
χA

(
Vc(V H(V ))

)

+(1 − π)
(
1 − α(V L(V ))

)
χA

(
Vc(V L(V ))

)}
µt(dV ; p)

+Et+1 χA(V0(p)), (15)

for ∀A ∈ V (p), where V (p) is the σ-algebra generated by the state space [0, V̄ (p)]. χA(·)
is an indicator function, i.e., χA(V ) equals 1 if V ∈ A and equals 0 otherwise.

The transition from µt to µt+1 can be written as µt+1 = T ?(µt, Et+1; p). It can be shown
that T ? is linearly homogeneous in µ and E jointly. That is, if the industry has twice as
many firms of each type at the continuation stage of period t, and entry is doubled at the
beginning of period t+1, then the industry will end up with twice as many firms of each type
at the continuation stage of period t+1. This property turns to be useful in the computation
of an invariant distribution (see Appendix B). Proposition 5 established this result.

Proposition 5 T ? is linearly homogeneous in µ and E jointly.
PROOF: See Appendix B.

With a measure of firms, µ, total labor demand LD, output Y , repayment to the bank

utilities of the agent.
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T , dividends Π, and total scrap value of liquidated firms R can be defined respectively.

LD(µ; p) =

∫
l(V ; p)µ(dV ; p),

Y (µ; p) = π

∫
f (l(V ; p)) µ(dV ; p),

T (µ; p) = π

∫
τ (V ; p)µ(dV ; p),

Π(µ; p) = pY (µ; p) − T (µ; p),

R(µ; p) =

∫ {
πα(V H(V ; p)) +

(1 − π)α(V L(V ; p))
}
S µ(dV ; p).

It follows from Proposition 5 that the aggregate quantities defined above are linearly homo-
geneous in µ.

3.5 Balance Sheet of the bank

In the model banks are assumed to be competitive. They participate in the long-term credit
market in which they provide funds for entrepreneurs in exchange for payments. They also
have access to an external short-term (one-period) credit market, where they can borrow or
lend at interest rate r. Depending on their performance in the long-term credit market, some
banks may borrow and others may lend funds in the short-term credit market to balance
their budgets. It’s interesting to know the total amount of short-term funds banks as a whole
would hold in equilibrium. Summarizing the banks into a single agent, this quantity can be
derived from the balance sheet.

Suppose at the beginning of period t, the bank holds short-term funds, Ft, which are raised
in the short-term credit market at the end of last period. Some firms are liquidated, and the
bank receives total scrap value Rt. These funds are used for financing the initial investment
costs of new entry firms and the labor costs of all incumbent firms. After production, the
bank receives total payment Tt from incumbent firms. Finally, the bank pays back Ft with
interests, and borrows or lends new funds Ft+1 in the re-opened short-term credit market.
Therefore her balance sheet for period t is given by

Ft+1 + Rt + Tt = Et(I − M) + LD
t + (1 + r)Ft. (16)

3.6 Stationary Competitive Equilibrium

A stationary competitive equilibrium for the industry consists of an output price p? ≥ 0
and total output Q?; policy functions α(V ; p?), X(V ; p), Vc(V ; p?), l(Vc; p

?), V H(Vc; p
?),

V L(Vc; p
?), τ (Vc; p

?), as well as value functions W (V ; p?) and Ŵ (Vc; p
?); a measure of in-

cumbent firms µ? and a mass of entrants E? ≥ 0; aggregate quantities Y (µ?; p?), LD(µ?; p?),
T (µ?; p?), Π(µ?; p?) and R(µ?; p?); and bank short-term credit F ? such that

(i) the value functions and policy functions solve (P1) and (P2);
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(ii) p? = D(Q?), and Q? = Y (µ?; p?);

(iii) V0(p
?) ≤ M solves (P3), with equality if E? > 0;

(iv) µt ≡ µ? and Et ≡ E? solve Eq. (15);

(v) R(µ?; p?) + T (µ?; p?) = E?(I − M) + LD(µ?; p?) + rF ?.

Condition (ii) states that demand must equal supply in the output market. Condition
(iii) is the free entry condition for firms. Since there is unlimited supply of potential entrants,
V0(p

?) cannot be strictly bigger than the initial wealth of an entrepreneur, M . If E? is strictly
positive, V0(p

?) must equal M to ensure that firms are willing to enter. In this case, since
(14) is binding at V0(p

?), then
Ŵ (M ; p?) = I. (17)

This condition says that the total expected discounted value from undertaking the project
equals the initial setup cost of the project, or in other words the total expected value from
entering equals the total entry cost. It is used to pin down p? in a stationary equilibrium with
positive entry. Condition (iv) states that µ? and E? are such that the state of the industry is
reproduced in every period through the optimal actions of firms and banks. Finally condition
(v) states that the aggregate quantities satisfy the balance sheet of the bank.

It follows from the definition that the stationary equilibrium may take two different forms:
with entry and exit or without. Since the data used to calibrate the model in a later section
exhibits significant amount of entry and exit, an equilibrium with entry and exit is of greater
interest. The industry evolution model of Hopenhayn (1992) has the property that if the
entry cost is less than a critical value, there exists an equilibrium with entry and exit, and
it is the unique stationary equilibrium. A similar property is established in Theorem 1.

Theorem 1 There exists I? > 0, M? > 0 such that for I < I? and M ≥ M? a stationary
equilibrium with entry and exit exists and it is the unique stationary equilibrium for the
industry.
PROOF: See Appendix B.

Intuitively, if the entry cost I is not too big, undertaking the project would be profitable.
If a firm’s initial wealth M is not too small, or equivalently, if the part of the entry cost
undertaken by the bank is not too big, a contractual relationship between a firm and the
bank would be feasible. The bank would like to offer contracts and firms would like to accept
the contracts and enter the industry. As long as there are some firms in the industry, there
is always firm entry and exit because the optimal contract predicts that a firm has a positive
probability of being liquidated at any stage of its life. This property also ensures that the
mixing condition required for convergence of the firm distribution is satisfied.

4 Quantitative Analysis

In this section, the model laid out in the last two sections is solved numerically. An algorithm
for finding the stationary equilibrium with entry and exit is provided in Appendix B. The
stationary equilibrium has the property that aggregate variables are constant over time while
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individual firms are continually adjusting over time. At any point in time there are some
firms expanding, some firms contracting, some entering while others exiting. Entering and
expanding firms hire workers and create jobs, while contracting and exiting firms fire workers
and destroy jobs. On the contrary, the equilibrium with symmetric information has no such
dynamics at all, as discussed in Section 3.1. This provides the setting in which the questions
outlined in the Introduction can be addressed.

4.1 Baseline Calibration

To execute a quantitative analysis, we need to specify functional forms and assign parameter
values. The production function is assumed to take the form

f(l) = Alγ,

where 0 < γ < 1, and A is a scale factor. The inverse demand function takes the form

p = D(Q) =
1

aQ
,

where a is a positive constant.
Assume that a period is one year. The interest rate r is set to 6.5 percent, the average

annual real interest rate of the U.S. over the last century, and β = 1
1.065

. γ is set to 0.64,
the average labor share of income over the postwar period. The assignment of remaining
parameters requires a value of the stationary equilibrium output price p?. Following Hopen-
hayn and Rogerson (1993), p? is normalized to unity and values of remaining parameters are
chosen to be consistent with it. The scale factor A is chosen such that the unconstrained
efficient level of employment is 1500 workers9.

The probability of realizing a good production shock π, scrap value S and entrepreneur’s
initial wealth (a new firm’s initial equity value) M are crucial for the entry and exit behavior
of the model. They are chosen to match three moments of the U.S. manufacturing data.
The first one is the mean annual exit rate of manufacturing firms due to bankruptcy and
liquidation. According to Dunne, Roberts and Samuelson (1988), the exit rate of manufac-
turing firms during a 5-year period is 35.2 percent on average during the period of 1963 to
1982, implying a mean annual exit rate of 7 percent. Because firms may exit due to a lot of
forces and the model formulated here only considers one driving force–financing problems,
calibrating the model to match a 7 percent exit rate would over estimate the quantitative
significance of the financial frictions for job reallocation10. The lack of data and relevant
empirical studies prevents us from obtaining an accurate measure of the exit rate due to
bankruptcy and liquidation. Fortunately Compustat data records the year and reasons of
deletion of a firm from Compustat, which allows us to compute the mean annual exit rate

9we tried other values of efficient employment, such as 1000 and 2000 workers, and found that the results
are not sensitive to this amount.

10In an earlier version of the paper, we calibrate the model to match a 4.5 percent of new firm entry rate
(according to Dunne, Roberts and Samuelson (1988)) and a 2.17 percent of employment shares of exiting
plants (computed using job creation and destruction data available on John Haltiwanger’s website) and the
model generates a 6.45 percent of job creation or destruction rate.
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of Compustat manufacturing firms due to bankruptcy and liquidation. This number is 0.31
percent for the period of 1973 to 1988 11. This measure provides a lower bound to the
exit rate of all manufacturing firms due to bankruptcy and liquidation during this period,
since Compustat firms are typically large and larger firms tend to have lower bankruptcy
and liquidation rates. The second moment is the mean annual employment share of exiting
manufacturing firms. Again, using the Compustat data we obtain a lower bound of this
moment for the period of 1972 to 1988, 0.05 percent. This measure is much lower than the
mean annual employment share of exiting plants, which is 2.34 percent according to Davis,
et al. (1996). The last moment is the relative size of exiting firms due to bankruptcy and
liquidation. Dunne, et al. (1988) defined the relative size of exiting firms as the ratio of
average output of exiting firms to the average output of non exiting firms, and estimated
it to be 0.34 on average during the period of 1967 to 1982. Since there is no evidence that
shows systematic size difference between exiting firms due to bankruptcy and exiting firms
due to other reasons, we take this number as the measure of the third moment. Computation
shows that there is a unique choice of π, S and M that matches these three moments.

Once M is chosen, simply set I = Ŵ (M ; p?). Recall that this condition has to be satisfied
in an equilibrium with positive entry. Finally, the scale parameter a in the inverse demand
function is set such that the total employment in the stationary equilibrium equals the
mean annual employment of the manufacturing industry during 1972 and 1988, 18,135,000
employees according to the Annual Survey of Manufactures (ASM).

Table 1 summarizes the baseline parameter values and matched quantities. In particular,
π = 0.5112. To see whether the model’s predictions are sensitive to π, other values of π are
considered, and we find that the main results are not sensitive to this parameter choice once
other parameters of the model are re-calibrated to match the three moments. This will be
discussed more in later sections.

4.2 Quantitative Significance of Job Reallocation due to Financing

Constraints

With parameter values determined, the equilibrium is numerically solved. The symmetric
information equilibrium is also solved by following the descriptions of Section 3.1, taking as
given all the parameter values in Table 1. Table 2 in Appendix A presents the summary
statistics for both equilibria. Note that the job creation and destruction rate in the sta-
tionary equilibrium with financial frictions is 4.75 percent per year, implying an annual job
reallocation rate of 9.5 percent, while its frictionless counterpart is zero (see the third panel
of Table 2). According to Davis, et al (1996), where the ASM is exploited to document job
creation and destruction statistics, the mean annual job creation rate of U.S. manufacturing
is 9.1 percent and job destruction rate is 10.3 percent during the 1972-1988 periods. So

11We want to compare the model predictions to those reported in Davis, et al. (1996), where the Annual
Survey of Manufactures (ASM) for the period of 1972 to 1988 is used to document job reallocation statistics.

12At a first sight, this may imply extremely volatile profits since the firm’s output is zero with a probability
of 0.49. Our understanding is that first the zero output is just a normalization for simplicity and shouldn’t
be taken as “no output at all”. Second, once a lower β is considered, which is not unreasonable since firms
discount future more heavily than households, a much higher π is obtained to match the three moments
while the model’s main results are not affected. For instance, for β = 1

1.075, the estimate of π is 0.58.
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Table 1: Baseline Calibration

Parameter Value
Discount factor β 0.939
Interest rate of short-term funds r 0.065
Probability of a good production shock π 0.51
Labor share γ 0.64
Scale factor in production function A 42.62
Scrap value S 4,460
Entrepreneur’s initial wealth M 3,254
Initial investment of a project I 10,478
Scale factor in demand function a 3.25 · 10−8

Matched quantities Target Model
Exit rate of firms 0.31% 0.31%
Employment share of exiting firms 0.05% 0.05%
Relative size of exiting firms 0.34 0.33
Total employment of industry 1.8135 · 107 1.8135 · 107

conditional on the model 51.1 percent of job creation, 46.1 percent of job destruction and 49
percent of job reallocation observed in the data can be accounted for by the financial frictions
in the model. To check the robustness of this result, we considered various parameterization
and the model always generates a lot of job reallocation. For instance, for π = 0.55, the job
creation or destruction rate is 4.82 percent. It suggests that if financial frictions are as severe
as assumed in the model, they could potentially have significant impact on job reallocation.
On the other hand, this result may over estimate the effect since the private information
problem is probably more applicable to smaller firms while smaller firms have higher job
creation and destruction rates.

According to ASM, a large fraction of job creation and destruction is accounted for by
start-up (15.5%) and shut-down plants (22.9%) despite the employment shares of startups
and shutdowns are relatively small. Since we calibrate the model to match a very low exit
rate, the job creation and destruction shares of entrants and exiters are much smaller, 2.52
and 1.16 percent respectively. But they are relatively big compared to the employment
shares of entrants and exiters, which are 0.12 and 0.05 percent respectively. This property
is consistent with the data.

4.3 Negative Size Dependence of the Turnover

As described in the Introduction, the turnover of firms and jobs in the data exhibits a
negative dependence on firm size and age. In the model, the turnover of firms and jobs
is driven by the endogenous financing constraints due to the asymmetric information and
limited commitment problems in firm financing. It’s interesting to know whether the turnover
exhibits similar properties, and if so, how close they are to those observed in the data.
To explore these questions, we draw 100,000 firms from the stationary firm distribution
over equity values (Fig. 8 plots the distribution), and simulate them for 170 periods (10
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simulations of 17 periods). For each simulation, firm exit rates and mean annual job flow
rates are computed for each size and age category. The figures reported in Table 3-9 are
averages across the 10 simulations.

4.3.1 Exit Rates by Size

Table 3 reports the 1-year, 2-year, 5-year, 10-year and 15-year exit rates for each firm size
category, where Classification we gives a broad firm size classification and Classification II
is a more detailed one. Firm size here refers to employment in the base year, i.e. the initial
year of the time interval over which a particular exit rate is calculated. Table 3 displays a
strong negative relationship between firm exit rates and the size of firms. For example, 50
percent of firms with employment less than 300 workers exit in 10 years, while only 3 percent
of firms with employment between 700 and 799 workers exit in 10 years. In particular, the
10-year and 15-year exit rates are strictly decreasing as the size of firms increases.

The driving force underlying the negative size dependence is a negative relationship
between liquidation probabilities and firm equity values and an overall positive relationship
between equity values and employment.

4.3.2 Employment Flows by Size

Several related but distinct concepts of employer size have been adopted by empirical studies
in computing job flow rates and classifying firms or plants. A traditional measure (see
Dunne, Roberts and Samuelson (1989) and Evans (1987)) is base year employment. Using
this measure, job creation rates for new firms are not well defined. Davis et al. (1996) argue
that the base year size concept is subject to several other defects, and instead propose two
new concepts for plant size: current plant size and average plant size. Despite different size
concepts adopted, the empirical studies all find a negative size dependence of job flow rates.
Following Davis et al. (1996), we define current firm size and average firm size, where current
firm size equals the simple average of a firm’s current employment and its employment 1 year
ago and average firm size equals the weighted mean annual employment over the life cycle of
the firm. Our analysis considers the three concepts of firm size. Specifically, to explore the
relationship between job flow rates and base year size, job flow rates are defined using base
year employment and firms are classified by their base year employment13. To explore the
relationship between job flow rates and current firm size or average firm size, job flow rates
are defined using current firm size, and firms are classified by their current size or average
size14. This is consistent with the practice in Davis et al. (1996), despite the production
units considered here are firms rather than plants.

Table 4 reports the correlation coefficients between job flow rates and firm size for the
three size measures. Note that all the figures are significantly less than zero, implying a
strong negative correlation of job flow rates with firm size. In particular, the correlation
coefficients of job creation rates, job destructions rates and job reallocation rates (sum of

13For example, job creation rate from t-1 to t for a firm is defined as the ratio of employment gains to the
firm’s employment in t-1.

14For example, job destruction rate from t-1 to t for a firm is defined as the ratio of employment losses to
the firm’s average employment of t-1 and t.
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creation rates and destruction rates) with average firm size are -0.5073, -0.5273, -0.5105
respectively. These figures are very close to those in the ASM data, which are approximately
-0.626, -0.5433 and -0.5882 respectively15. This result shows that the model can predict 81
percent of the negative size dependence for job creation, 97 percent for job destruction, and
87 percent for job reallocation. The negative size dependence is a robust finding as we vary
parameter values. In particular, for π = 0.55 (other parameters such as β, S and M are
reset to match the three moments) the correlation coefficients of job flow rates with average
firm size are -0.49, -0.55 and -0.52 respectively.

To further explore the size dependence of gross employment flows, we also report the
mean annual job flow rates shares by firm size category in Table 5-7, where Table 5 is based
on base year size, Table 6 current firm size, and Table 7 average firm size. Except for very
small firms, job creation rates are monotonically decreasing with firm size. This pattern
is similar for the three measures of firm size. The weak positive relationship between job
creation rates and firm size for small firms results from the non-monotonic labor policy
function in low regions of equity values. Job destruction rates exhibit a more pronounced
negative correlation with firm size in all three tables. In particular, job destruction rates
are strictly decreasing with average firm size throughout the range of employment. Job
reallocation rates also display a strong negative correlation with firm size. In terms of net
growth rates of employment, Table 5-7 do not show systematic correlation between them
and firm size. This finding is also consistent with Davis et al. (1996).

Table 8 is obtained by combining Table 4.1 and 4.3 in Davis, et al (1996). It displays the
job flow rates by a crude classification of average firm size for ASM. Even though the small,
medium and large firms are classified differently, a comparison between Table 7 and Table 8
gives some further information on how well the model matches the data. It shows that the
magnitudes of job flow rates for each size category are compatible to their data counterparts.
But the model predicts higher job creation, destruction and reallocation rates than the data
for small and medium firms, while lower rates for large firms, suggesting that financing
contraints, as the only driving force for firm dynamics in the model, impact on smaller firms
much more significantly than on large firms. As documented in the data, medium and large
firms account for a majority of job creation and job destruction, despite of the higher creation
and destruction rates among small firms. This property is more pronounced in the model
due in the data.

4.4 Exit Rates and Employment Flows by Age

The model also generates an unconditional negative age dependence of firm exit and job
reallocation. Table 9 reports firm exit rates and Table 10 reports job flow rates by the age

15These figures are computed using the third panel of Table 4.1 in Davis, et al (1996). The job flow rates
reported there for each size category are weighted average plant-level job flow rates across those plants whose
parent firms’ average size are within that category. So even though the reported job flow rates are not the
firm-level job flow rates for that average firm size category, they provide an upper bound to the firm-level
job flow rates. Replacing each size category with its mid-point, then we have a group of values for average
firm size and corresponding job flow rates so that a set of correlation coefficients between average firm size
and job flow rates can be computed. We take these measures as an approximation to the true correlation
coefficients between firm-level job flow rates and average firm size in the ASM data.
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of firms. Note that firm exit rates, job creation rates, destruction rates and reallocation
rates are all decreasing with firm age. However, the negative age dependence results from
the negative size dependence. Older firms are typically larger and larger firms have lower
exit rates and job reallocation rates, therefore older firms have lower exit rates and job
reallocation rates. Once firm size is controlled, the negative age dependence disappears.

4.5 A Comparison between the Equilibria with and without Fi-

nancial Frictions

The model also has interesting implications of financial frictions in other aspects. Table
2 presents a comparison between the equilibria with and without the financial frictions,
which gives us an understanding of the quantitative impacts of financial frictions on firm
size distribution, aggregate output, employment, financial depth, and etc.

First, the financial frictions introduce variation to firm size distribution. In the frictionless
world all firms have identical size, while with financial frictions there is a lot of heterogeneity,
firm size ranging from 153 to 1,413 workers. Fig. 9 depicts the stationary distribution of
firms over employment, which is derived from the stationary firm distribution over equity
values. Note that the distribution is very skewed to the right, i.e., a majority of firms are
large with employment more than 1,000 workers. While in the data, small firms account
for a large fraction of total number of firms. Firm size distribution is also more dispersed
in the data. The model’s prediction for firm size distribution can be improved by adding
heterogeneity into the production technology. The model abstracts from this to focus on the
role of financial frictions.

Second, the total number of firms is less with financial frictions, while the average firm
size is larger. In the model financing contraints relax as firms become larger, as a result
the equilibrium favors a smaller number of firms with larger size. This observation seems
to suggest that financial frictions also play a role in the determination of industry size and
market structure.

Third, the presence of financial frictions can cause sizable losses in aggregate output and
employment and considerable increases in output price. Compared to the frictionless world,
the equilibrium output with frictions has decreased by 9.5 percent, employment decreased
by 7.8 percent, and output price increased by 10.5 percent. This observation might justify
the intensified exercise of government watchdog accounting procedures at the Securities and
Exchange Commission, which aims to increase information transparency and eliminate the
asymmetric information problem.

Fourth, the presence of financial frictions can greatly shift the division of revenues between
banks and firms. The last panel of Table 2 reports the cash flow items in both equilibria.
Note that with asymmetric information, the total payments to the bank are relatively lower
(67.7 percent versus 88.8 percent of total revenues) while the total dividends of firms are
relatively higher (32.3 percent versus 11.2 percent of total revenues). With informational
asymmetries, the bank has to provide incentives for entrepreneurs to truthfully reveal their
private information, which is achieved by giving relatively more to the entrepreneurs.

Finally, the total short-term liability held by the bank is 3 times less in the equilibrium
with financial frictions. In a general equilibrium setting, this item would be the amount of
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funds that are intermediated through banks, which is an indicator of the financial depth. This
result suggests that the presence of financial frictions may greatly hinder the development
of financial market.

4.6 Comparative Static Properties

The discussions above show that informational asymmetries and limited commitment in firm
financing causes inefficient firm exit and job reallocation, output loss, employment loss and
rise in equilibrium output price. In this section, a comparative static analysis is implemented
to see how these impacts vary with key primitives of the model. We consider the effects of
changes in the discount factor, riskiness of projects, entry cost, and entrepreneurs’ initial
wealth. The results are summarized in Table 11. For each set of new parameterization,
the equilibrium with financial frictions is resolved to find the first four items in each panel,
where relative size of entrants and exiters are defined following the definition of Dunne, et al.
(1989)16. The frictionless equilibrium with same parameterization is also solved such that a
comparison is made to find the last three items in each panel.

The first panel shows that the lower the discount factor, the higher the exit rate and job
reallocation rate, and the larger the rise in output price and the losses in aggregate output
and employment. This result suggests that increases in the interest rate worsen the adverse
effects of the financial frictions. The second panel displays the effects of changes in project
riskiness, which is measured by the probability of realizing a good shock. The lower π is,
the riskier the projects are. Panel two shows that increases in project riskiness lead to more
firm exits, more job creation and destruction, and larger losses in output and employment.
The third panel considers entry cost. Higher entry cost causes more job reallocation, more
output and employment loss, and larger increases in output price. But the effect of entry
cost on firm entry or exit rate is not monotonic. It depends on the relative magnitude of
the scrap value S, firm’s initial wealth M and the entry cost I. Higher entry cost implies
relatively smaller S and M , while smaller S decreases firm exits and smaller M increases
firm exits. The last panel displays the effects of changes in firms’ initial wealth M . Higher
M reduces firm exits, job reallocation and losses in output and employment, i.e., more firm
internal funds mitigates the adverse effects of financial frictions. This result is consistent
with the literature on agency costs, such as Bernanke and Gertler (1989) and Gertler (1992),
where a uniform finding is that higher net worth of firms moderates agency costs.

Another finding is how the relative size of entrants and exiters are affected by these key
factors. The size determination of entrants and exiters has been an interesting issue in the
Industry Organization literature. Table 11 shows that changes in interest rate and project
riskiness have no significant effects on the relative size of entrants and exiters, while changes
in entry cost and firm initial wealth do. Higher firm initial wealth leads to a larger relative
size of both entrants and exiters. Lower entry cost implies relatively higher firm initial wealth
and thus has same effects.

16Relative size of entrants= total output of entrants/number of entrants
total output of incumbent firms/number of incumbent firms
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5 Conclusion

Empirical evidence suggests that financing constraints may play an important role in the de-
termination of firm dynamics. This paper constructs and calibrates an industry equilibrium
model, in which firms’ growth and failure are driven by endogenous financing constraints
arising from asymmetric information and limited commitment problems in firm external fi-
nancing, to explore the quantitative implications of financing constraints for job reallocation.
It finds that endogenous financing constraints can account for a substantial amount of job
reallocation and the negative size dependence of gross job flow rates. The paper contributes
to the literature mainly in two aspects. First, it quantitatively evaluates the significance of
financing constraints for job reallocation, which has not been emphasized in the literature.
And to do so, it introduces limited commitment of banks into a dynamic contracting problem
between a firm and a bank and show that it helps generate steady state firm entry, exit and
job reallocation. This provides a theoretical contribution to existing literature on dynamic
risk sharing and the literature on firm dynamics.

This exercise can be viewed as a first step toward the study of how financial market
frictions affect gross job flows. For simplicity, the model abstracts from capital accumula-
tion, technological progress, and aggregate uncertainty, all of which are closely related to
employment decisions of firms. In the model, financial frictions affect employment flows
directly through imposing constraints in the labor finance of firms. It would be interesting
to study how financial frictions impact job flows through other channels. The model also
suggests that financial frictions play a role in accounting for firm size distribution, industry
size, market structure, output growth and etc. Each of them deserves further investigation.
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APPENDIX A: Figures and Tables

Notes: Region I denotes [0, V1], and II, [V1, V̄ ].
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Notes: In both figures, region I denotes [0, V1], region A, [V1, V̂ ], and region II’, [V̂ , V̄ ]. In the
computation, the value functions W and Ŵ are computed by following the procedure described in
Appendix B. Once W and Ŵ converge, the state space is discretized into even finer grids, especially
for those regions where the labor input is not monotone. Then the labor input is re-computed for
each grid point. This gives more accurate decision rule for labor input despite that it looks choppier.
The value functions and decision rules for V H and V L are not sensitive to this refinement.
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Table 2: Summary Statistics for Equilibria with and without frictions (baseline Calibration)

Symmetric Asymmetric Data(ASM)a

Information Information
Avg. firm size 1,137 1,157
Std. of firm size 0 322
Maximum firm size 1,137 1,413
Minimum firm size 1,137 153
Entry/exit rate 0 0.31%
Size of entrants 447
Avg. size of exiters 206
Emp. share of entrants 0 0.12% 1.41%
Emp. share of exiters 0 0.05% 2.34%
Job creation rate 0 4.75% 9.1%
Job destruction rate 0 4.75% 10.3%
Job creation share of entrants 0 2.52% 15.5%
Job destruction share of exiters 0 1.16% 22.9%
Output price 0.905 1
Total output(·107) 3.3961 3.0736
Total employment(·107) 1.9671 1.8135
Total # of firms(·106) 1.7303 1.5669
Total revenues(·107) 3.0736 3.0736
Total payment to bank(·107) 2.7300 2.0811
(fraction of total revenues) (88.8%) (67.7%)

Total dividends of firms(·106) 3.4365 9.9257
(fraction of total revenues) (11.2%) (32.3%)

Total scrap value(·105) 0 2.1600
bank short-term liability(·107) 11.736 3.9103

a: These statistics are from Davis, et al. (1996), which are based on plant-level data.
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Table 3: Exit Rates by Employer Size Category (%)b

1-year 2-year 5-year 10-year 15-year
All 0.3148 0.6271 1.5428 2.9224 4.2029
Classification I
Small (< 500) 4.0206 8.0334 18.9037 29.7434 36.0803
Medium (500-999) 0 0 0.4580 3.5562 6.7242
Large (1000+) 0 0 0 0.0743 0.4442
Classification II
< 300 11.8257 23.5589 38.7332 50.0709 56.3057
300-399 0 0.1029 12.8942 25.4604 31.4855
400-499 0 0 4.8047 13.8254 20.8168
500-599 0 0 2.6545 8.7813 13.6167
600-699 0 0 0.3244 5.6757 9.6386
700-799 0 0 0 3.0407 6.9052
800-899 0 0 0 1.8645 4.5861
900-999 0 0 0 1.1881 2.9100
1000-1099 0 0 0 0.4231 1.6608
1100-1199 0 0 0 0.1668 0.9718
1200-1299 0 0 0 0.0943 0.5382
1300+ 0 0 0 0.0061 0.1883

b: This table gives the percentage of firms with base year employment
in each category that exit in 1 year, 2 years, and etc.
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Table 4: Correlation of Job Flow Rates with Firm Size (average size)

ρ(size, jcrate) ρ(size, jdrate) ρ(size, jrrate)
base-year size -0.9325 -0.7591 -0.8408
current size -0.6327 -0.6080 -0.6111
average size -0.5073 -0.5273 -0.5105
data (ASM) -0.6260 -0.5433 -0.5882
ratio 0.81 0.97 0.87
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Table 5: Net and Gross Job Flow Rates by Employer Size Category (base-year size)

Job Job des- Job re- Net Job Job des- Employ-
creationc truction allocation growth creation truction ment

share share share
Classification I
Small (< 500) 18.0930 12.8874 30.9803 5.2056 11.4814 6.3856 2.3515
Medium (500-999) 14.0389 9.8457 23.8846 4.1931 31.3000 21.9518 10.5813
Large (1000+) 3.1189 3.9062 7.0251 -0.7872 57.2185 71.6626 87.0672
Classification II
< 300 15.9229 17.3073 33.2302 -1.3844 1.8396 1.9996 0.5483
300-399 18.0653 11.8733 29.9387 6.1920 2.8989 1.9053 0.7616
400-499 19.2498 11.3003 30.5501 7.9494 4.2103 2.4717 1.0380
500-599 18.4555 10.9812 29.4367 7.4742 6.6809 2.4778 1.0708
600-699 16.5949 11.7924 28.3872 4.8025 4.6034 3.2713 1.3165
700-799 15.5283 10.2380 25.7662 5.2903 7.8125 5.1511 2.3878
800-899 12.8517 8.8391 21.6908 4.0127 4.1094 2.8264 1.5176
900-999 11.7485 9.1039 20.8524 2.6447 10.6328 8.2395 4.2953
1000-1099 9.7433 6.1009 15.8441 3.6424 13.7877 8.6337 6.7161
1100-1199 8.2420 6.4817 14.7237 1.7603 7.1393 5.6147 4.1111
1200-1299 6.3879 5.2290 11.6169 1.1589 21.0220 17.2088 15.6188
1300+ 1.1950 3.1473 4.3424 -1.9523 15.2633 40.2002 60.6180

c: Since the base-year size for new entry firms is zero so that the job creation rates are not well
defined, we exclude new entry firms when computing the job creation rate.

34



Table 6: Net and Gross Job Flow Rates by Employer Size Category (current size)

Job Job des- Job re- Net Job Job des- Employ-
creation truction allocation growth creation truction ment

share share share
Classification I
Small (< 500) 16.9158 16.9849 33.9007 -0.0692 7.8028 7.8360 2.1892
Medium (500-999) 11.7427 11.5286 23.2712 0.2141 24.4259 23.9843 9.8720
Large (1000+) 3.6575 3.6789 7.3364 -0.0215 67.7712 68.1797 87.9388
Classification II
< 300 31.8266 22.7705 54.5971 9.0560 3.2479 2.3243 0.4845
300-399 12.2513 15.9398 28.1911 -3.6885 1.6733 2.1775 0.6485
400-499 12.9908 15.0068 27.9976 -2.0160 2.9415 3.3987 1.0750
500-599 14.5801 13.9481 28.5282 0.6320 3.6395 3.4823 1.1851
600-699 13.9011 13.6902 27.5913 0.2109 4.1538 4.0912 1.4186
700-799 10.7059 12.7641 23.4700 -2.0582 3.6036 4.2972 1.5981
800-899 10.4312 12.9131 23.3443 -2.4820 6.4995 8.0472 2.9582
900-999 11.4042 7.1310 18.5352 4.2733 6.5327 4.0849 2.7194
1000-1099 8.6455 7.7884 16.4339 0.8572 9.6512 8.6963 5.3000
1100-1199 7.0879 7.6302 14.7180 -0.5423 15.4338 16.6186 10.3385
1200-1299 2.8509 4.9846 7.8355 -2.1337 7.9499 13.9034 13.2397
1300+ 2.7886 2.3220 5.1105 0.4666 34.6733 28.8784 59.0344
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Table 7: Net and Gross Job Flow Rates by Employer Size Category (average size)
Job Job des- Job re- Net Job Job des- Employ-

creation truction allocation growth creation truction ment
share share share

Classification I
Small (< 500) 15.7944 18.3129 34.1072 -2.5185 3.6013 4.3227 1.1082
Medium (500-999) 11.6887 11.5101 23.1988 0.1786 17.3340 17.0341 7.0671
Large (1000+) 4.0867 4.0640 8.1507 0.0228 79.0647 78.6431 91.8247
Classification II
< 300 9.2761 28.5274 37.8035 -19.2513 0.1797 0.7035 0.1074
300-399 15.4513 19.0430 34.4942 -3.5917 1.3649 1.6888 0.4217
400-499 16.6048 15.8706 32.4754 0.7342 2.0942 1.9807 0.5938
500-599 15.0314 14.5872 29.6185 0.4442 2.3459 2.2628 0.7394
600-699 13.8551 13.4696 27.3247 0.3854 2.7431 2.6545 0.9409
700-799 12.5013 12.3327 24.8339 0.1686 3.2702 3.2199 1.2465
800-899 11.1362 11.1217 22.2579 0.0145 3.9465 3.9420 1.6934
900-999 9.8325 9.7207 19.5532 0.1118 5.1028 5.0387 2.4805
1000-1099 8.2317 8.1842 16.4159 0.0475 7.5246 7.4809 4.3583
1100-1199 6.5850 6.4982 13.0832 0.0868 12.9419 12.7748 9.3290
1200-1299 4.8357 4.8042 9.6399 0.0315 24.4192 24.2704 23.9916
1300+ 2.9906 2.9824 5.9730 0.0082 34.0670 33.9830 54.0975
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Table 8: Net and Gross Job Flow Rates by Employer Size Category (average firm size): Mean
Annual Rates, 1973-1988, ASM data

Job Job des- Job re- Net Job Job des- Employ-
creation truction allocation growth creation truction ment

share share share
Small
(< 500) 11.94 12.86 24.8 -0.92 40.6 38.8 30.9
Medium
(500-4999) 9.0 9.8 18.8 -0.8 19.9 19.2 19.5
Large
(5000+) 7.0 8.45 15.45 -1.45 39.7 42.1 49.6
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Table 9: Exit Rates by Employer Age Category (%)

Age categories 1-year 2-year 5-year 10-year
≤ 5 years old 1.0438 2.9549 8.9274 15.4221
6-10 years old 1.9889 3.4123 7.2847 12.8015
11-15 years old 1.4500 2.4761 5.8652 9.7864
15 years more 0.2251 0.4493 1.1034 2.1535

Table 10: Net and Gross Job Flow Rates by Employer Age Category

Job Job des- Job re- Net Job Job des- Employ-
creation truction allocation growth creation truction ment

share share share
≤ 5 years old 0.4925 0.2318 0.7243 0.2608 0.0476 0.0145 0.0076
6-10 years old 0.1778 0.1985 0.3763 -0.0207 0.0199 0.0154 0.0090
11-15 years old 0.1352 0.1471 0.2824 -0.0119 0.0162 0.0131 0.0099
15 years more 0.0838 0.0996 0.1833 -0.0158 0.9163 0.9570 0.9753
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Table 11: Comparative Static Properties

Effects of Changes in Discount Factor
baseline

β = 1
1.06 (β = 1

1.065) β = 1
1.07

Entry/exit rate(%) 0.24 0.31 0.39
Relative size of entrants 0.54 0.54 0.55
Relative size of exiters 0.33 0.33 0.33
Job Creation/destruction rate (%) 3.99 4.75 5.26
Increase in output price(%) 9.67 10.5 11.41
Output loss(%) 8.81 9.5 10.24
Employment loss (%) 6.79 7.81 8.82

Effects of Changes in Project Riskiness
baseline

π = 0.50 (π = 0.51) π = 0.55
Entry/exit rate(%) 0.33 0.31 0.23
Relative size of entrants 0.54 0.54 0.54
Relative size of exiters 0.33 0.33 0.34
Job Creation/destruction rate (%) 4.98 4.75 3.83
Increase in output price(%) 10.96 10.5 9.02
Output loss(%) 9.88 9.50 8.27
Employment loss (%) 8.28 7.81 5.98

Effects of Changes in Entry Cost
baseline

I = 10, 000 (I = 10, 478) I = 11, 000
Entry/exit rate(%) 0.345 0.31 0.36
Relative size of entrants 0.63 0.54 0.48
Relative size of exiters 0.395 0.33 0.29
Job Creation/destruction rate (%) 4.51 4.75 5.37
Increase in output price(%) 8.26 10.5 16.76
Output loss(%) 7.63 9.50 14.35
Employment loss (%) 7.49 7.81 9.08

Effects of Changes in Firms’ Initial Wealth
baseline

M = 2500 (M = 3, 254) M = 4, 000
Entry/exit rate(%) 0.33 0.31 0.29
Relative size of entrants 0.42 0.54 0.67
Relative size of exiters 0.285 0.33 0.367
Job Creation/destruction rate (%) 4.78 4.75 4.56
Increase in output price(%) 17.39 10.5 6.86
Output loss(%) 14.81 9.50 6.42
Employment loss (%) 8.23 7.81 7.55
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APPENDIX B: Analytical Proofs

PROOF of LEMMA 1: Consider a sequence of candidates for V̄ , {V̄0, V̄1, V̄2 . . .}. Let V̄0 = Ṽ (p).
Then W[0,V̄0]

(V̄0; p) = W̃ (p), so B[0,V̄0]
(V̄0; p) < 0. Recall that B[0,V̄0]

(0; p) = W[0,V̄0]
(0; p)− 0 = S >

0. By continuity of B[0,V̄0]
, there exists the highest point V̄1 ∈ (0, V̄0) such that B[0,V̄0]

(V̄1; p) = 0.
Since V̄1 < V̄0, W[0,V̄1]

(V̄1; p) ≤ W[0,V̄0]
(V̄1; p). So B[0,V̄1]

(V̄1; p) ≤ B[0,V̄0]
(V̄1; p) = 0. Again denote

V̄2 the highest point in (0, V̄1] such that B[0,V̄1]
(V̄2; p) = 0. Continuing this process defines a non-

increasing sequence {V̄0, V̄1, V̄2 . . .}, with 0 < V̄i ≤ Ṽ , B[0,V̄i]
(V̄i+1) = 0. It converges to a unique

limit, call it V̄ . Berge’s Theorem of the Maximum guarantees that the value function W and hence
B moves continuously with its constraint set parameter. So B[0,V̄ ](V̄ ; p) = 0. By construction, for
any V > V̄ , B[0,V ](V ; p) < 0. So any V > V̄ cannot be feasibly promised. Finally, since W[0,V̄ ](V ; p)
is concave and increasing in V , and W[0,V̄ ](0; p) = S > 0, we have W[0,V̄ ](V ; p) > V for all V < V̄ ,
i.e. B[0,V̄ ](V ; p) > 0 for V < V̄ . In other words, any V < V̄ can be feasibly promised. So V̄ is the
upper bound on feasible value entitlements.

PROOF OF LEMMA 2: First note that for V = 0 17, V H(V ) = 0 < V̄ . For V = V̄ , we
can show that V H(V ) = V̄ by contradiction. Consider (P2) with V = V̄ . Suppose its solution is
(l, τ, V H , V L) with V H < V̄ . If τ = pf(l), then V̄ = β(πV H + (1 − π)V L) < βV̄ . If τ < pf(l),
increasing τ and V H can make the objective strictly higher. So V H(V̄ ) = V̄ . By continuity of the
policy function V H(V ), there exists 0 < V1 ≤ V̄ such that V H(V1) = V̄ , V H(V ) < V̄ for V < V1.

By (10), V L(V ) ≤ V H(V ) for all V ∈ [0, V̄ ]. So V L(V ) < V̄ for V < V1.

PROOF OF PROPOSITION 3:
(i) If V = 0, this is obvious, since l(0) = 0, τ(0) = 0. Consider an arbitrary 0 < V < V1,

suppose the solution to (P2) is (l, τ, V H , V L). From Lemma 2, we know V H < V̄ . If τ < pf(l),
since W is strictly increasing, the objective of (P2) can be strictly increased by increasing τ and
V H in a way that keeps all constraints hold. So τ(V ) = pf(l(V )) for any V < V1. By continuity of
τ(V ) and l(V ), the equality also holds for V = V1. So (11) is binding for V ∈ [0, V1].

(ii) This is obviously true for V = 0. Suppose there exists V0 ∈ (0, V1] such that τ(V0) <

β(V H(V0) − V L(V0)). Since τ(V0) = pf(l(V0)) > 0, V H(V0) > V L(V0). Now consider two cases.
Case 1. V H(V0) > Vr. Since τ(V0) < β[V H(V0) − V L(V0)], there exists ξ > 0, such that

τ(V0) ≤ β
[
(V H(V0)− (1− π)ξ)− (V L(V0) + πξ)

]
. Consider a choice vector (l(V0), τ(V0), V H(V0)−

(1 − π)ξ, V L(V0) + πξ). It’s easy to see that it satisfies all the constraints of (P2). Since W (V ) is
strictly increasing, linear for V ∈ [0, Vr] and strictly concave for V > Vr, by Jensen’s inequality,

πW (V H(V0)− (1− π)ξ) + (1 − π)W (V L(V0) + πξ) > πW (V H(V0)) + (1 − π)W (V L(V0)).

This contradicts that (l(V0), τ(V0), V H(V0), V L(V0)) is the optimal solution.
Case 2. V H(V0) ≤ Vr. We first show that l(V0) < l?(p). By (i), τ(V0) = pf(l(V0)), so

πV H(V0) + (1 − π)V L(V0) = V0
β . Since V L(V0) < V H(V0) ≤ Vr, V0

β < Vr and hence V0 < Vr.

Since W (V ) is linear for V ≤ Vr, πW (V H(V0)) + (1 − π)W (V L(V0)) = W (V0
β ). So Ŵ (V0) =

πpf(l(V0)) − l(V0) + β[πW (V H(V0)) + (1 − π)W (V L(V0)] = πpf(l(V0)) − l(V0) + βW (V0
β ). Since

V0 < Vr, Ŵ (V0) < W (V0). By Proposition 1, for V ≤ Vr, W (V ) = S + W (Vr)−S
Vr

V . So πpf(l(V0))−
l(V0)+β

[
S + W (Vr)−S

Vr

V0
β

]
< S + W (Vr)−S

Vr
V0, which implies S > πpf(l(V0))−l(V0)

1−β . Since S < I −M <

17For simplicity, throughout the proofs, we use V to denote either the value entitlement to an entrepreneur
at the beginning of a period or the continuation value entitlement (Vc).
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I = πpf(l?(p))−l?(p)
1−β , l(V0) < l?(p). With this result and τ(V0) < β[V H(V0) − V L(V0)], we can find

ξ, ξ′ > 0, such that τ + ξ ≤ β[V H(V0)− V L(V0)], τ + ξ = pf(l(V0) + ξ′), and l(V0) + ξ′ ≤ l?(p). It’s
easy to see that the choice vector (l(V0) + ξ′, τ(V0) + ξ, V H(V0), V L(V0)) also satisfies (9). But it
yields a higher value for the objective of (P2), because πpf(l)− l is strictly increasing for l < l?(p).
This is a contradiction.

In both cases, we get contradictions. So the incentive compatibility constraint is binding for
V ∈ [0, V1].

(iii) First l(0) = 0 < l?(p). For any V ∈ (0, V1], also consider the two cases: V H(V ) > Vr

and V H(V ) ≤ Vr. For the second case, l(V ) < l?(p) is already proved in (ii). Now consider the
first case. Since both (10) and (11) are binding, V H and V L can be solved in terms of V and l,
V H = V +(1−π)pf(l)

β , V L = V −πpf(l)
β . Then (P2) can be reduced to

(P ′
2)





Ŵ (V ) = maxl≥0

{
πpf(l)− l + β{πW (V H) + (1− π)W (V L)}

}

s.t. V H = V +(1−π)pf(l)
β

V L = V −πpf(l)
β ≥ 0

Since V > 0, l(V ) > 0 and it satisfies the first order condition

πpf ′(l(V )) ≥ 1
1 − (1 − π) [W ′(V L(V ))− W ′(V H(V ))]

, with equality if V L(V ) > 0.

Note that by (i) and (ii), β[V H(V ) − V L(V )] = τ(V ) = pf(l(V )) > 0, so V L(V ) < V H(V ). Since
W is linear for V ≤ Vr and strictly concave for V > Vr, W

′
(V L) > W

′
(V H). So πpf ′(l(V )) > 1,

while πpf ′(l?(p)) = 1. By strict concavity of f , l(V ) < l?(p).
(iv). First, since l(V ) > 0 for V > 0, V H(V ) = V +(1−π)pf(l(V ))

β > V . Now consider problem
(P2) with V ∈ (0, V1]. Since both (10) and (11) are binding, (P2) can be rewritten as

(P2”)





Ŵ (V ) = maxV H≥0,V L≥0

{
πβ(V H − V L) − f−1(β(V H−V L)

p )+
β{πW (V H) + (1− π)W (V L)}

}

s.t. V = β{πV H + (1 − π)V L}

Since V H(V ) > 0, V L(V ) ≥ 0, V H(V ) and V L(V ) satisfies the first order conditions

W
′
(V H) = λ−


1 −

f−1
′
(β(V H−V L)

p )

πp


 ,

W
′
(V L) ≤ λ +

π

1 − π


1 −

f−1
′
(β(V H−V L)

p )

πp


 , with equality if V L > 0,

where λ > 0 is the Lagrangian multiplier on the constraint. If V L(V ) = 0, then V L(V ) < V . If
V L(V ) > 0, then we have equality in the first order condition with respect to V L. Since l(V ) ≡
f−1(β(V H−V L)

p ) < l?(p), and f−1 is convex, f−1
′
(β(V H−V L)

p ) < f−1
′
(f(l?(p))) = 1

f ′(l?(p)) = πp. So

W
′
(V L(V )) > λ. By the Envelope theorem, λ = Ŵ

′
(V ) ≥ W

′
(V ). So W

′
(V L(V )) > W

′
(V ), and

by concavity of W , V L(V ) < V . This proves V L(V ) < V < V H(V ) for 0 < V ≤ V1.
Now suppose there exist V, V ′ ∈ [0, V1], V < V ′, such that V H(V ) ≥ V H(V ′). Then V L(V ′) >

V L(V ) by the constraint of (P2”). So β(V H(V ′) − V L(V ′)) < β(V H(V ) − V L(V )). Since f−1 is
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strictly convex,

f−1
′
[
β(V H(V ′) − V L(V ′))

p

]
< f−1

′
[
β(V H(V ) − V L(V ))

p

]
.

So

Ŵ
′
(V ′) = λ(V ′) = W

′
(V H(V ′)) +


1 −

f−1
′
(β(V H(V ′)−V L(V ′))

p )

πp




≥ W
′
(V H(V )) +


1−

f−1
′
(β(V H(V ′)−V L(V ′))

p )

πp




> W
′
(V H(V )) +


1−

f−1
′
(β(V H(V )−V L(V ))

p )

πp




= λ(V ) = Ŵ
′
(V ),

i.e. Ŵ
′
(V ′) > Ŵ

′
(V ), which is a contradiction to the fact that Ŵ is concave. So for any V, V ′ ∈

[0, V1], V < V ′, V H(V ) < V H(V ′), i.e. V H(V ) is strictly increasing on [0, V1].
To prove that V L(V ) is non-decreasing on [0, V1], consider V, V ′ ∈ [0, V1], V < V ′. If V L(V ) = 0,

then since V L(V ′) ≥ 0, it’s obviously true that V L(V ′) ≥ V L(V ). If V L(V ) > 0, V L(V ′) ≥ V L(V )
can be proved by contradiction. If V L(V ′) < V L(V ), then V H(V ′) > V H(V ). So

Ŵ
′
(V ′) = λ(V ′) ≥ W

′
(V L(V ′))− π

1− π


1 −

f−1
′
(β(V H(V ′)−V L(V ′))

p )

πp




≥ W
′
(V L(V ))− π

1 − π


1−

f−1
′
(β(V H(V ′)−V L(V ′))

p )

πp




> W
′
(V L(V ))− π

1 − π


1−

f−1
′
(β(V H(V )−V L(V ))

p )

πp




= λ(V ) = Ŵ
′
(V ),

Again, we get a contradiction to Ŵ being concave. Therefore V L(V ) is non-decreasing on [0, V1].

PROOF OF LEMMA 3:
First, by (iv) of Proposition 3, V L(V1) < V H(V1) = V̄ . So

V1 = β(πV̄ + (1 − π)V L(V1)) < βV̄ < V̄ .

Suppose V1 ≤ Vr, consider problem (P ′
2) with V = V1. By the Envelope theorem, Ŵ

′
(V1) =

πW
′
(V H(V1)) + (1 − π)W

′
(V L(V1)) = πW

′
(V̄ ) + (1 − π)W

′
(V L(V1)). Recall that W is linear on

[0, Vr], and strictly concave on [V1, V̄ ]. Since V L(V1) < V1 ≤ Vr, W
′
(V L(V1)) = W

′
(V1). Since

V̄ > V1 and V̄ > Vr, W
′
(V̄ ) < W

′
(V1). So Ŵ

′
(V1) < W

′
(V1). However, V1 ≤ Vr implies that

Ŵ
′
(V1) ≥ W

′
(V1). So V1 > Vr.

PROOF OF PROPOSITION 4:
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(i) By construction, V H(V1) = V̄ , and it has been proved that V H(V̄ ) = V̄ in the proof of
Lemma 2. Now suppose there exists V0 ∈ (V1, V̄ ), such that V H(V0) < V̄ . If τ(V0) < pf(l(V0)),
the objective of (P2) can be strictly increased by increasing τ(V0) and V H(V0) in a way that
keeps all constraints hold. If τ(V0) = pf(l(V0)) and τ(V0) < β(V H(V0) − V L(V0)), then V0 =
β(πV H(V0) + (1 − π)V L(V0)), V H(V0) > V L(V0). Since V0 > V1 > Vr, V H(V0) > Vr. Then as
proved before the objective of (P2) can be strictly increased by lowering V H(V0) and increasing
V L(V0). If τ(V0) = pf(l(V0)) and τ(V0) = β(V H(V0) − V L(V0)), by the argument of part (iv) of
Proposition 3, V H(V0) > V H(V1) = V̄ . So V H(V ) = V̄ for all V ∈ [V1, V̄ ].

(ii) It holds for V = V1. Suppose there exists V0 ∈ (V1, V̄ ], such that τ(V0) < β(V H(V0) −
V L(V0)), where V H(V0) = V̄ > Vr. Again, by concavity of W , the objective of (P2) can be made
strictly higher by lowering V H(V0) and increasing V L(V0) in a way that makes all constraints hold.
So (10) is binding on [V1, V̄ ].

(iii) Consider any V ∈ [V1, V̄ ], the problem of (P1) and (P2) can be reduced to

(P ′)





W (V ) = maxl≥0

{
πpf(l)− l + β{πW (V̄ ) + (1− π)W (V L)}

}

s.t. V L = V −πpf(l)
β ≥ 0

(1 − π)pf(l) ≥ βV̄ − V

where the second constraint is the limited liability constraint. Note that the first constraint implies
pf(l) ≤ V

π . And the second constraint implies pf(l) ≥ βV̄ −V
1−π . So a necessary condition for (P ′)

to be meaningful is V
π ≥ βV̄ −V

1−π or equivalently, V ≥ βπV̄ . Note that this is true for V1, since
V1 = β(πV̄ + (1 − π)V L(V1)) ≥ βπV̄ . So this condition holds for any V ∈ [V1, V̄ ].

Consider two possible cases. First, (1 − π)pf(l(V )) = βV̄ − V . Since V̄ = V H(V1) =
V1+(1−π)pf(l(V1))

β , then (1 − π)pf(l(V )) = β
V1+(1−π)pf(l(V1))

β − V ≤ V1 + (1 − π)pf(l(V1)) − V1 =
(1 − π)pf(l(V1)) < (1 − π)pf(l?(p)). So l(V ) < l?(p). Second, (1 − π)pf(l(V )) > βV̄ − V . Then
l(V ) satisfies the first order condition

πpf ′(l(V )) ≥ 1
1 − (1 − π)W ′(V L(V ))

, with equality if V L(V ) > 0.

Clearly πpf ′(l(V )) > 1, so l(V ) < l?(p).
(iv) Consider the problem (P ′) for any V ∈ [V1, V̄ ]. Since (10) is binding, l can be solved in

terms of V L, l = f−1
(

V −βV L

πp

)
. And (11) can be rewritten as β(1 − π)V L ≤ V − πβV̄ . So the

problem can be rewritten as

(P”)

{
W (V ) = maxV L∈[0,V̄ ]

{
V − βV L − f−1

(
V −βV L

πp

)
+ β{πW (V̄ ) + (1− π)W (V L)}

}

s.t. β(1 − π)V L ≤ V − πβV̄

The first order condition for V L is

W
′
(V L) ≥

1 − f−1′
(

V −βV L

πp

)
1
πp

1− π
+ µ, with equality if V L < V̄ ,

where µ ≥ 0 is the Lagrangian multiplier on the constraint. By the Envelope theorem,

W
′
(V ) = 1 − f−1′

(
V − βV L

πp

)
1
πp

+ µ.
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Note that V1 = βπV̄ + (1 − π)V L(V1) < βV̄ . So V can fall in [V1, βV̄ ) or [βV̄ , V̄ ]. First, consider
V ∈ [βV̄ , V̄ ]. In this case, the constraint is not binding, since (1 − π)pf(l(V )) > 0 ≥ βV̄ − V . So

µ = 0. And W
′
(V L(V )) ≥ W

′
(V )

1−π > W
′
(V ). This implies V L(V ) < V . So V L(V ) < V̄ , which

gives us equality in the first order condition, W
′
(V L(V )) = W

′
(V )

1−π . Since βV̄ > V1 > Vr, W (V ) is
strictly concave on [βV̄ , V̄ ]. So W

′
(V L(V )) is strictly decreasing in V , and hence V L(V ) is strictly

increasing in V . Now consider V ∈ [V1, βV̄ ). First note that V L(V ) ≤ V −πβV̄
β(1−π) < βV̄ −πβV̄

β(1−π) = V̄ . So

W
′
(V L(V )) =

1− f−1′
(

V −βV L(V )
πp

)
1
πp

1 − π
+ µ(V )

=
1− f−1′

(
V −βV L(V )

πp

)
1
πp

1 − π
+ W

′
(V ) −

{
1 − f−1′

(
V − βV L

πp

)
1
πp

}

=
π

1− π

{
1 − f−1′

(
V − βV L(V )

πp

)
1
πp

}
+ W

′
(V ).

By (iii), l(V ) = V −βV L(V )
πp < l?(p), so f−1′

(
V −βV L(V )

πp

)
< f−1′(f(l?(p))) = 1

f ′(l?(p))
= πp. And

hence W
′
(V L(V )) > W

′
(V ), which implies V L(V ) < V . Also,

W
′
(V L(V )) =

W
′
(V ) − µ(V )
1 − π

+ µ(V ) =
W

′
(V )

1 − π
− π

1 − π
µ(V ).

Consider any V, V ′ ∈ [V1, βV̄ ), V ′ > V . Suppose V L(V ′) ≤ V L(V ). Then

W
′
(V L(V ′)) =

W
′
(V ′)

1− π
− π

1 − π
µ(V ′) ≥ W

′
(V L(V )) =

W
′
(V )

1 − π
− π

1− π
µ(V ).

Since W
′
(V ′) ≤ W

′
(V ), µ(V ′) ≤ µ(V ). On the other hand, since V ′−βV L(V ′) > V −βV L(V ), and

f−1 is strictly convex, f−1′
(

V ′−βV L(V ′)
1−π

)
> f−1′

(
V −βV L(V )

1−π

)
. So W

′
(V L(V ′)) =

1−f−1′
(

V ′−βV L(V ′)
πp

)
1

πp

1−π +

µ(V ′) <
1−f−1′

(
V −βV L(V )

πp

)
1

πp

1−π + µ(V ) = W
′
(V L(V )). This implies V L(V ′) > V L(V ), which contra-

dicts our assumption that V L(V ′) ≤ V L(V ). So V L(V ′) > V L(V ) for any V ′, V ∈ [V1, V̄ ), V ′ > V ,
i.e., V L(V ) is strictly increasing on [V1, V̄ ). In summary, V L(V ) < V and strictly increasing on both
[V1, βV̄ ) and [βV̄ , V̄ ], so V L(V ) < V on [V1, V̄ ]. And by continuity, V L(V ) is strictly increasing on
[V1, V̄ ].

(v) In (P2), since the incentive constraint (10) is binding, τ(V ) = βV̄ − V L(V ). Since V L(V ) <
V ≤ V̄ , τ(V ) > 0. And since V L(V ) is strictly increasing in V , τ(V ) is strictly decreasing in V .

(vi) Consider the problem (P ′) formulated in part (iii) for some V ∈ [V1, V̄ ]. Note that the
limited liability constraint is binding for V = V1. Since l(V ) > 0 for V > 0, the constraint is
not binding for V ≥ βV̄ . By continuity, there exists V̂ ∈ [V1, βV̄ ), such that the limited liability
constraint is binding for V ∈ [V1, V̂ ], and not binding for V ∈ (V̂ , V̄ ]. For V ∈ (V̂ , V̄ ], l(V ) satisfies
the first order condition

πpf ′(l(V )) =
1

1 − (1− π)W ′(V L(V ))
.

Since V L(V ) is strictly increasing and W is strictly concave on (V̂ , V̄ ], f ′(l(V )) is strictly decreas-
ing, i.e., l(V ) is strictly increasing in V .
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PROOF of LEMMA 4:
Since the periodic profit function πpf(l)−l is continuous and strictly increasing in p, Ŵ (V ; p) is

continuous and strictly increasing in p. And hence Ŵ (V ; p)−V is continuous and strictly increasing
in p. So V0(p) is continuous and strictly increasing in p as long as a solution to (P3) exists at p.

PROOF of PROPOSITION 5:
Suppose µ′

t(V ; p) = κµ(V ; p), E ′
t+1 = κEt+1, where κ > 0 is an arbitrary real number. Since

for every A ∈ V (p), µt(A; p) = 0 implies µ′
t(A; p) = 0, µ′

t is absolutely continuous with respect to
µt. By Radon-Nikodym Theorem, dµ′

t = κdµ. So

µ′
t+1(A; p) =

∫ {
π

(
1 − α(V H(V ))

)
χA

(
Vc(V H(V ))

)

+(1− π)
(
1 − α(V L(V ))

)
χA

(
Vc(V L(V ))

)}
µ′

t(dV ; p) + E ′
t+1 χA(V0(p))

=
∫ {

π
(
1− α(V H(V ))

)
χA

(
Vc(V H(V ))

)

+(1− π)
(
1 − α(V L(V ))

)
χA

(
Vc(V L(V ))

)}
κ µt(dV ; p) + κEt+1 χA(V0(p))

= κ

{∫ {
π

(
1 − α(V H(V ))

)
χA

(
Vc(V H(V ))

)

+(1− π)
(
1 − α(V L(V ))

)
χA

(
Vc(V L(V ))

)}
µt(dV ; p) + Et+1 χA(V0(p))

}

= κµt+1(A; p).

PROOF of THEOREM 1(Sketch):
For any given distribution of firms, µ, there exists a unique p that satisfies condition (ii) in the

definition of equilibrium. Denote p0 as the output price corresponding to µ = 0. p0 may be infinity.
Define I? = Ŵ (M ; p0), then if I < I?, the problem (P3) has a solution at p0 and V0(p0) > M .
Note that (P3) has no solution for sufficiently small p, since Ŵ (V ; p = 0) = βS < I − M , for
∀V > 0. Define p1 = min{p : ∃V ∈ [0, V̄ (p)], s.t.Ŵ (V ; p) − V ≥ I − M}, i.e., p1 is the smallest
p at which (P3) has a solution. Since Ŵ (V ; p) − V is continuous and strictly increasing in p, p1

is well defined and strictly greater than zero. And p1 is continuous and strictly decreasing in M .
So by Lemma 4, V0(p1(M)) is continuous and strictly decreasing in M . Note that for M close to
zero, V0(p1(M)) > M . And for M close to I , V0(p1(M)) is close to zero, which is less than M . So
there exists M?, 0 < M? < I , such that V0(p1(M?)) = M?. If M ≥ M?, then V0(p1(M)) ≤ M .
By the continuity and monotonicity of V0(p), there exists a unique p?, p1(M) ≤ p? < p0, such that
V0(p?) = M .

With p?, decision rules l(V ; p?), V H(V ; p?), V L(V ; p?), τ(V ; p?), α(V ; p?) and Vc(V ; p?) as well
as value functions W (V ; p?) and Ŵ (V ; p?) can be uniquely determined by solving the contracting
problem (P1) and (P2).

The final step is to establish the existence and uniqueness of an invariant measure µ? and mass
of entry E? that satisfy the equilibrium conditions. First let Et ≡ 1 in Eq. (15), then the operator
T ? has a unique fixed point µ. It’s not hard to show that the transition function defined by the
decision rules is monotone, has the Feller property, and satisfies the mixing condition of Assump-
tion 12.1 of Stokey and Lucas (1989). Since entry is positive and 0 is not in the ergodic set of µ
(firms with equity values equal to zero are scrapped for sure and cannot survive to the continuation
stage), µ puts all positive mass on firms with equity values greater than zero. Since l(V ) > 0 for
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V > 0, the aggregate output Y (µ; p?) > 0. Let E? be determined by Q? ≡ D−1(p?) = E?Y (µ; p?).
Since p? < p0, Q? > 0. So E? > 0. By the linear homogeneity of T ?, µ? = E?µ is the unique fixed
point of T ? when entry is E?.

A BRIEF DESCRIPTION OF THE SOLUTION METHOD18

The behavior of the industry cannot be characterized analytically. We construct a numerical
approximation to the stationary competitive equilibrium with entry and exit defined in Section 3.6.
For a given set of parameter values, the computation strategy involves the following steps.

1. Solving the dynamic contracting problems and computing the optimal decision rules, which
involves an iteration on the following steps.

• For a given W , find its fixed point V̄ ;

• Solve the problem (P2) to obtain Ŵ ;

• Solve the problem (P1) to obtain a new W .
(((P1) and (P2) are solved by piecewise linear approximation. The state space [0, V̄ ] is
divided into 100 grids, with finer grids for smaller regions).

2. Solving the entry problem (P3) to determine a firm’s initial equity value V0.

3. Iterating on (15) to compute the stationary measure µ with E = 1, and

4. Using an exogenously given level of total labor demand to determine the equilibrium level of
entry E? and the corresponding stationary measure µ?.

18Details and Matlab codes are available upon request
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