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Abstract

In this paper I described group theoretic methods that can be used for an-

alyzing the boundary problems, which arise when the Hamiltonian method

is applied to solve the relaxed problem for the multidimensional screening

problem. This technique can provide some useful insights into the structure

of solutions and some times may help to arrive at particular solutions.
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1 INTRODUCTION

In many industries the price paid by the customers is not strictly propor-

tional to the quantity purchased. Examples include railroad tariffs, electric-

ity tariffs, and rental rates for durable goods and space. All these cases fall

into a general category of nonlinear tariffs. The major justification for the

nonlinear pricing is the existence of private information on the side of con-

sumers. Often nonlinear tariffs specify the payment as a function of a variety

of characteristics. For example, the railroad tariffs specify charges based on

weight, volume, and distance of each shipment. Different customers may

value each of these characteristics differently, hence the customer’s type will

not in general be captured by a one-dimensional characteristic and a problem

of multi-dimensional screening arises.

The general formulation of the problem of multi-dimensional screening is

due to Armstrong (1996) and Wilson (1993), and goes as follows. Consider

a multi-product monopoly producing n goods (or a good with n quality

dimensions) with a convex cost function. The preferences of a consumer

over these goods can be parameterized by an m−dimensional vector. Types

of consumers are distributed according to a density function f(·) defined

over a convex open bounded set Ω ⊂ Rm. Assume that f(·) is continuously
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differentiable on Ω and can be extended by continuity on its closure. The

monopolist is interested in maximizing profits by choosing a tariff, which

is a function from the set of bundles of goods to the real line. The tariff

determines how much a consumer will pay for a particular bundle of goods.

Finding the solution often involves solving a boundary problem for a

system of nonlinear partial differential equations (see, Basov (2001, 2002)).

Though no general methods for solving such problems exist, the problem

can be considerably simplified and even solved explicitly if it possesses some

symmetry.

In this paper I demonstrate how the theory of Lie groups of partial differ-

ential equations can be applied to the multidimensional screening problems.

I also give a brief outline of the theory. For a detailed exposition see, for

example, Cantwell (2002).

The paper is organized as follows. In Section 2 I formulate the monop-

olist’s problem and illustrate by an example how symmetry considerations

allow to arrive at solutions of particular problems. The example shows that

application of symmetry considerations can be executed in two steps: finding

the symmetry group of the problem and finding the invariants of this group.

In Section 3 I describe a regular way to find a symmetry group of a system
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of partial differential equations. In Section 4 the linear partial differential

equation, which holds for the invariants of a group is derived. In Section

5 I revisit the example of Section 2 and solve a new example. Section 6

concludes.

2 THE MONOPOLIST’S PROBLEM AND

AN EXAMPLE

In this Section I will formulate the monopolist’s problem and illustrate by

an example how symmetry considerations may help to arrive at the solution of

a multidimensional screening problem. Consider a multi-product monopoly

producing n goods. Consumers have preferences over the bundles of these

goods that are parameterized by an m−dimensional column vectors. The

types of consumers are distributed according to a density f(·) function, on

the set Ω ⊂ Rm. The set Ω is assumed to be open, bounded, and convex.

Furthermore, in this paper I will assume that Ω = ×m
i=1(ai, bi) and f is

continuous and strictly positive on a convex open subset of Ω. The utility of

a consumer of type α ∈ Ω, when she consumes a bundle x ∈ X ⊂ Rn
+ and

makes a payment of t, is given by:
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U(α, x, t) =
mX
i=1

αivi(x)− t, (1)

where each of the functions vi(·) is increasing and continuously differentiable,

and satisfies a Lipschitz condition in x on X. For a given tariff t : X → R,

the firm’s profits are given by:

π =

Z
[t(x(α))− c(x(α))]f(α)dα (2)

where c(·) is the cost of production and x(α) is the bundle purchased by all

type-α consumers. The firm is interested in choosing a tariff t(·) to maximize

its profits.

Given such a tariff, let

s(α) = maxx∈X(U(α, x, t(x))). (3)

Thus, s(α) is the surplus of a consumer of type α who chooses a bundle

x ∈ X that maximizes her utility. One can solve (1), (3) to get:

t(α) =
mX
i=1

αivi(x(α))− s(α). (4)
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It is possible to show that s(·) is continuous, convex (and, hence, almost

everywhere differentiable), and satisfies the envelope conditions:

∂s

∂αi
(α) = vi(x(α)), i = 1, ...,m. (5)

For a proof see Armstrong (1996).

Conditions (4) and (5) show that the monopolist can be assumed to choose

the consumer surplus s(α) subject to the envelope and convexity constraints.

The usual practice is to drop the convexity constraint and than to check

whether the solution satisfies it. The monopolist’s problem with the convex-

ity constraint dropped is called relaxed. problem.

Example 1. Let the utility of a consumer be given by:

U = α1x− 1
γ
(α2 + c)xγ − t,

where α1 and α2 are distributed independently and uniformly on (0, a)×(0, b)

(i. e. a1 = 0, a2 = a, b1 = c, b2 = b + c), γ > 1 and c > b/2. The cost of

production is zero. In the case γ = 2, a = b = c = 1 this problem was first

considered by Laffont, Maskin, and Rochet (1987) and revisited by Basov
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(2001). The envelope conditions (5) imply that

s1 = x, s2 = −x
γ

γ
.

Basov (2001) showed that if s(·) solves the monopolists problem then there

exists µ ∈ H1(Ω) such that the following system holds:


s2 +

1
γ
sγ1 = 0

µ1s
γ−1
1 + (γ − 1)µsγ−21 s11 + µ2 = 3

µ = c at α2 = 0, µ = b+ c at α2 = b, µsγ−11 = a at α1 = a

. (6)

Note that system (6) is invariant under the following transformation


fα1 = βα1, ea = βa

fα2 = βγα2, eb = βγb, ec = βγc

eµ = βγµ

. (7)

This implies that if s(α1, α2; a, b, c) is a solution to (6) so is es(α1, α2; a, b, c) =
s(βα1, β

γα2;βa, β
γb, βγc). Since the solution to the monopolist’s problem

should be unique (see, Basov (2001)) it should depend on the invariants of

the transformation (7).
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Let us introduce new variables


ξ = (α1 − δ1a)

γ/(α2 − δ2b)

ζ = (α2 − δ2b)/a
γ

, (8)

where δ1 and δ2 are homogenous of zero degree functions of a, b, and c but

do not depend on α1 and α2.

Note that both ξ and ζ are invariant under transformation (7). In this

variables the first equation of system (6) will have a form

ξγ−1sξ((γsξ)γ−1 − ξ2−γ) + ζsζ = 0. (9)

Note that for sξ to remain finite as ξ → 0 it should be that sζ = 0. Therefore,

the non-trivial non-singular solutions of (9) are given by

s(ξ, ζ) =
γ − 1
γ

ξ
1

γ−1 + C, (10)

where C is an arbitrary constant. Since surplus function (10) satisfies the

envelope conditions and is convex, it is implementable (see, Rochet (1987)).
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Using (11) and the definition of ξ one calculate that

x = (
α1 − δ1a

α2 − δ2b
)

1
γ−1 . (11)

Substituting this into (6) we will get the following boundary problem for µ:


(α1 − δ1a)µ1 + (α2 − δ2b)µ2 = 3(α2 − δ2b)− µ

µ = c at α2 = 0, µ = b+ c at α2 = b, µxγ−1 = a at α1 = a

(12)

The boundary conditions should be satisfied as equalities almost every-

where on the intersection of the exterior boundary with the participation

region. First, note that a continuous µ could not satisfy these conditions.

Indeed, consider point (a, 0). The boundary conditions imply that x(a,

0) = (a/c)1/(γ−1). Therefore, there is no distortion at the bottom right point.

If µ were continuous then x1−γ(a, b) = 1/µ = (a/(b+ c))1/(γ−1), which is the

efficient level. But the incentive compatibility constraint between types (a, 0)

and (a, b) implies that it should but biased downwards.

The reason for the discontinuity of µ is non-smoothness of the boundary

of set Ω. Since x(·, ·) is continuous inside the participation the solution to

(12) should be sought separately in two regions separated by an isoquant
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passing through the point (a, b).

The general solution of the partial differential equation for µ has a form

µ =
3

2
(α2 − δ2b) +

φ(α1−δ1a
α2−δ2b )

α2 − δ2b
, (13)

where φ is arbitrary continuously differentiable function. At the neighbor-

hood of point (a, 0) the following boundary conditions should be satisfied:

µ = c at α2 = 0, µxγ−1 = a at α1 = a. (14)

The first boundary condition implies that φ = 0 and

µ = c+
3

2
α2, δ2 = −2c

3b
.

Using the second boundary condition and (11) one obtains:

δ1 =
1

3
. (15)

Therefore,

x = (
α1 − a

3

α2 +
2c
3

)
1

γ−1 (16)
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Note that µ(a, b) = c+ 3
2
b 6= b+ c, therefore this solution cannot be extended

to the region containing the upper boundary. The solution in that region is

given by (12) subject to

µ = c at α2 = 0, µ = b+ c at α2 = b. (17)

It is straightforward to show that (12) and (17) imply


δ2b =

b−2c
4

φ = − 1
32
(3b+ 2c)(b− 2c)

. (18)

Therefore,

x = (
4(α1 − δ1a)

4α2 − b+ 2c
)

1
γ−1 . (19)

Using continuity of x(·, ·) at point (a, b) one obtains

δ1 =
1

2
. (20)
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and


x = 0 if α1 ≤ a

2

x = ( 4α1−2a
4α2−b+2c)

1
γ−1 if α1 ≥ a

2
and (3b+ 2c)α1 − 2aα2 ≤ 2ac+ ab

x = ( 3α1−a
3α2+2c

)
1

γ−1 if α1 ≥ a
2
and (3b+ 2c)α1 − 2aα2 ≥ 2ac+ ab

. (21)

The optimal tariff is determined by

t(x) = max
α
(α1x− 1

γ
(α2 + c)xγ − s(α)), (22)

where s(·) is given by (10) with δ1 and δ2 given above and C determined

from t(0) = 0. Therefore,

t(x) =


a
2
x− 1

γ
( c
2
+ b

4
)xγ, if x < ( 2a

3b+2c
)

1
γ−1

a
6
( 2a
3b+2c

)
1

γ−1 − 1
γ
( c
6
+ b

4
)( 2a
3b+2c

)
γ

γ−1 + a
3
x− c

3γ
xγ, if x ≥ ( 2a

3b+2c
)

1
γ−1

.

(23)

If γ = 2 and a = b = c = 1 this solution coincides with one obtained by

Laffont, Maskin, and Rochet (1987). Note that as γ →∞ the tariff becomes

piecewise affine

t(x) =


a
2
x if x < 1

a
6
+ a

3
x if x ≥ 1.

. (24)
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3 CALCULATINGA SYMMETRYGROUP

FOR A BOUNDARY PROBLEM

In the previous Section I used symmetry considerations to arrive at the

solution of a multidimensional screening problem. Arriving at the solution

involved going through the following steps. First, it is necessary to find an

invariance group of the problem. In the example above the group is given by

transformations (6). Second, find all independent invariants of the group. In

the above example they are ξ and ζ. Third, rewrite the problem in terms of

group invariants and attempt to solve it. If m > n it may happen that the

number of independent invariants of group is bigger than the number of the

instruments. In that case one the solution will depend only on n invariants.

One might try to guess from economic considerations which invariants will

enter into the solution. Such a guess, if correct, can considerably simplify the

calculations. However, while one can describe a regular procedure for the

first two steps, guessing the right set of invariants is largely an art.

In this Section I describe a regular procedure for finding a symmetry

group of the problem. Next Section deals with finding the invariants of the

group. I will give only the basic outline of the theory and will omit all proofs
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and lengthy derivations. For the details, see Cantwell (2002). First, let us

defining the notion of a group.

Definition 1 A set G together with a binary operation m : G × G → G is

called a group if the following properties hold:

a). (Associativity) m(g1,m(g2, g3)) = m(m(g1, g2), g3) ∀g1, g2, g3 ∈ G

b). (Identity) ∃e ∈ G : m(g, e) = g ∀g ∈ G

c). (Inverse) ∀g ∈ G ∃eg ∈ G : m(g, eg) = e. eg ≡ g−1.

Operationm(·, ·) is usually called multiplication and denoted by ·, som(g1, g2) =

g1 · g2, e is called the identity element and eg ≡ g−1 is called the inverse of g

(it is straightforward to prove the identity element is unique and that each

element has a unique inverse).

Definition 2 Let (G,m) be a group and let H ⊂ G. If (H,m) is a group

on its own write it is called a subgroup of (G,m).

To check that (H,m) is a subgroup of (G,m) one has to verify that

m(h1, h2) ∈ H for any h1, h2 ∈ H. If there is no confusion about operation

m one usually refers to group (G,m) simply as group G.

Intuitively, Lie group consists of elements which can be represented as

values of an analytical function of some set of real variables. In this paper

we will be interested only in the so-called one parametric Lie groups.
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Definition 3 Let Ξ ⊂ Rm be an open set and τ ∈ R. Assume that function

F : Rm×R→ Ξ is infinitely differentiable in α and analytic in τ . Consider

set G of coordinate transformations

gτ : {α = F (eα, τ)}. (25)

with together with a binary operation m defined by

m(gτ1 , gτ2) : {α = F (F (eα, τ 1), τ 2)}. (26)

If (G,m) is a group it is called a one-parametric Lie group. Parameter τ is

usually chose in such a way that g0 = e.

Clearly, a set that contains one element, call it e, together with m :

G×G→ G defined bym(e, e) = e is a group. We will call such group trivial.

A group with more than one element is called non-trivial.

Proposition 1 Let (G,m) be a group and (H1,m) and (H2,m) its subgroups.

Let H = H1 ∩H2. Then (H,m) is a subgroup of (G,m). Moreover, it is a

subgroup of (H1,m) and (H2,m).

Again, if there is no confusion about the nature of the group multiplica-

tion, we will simply phrase Proposition 1 as: An intersection of two subgroups
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is a subgroup.

The proof of this proposition is trivial and is omitted. I will use it below

to construct the symmetry group for a system of partial differential equations

(PDEs). The link between a linear multidimensional screening problem and a

boundary value problem for a system of PDEs was established by Rochet and

Chone (1998) and Basov (2001) (see, also Basov (2002) for the generalization

of the results for the non-linear case). Even if the screening problem is linear

the resulting system of partial differential equation will typically be non-

linear (recall the example in the previous Section). No general technique

for solving the boundary value problem for a system of nonlinear PDEs is

available. However, if the exists a non-trivial group of transformation, which

covers both dependent and independent variables, and the parameters of the

model (in the previous example the parameters are a, b, and c) that leaves

the boundary problem invariant, than this often can be used to arrive at the

explicit solution.

The group of a PDE can be calculated in a systematic way. I will restrict

attention to the first and second order PDEs, since these arise in screening
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problems. Consider a PDE:

Φ(α, u,∇u,D2u) = 0, (27)

where α ∈ Rm, u : Rm → R is twice continuously differentiable, ∇u is

gradient of u, D2u is the symmetric tensor of its second derivatives and

Φ : Rm2/2+5m/2+1 → R is a continuously differentiable function, and trans-

formation of the independent and dependent variables:


eαi = Fi(α, u; τ)

eu = G(α, u; τ)

, (28)

where functions Fi and G are infinitely differentiable in α and u and analytic

in τ , and Fi(α, u; 0) = αi, G(α, u; 0) = u. Let us define


θj = ∂F

∂τ
(α, u; 0)

χ = ∂G
∂τ
(α, u; 0)

. (29)

Then one can write up to O(τ) terms:
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eαi = αi + τθi(α, u)

eu = u+ τχ(α, u)

. (30)

Expression (30) is known as the infinitesimal form of (28).

Note that the transformations (28) form a one-parametric Lie group (rep-

resentation (28) is called a finite form) if we define product of two transfor-

mations to be their composition, that is define m by (26).

Definition 4 A subgroup of group (28) which leaves equation (27) invariant

is called its symmetry group.

To calculate the symmetry group of equation (27) one has first to extend

group (28) to cover the transformations of the first and second derivatives of

u. In doing so, one arrives at the so-called twice-extended group:



eαi = αi + τθi(α, u)

eu = u+ τχ(α, u)

eui = ui + τχ{i}(α, u,∇u)

euij = uij + τχ{ij}(α, u,∇u,D2u)

., (31)
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where 

ui = ∂u/∂αi, uij = ∂2u/∂αi∂αj

χ{i} = Diχ−
mX
j=1

ujDiθ
j

χ{ij} = Diχj −
mX
k=1

ujkDiθ
k

, (32)

and the total differentiation operator Di is defined by

Diω(α, u) =
∂ω

∂αi
+ ui

∂ω

∂u
. (33)

The invariance group of equation (27) can be found from the condition

mX
j=1

θj
∂Φ

∂αj
+ χ

∂Φ

∂u
+

mX
k=1

χ{i}
∂Φ

∂ui
+

mX
k=1

χ{ij}
∂Φ

∂uij
= 0, (34)

which should hold on the surface Φ(α, u,∇u,D2u) = 0. Carrying out ex-

plicit calculations will result is a system of partial differential equations for

functions (θi, χ). Since we have to find a symmetry group, we will be usually

interested in a particular finite parametric set of solutions to the system.

Cantwell (2002) contains a software that can deal with the problem. In

Section 5 we will illustrate this approach on some examples.

18



If one has to deal with the system of PDEs

Φi(α, u,∇u,D2u) = 0, i = 1, .., p (35)

the above technique can be used to calculate the symmetry groups Hi of each

of the equations. Then

H = ∩pi=1Hi (36)

will be the symmetry group of the system.

Note that since the solution to a system of PDEs is typically not unique

the fact that the system posses a symmetry group does not mean that each

solution will be invariant with respect to it. It will rather mean that the

transformations of the group will take a solution into a solution. If one

deals with a boundary value problem, the symmetry group of the equation

is typically not the symmetry group of the problem. This, however, can be

remedied if one allows transformations not only of the dependent and inde-

pendent variables, but also parameters of the model. One has to supplement

(29) with 
eai = Fi(α−i, ai, u)

ebi = Fi(α−i, bi, u)
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and modify (30) accordingly. If the boundary problem is invariant under this

extended group of transformations then, since the solution to the boundary

value problem is usually unique, it will possesses the symmetry of the prob-

lem, i. e. will depend on variables and parameters only through the invariants

of the symmetry group. In the next Section I will provide a regular method

to find the invariants of a group.

4 FINDING THE INVARIANTS OF A LIE

GROUP

Consider a one-parametric Lie group of transformations given by (28),

whose infinitesimal form is given by (30). The main idea behind calculating

the invariance group is to calculate its infinitesimal form and then to integrate

to obtain the finite form. I will not try to justify this approach here. An

interested reader should see Cantwell (2002).

Definition 5 A continuously differentiable function Υ : Rm2/2+5m/2+1 → R

is called an invariant of group (28) if ∀τ > 0

Υ(eα, eu, f∇u, gD2u) = Υ(α, u,∇u,D2u). (37)
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Here f∇u and gD2u are calculated using twice extended group (31). Expres-

sion on the left hand side of (37) can be viewed as a function of the group

parameter τ and the invariance condition can be read to say that it does not

depend on τ , therefore

dΥ

dτ
= 0 (38)

or, taking the full derivative of (37) and using 31)

mX
j=1

θj
∂Υ

∂αj
+ χ

∂Υ

∂u
+

mX
k=1

χ{i}
∂Υ

∂ui
+

mX
k=1

χ{ij}
∂Υ

∂uij
= 0. (39)

If the transformation affects not only the coordinates α but also vectors of

parameters a and b (as in Example 1), they should be treated as additional

arguments in Υ. Note that (39) is a linear homogenous partial differential

equation. Often such an equation can be solved explicitly. We see that the

problem of finding the invariants of a group is easier than finding the sym-

metry group. However, while for the last problem we usually are interested

in finding a solution, for this problem we are usually interested in finding all

independent invariants.

Consider an important case when χ = 0 (pure coordinate transformation)

and suppose we are interested in finding and invariant a function of α that
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is invariant with respect to (30). Then (39) reduces to

mX
j=1

θj
∂Υ

∂αj
= 0. (40)

This is the case that arises in the screening applications. The role of Υ is

played by the consumer surplus function.

5 APPLICATIONS OF THE DEVELOPED

TECHNIQUE

In this Section I give examples of applications of the developed technique.

Example 1 (revisited). Let us start with calculating the symmetry group

of boundary problem (6). First, consider the first equation of the system

s2 +
1

γ
sγ1 = 0. (41)

Our objective is to calculate pure coordinate transformations (χ = 0) that

leave equation (41) invariant. The invariance equation (34) for this case takes

the form:

χ{1}s
γ−1
1 + χ{2} = 0, (42)
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where 
χ{1} = −s1θ11 − s2θ

2
1,

χ{2} = −s1θ12 − s2θ
2
2

. (43)

Substituting (43) into (42) and taking into account (41) one obtains:

(θ11 −
1

γ
θ22)s

γ
1 −

1

γ
s2γ−11 θ21 + s1θ

1
2 = 0. (44)

Since (44) should equal to zero identically for any function s1 for which

(39) has a solution coefficients before different powers of s1 should vanish

simultaneously. Therefore,


θ11 − 1

γ
θ22 = 0

θ21 = 0

θ12 = 0

. (45)

The last two equations of system (45) imply that θi depends only on αi. Now,

since θ11 depends only on α1, while θ
2
2 depends only on α2, the first of the

equation of system (45) implies that both of these derivatives are constant
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and finally the solution is given by:


θ1 = A(α1 − α∗1)

θ2 = Aγ(α1 − α∗2)
, (46)

where A, α∗1, and α
∗
2 are arbitrary constants. The finite form of the symmetry

group of equation (41) has the form


fα1 = α∗1 + (α1 − α∗1) exp(Aτ)

fα2 = α∗2 + (α2 − α∗2) exp(Aγτ)

es = s

. (47)

Introducing β by

β = exp(Aτ) (48)

and putting α∗1 = α∗2 = 0 one can recognize the coordinate transformation

(7). Now it is straightforward to check that in order for the second equation

of system (6) and the boundary conditions to be invariant , function µ and

parameters a, b, and c should transform according to (7).

So far, we have established that the boundary problem (6) is invariant

with respect to transformations (7). Since these transformations leave the
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surplus function unchanged (es = s), it should be under (7). To find the most

general form of such an invariant, consider equation (39), where a, b, c are

treated as additional coordinates. Therefore,

α1
∂s

∂α1
+ γα2

∂s

∂α2
+ a

∂s

∂a
+ γb

∂s

∂b
+ γc

∂s

∂c
= 0. (49)

To find the general solution start with writing the system of characteristics:

dα1
α1

=
dα2
γα2

=
da

a
=

db

γb
=

dc

γc
=

ds

0
. (50)

Five independent first integrals of system (50) are



b/c = C1

b/aγ = C2

(α1 − δ1(b/c, b/a
γ))γ/(α2 − δ2(b/c, b/a

γ)) = C3

(α2 − δ2(b/c, b/a
γ))/aγ = C4

s = C5

. (51)

Therefore, the general solution of equation (49) has a form

s = s(
(α1 − δ1(b/c, b/a

γ))γ

α2 − δ2(b/c, b/aγ)
,
α2 − δ2(b/c, b/a

γ)

aγ
,
b

c
,
b

aγ
). (52)
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Introducing ξ and ζ by (8) and omitting the parametric dependence one can

write s = s(ξ, ζ), which is the change of variables that lead to equation (9).

Example 2. Let the individual’s utility be given by:

u(α, x, t) = α1x1 + α2x2 +
√
α1α2x3 − t

and the cost of production is

c(x) =
1

2
(x21 + x22 + κx23).

The set of possible types is given by

Ω = {α ∈ R2+ : α1 + α2 < b}, (53)

which is an open convex set of (0, b) × (0, b). The distribution of types is

given by a density function:

f(α1, α2) =
exp(−α1 − α2)

1− (b+ 1) exp(−b) .

The value of the outside option is type independent and normalized to be
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zero. It can be shown (Basov, (2002)) that if the surplus function solves the

relaxed screening problem it should satisfy the following system

2X
i=1

(
∂(xi(α,∇s)− αi)

∂αi
− xi(α,∇s) + αi) = 1 (54)


2X

i=1

(∂(xi(α,∇s)−αi)
∂αi

− xi(α,∇s) + αi) = 1

2X
i=1

xi(α,∇s) = b for α1 + α2 = b

, (55)

where

x1(α,∇s) =
α1((4κα2 + α1)s1 − α2s2)

α21 + α22 + 4κα1α2

x2(α,∇s) =
α2((4κα1 + α2)s2 − α1s1)

α21 + α22 + 4κα1α2
.

Calculating the symmetry group of the system (54) may seem a daunting

task. Notice, however, that this group should take the boundary α1+α2 = b

into itself. The most general transformation that does it has a form


fα1 = α1 − τθ(α)

fα2 = α2 + τθ(α)

. (56)
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Surplus function invariant with respect to transformations (56) solves

θ
∂s

∂α1
− θ

∂s

∂α2
= 0. (57)

Assuming θ 6= 0 one finds

s = ϕ(α1 + α2), (58)

where ϕ is arbitrary differentiable function. Substituting (58) into (54) one

can see that the system has a solution of this form if and only if κ = 1/2. In

this case the solution is given by



ϕ(z) = z2

2
− z − ln z +

zZ
1

exp(t−b)
t

dt+ C

C + ϕ(z∗) = 0

ϕ0(z∗) = 0.

(59)

Using envelope conditions (5) one can find the allocation


x1 = α1(1− α1+α2+1

(α1+α2)2
)

x2 = α2(1− α1+α2+1
(α1+α2)2

)

x3 = 2
√
α1α2(1− α1+α2+1

(α1+α2)2
)

. (60)
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Note that for κ = 1/2 the optimal allocation can be found using two other

techniques developed by Armstrong (1996): using integration by rays and

showing that the optimal tariff is cost based (see, Basov (2002)). Basov

(2002) also showed that allocation (60) is implementable.

For κ 6= 1/2 the solution cannot be found in the form (58), which implies

that θ = 0 and the symmetry group of the problem (54) is trivial. In this

case the only way to solve system (54) is by numerical integration. Knowing

solution (60) is, however, useful even in this case, since implementability of

(60) implies that the numerical solution for (54) is also implementable for κ

sufficiently close to 1/2.1

6 DISCUSSION AND CONCLUSIONS

In this paper I described group theoretic methods that can be used for

analyzing the boundary problems, which arise when the Hamiltonian method

is applied to solve the relaxed problem for the multidimensional screening

problem. This technique can provide some useful insights into the structure

of solutions and some times may help to arrive at particular solutions.

1See Basov (2002) for the implementability condition for nonlinear problems and its
economic discussion.
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In this paper I dealt mainly with the relaxed problem (though the explicit

solutions obtained in both examples are implementable). It is well known

(see, Carlier (2002) and Basov (2002)) that the implementability constraint

can be formulated as a generalized convexity condition for surplus. There

exists now simple characterization of the set of generalized convex functions

for arbitrary utility. One might, however, hope to obtain such a characteri-

zation for a class of generalized convex functions symmetric with respect to

a particular group. This, if achieved, can allow to characterize the solution

of the complete problem in a closed form.
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1 INTRODUCTION

In many industries the price paid by the customers is not strictly propor-

tional to the quantity purchased. Examples include railroad tariffs, electric-

ity tariffs, and rental rates for durable goods and space. All these cases fall

into a general category of nonlinear tariffs. The major justification for the

nonlinear pricing is the existence of private information on the side of con-

sumers. Often nonlinear tariffs specify the payment as a function of a variety

of characteristics. For example, the railroad tariffs specify charges based on

weight, volume, and distance of each shipment. Different customers may

value each of these characteristics differently, hence the customer’s type will

not in general be captured by a one-dimensional characteristic and a problem

of multi-dimensional screening arises.

The general formulation of the problem of multi-dimensional screening is

due to Armstrong (1996) and Wilson (1993), and goes as follows. Consider

a multi-product monopoly producing n goods (or a good with n quality

dimensions) with a convex cost function. The preferences of a consumer

over these goods can be parameterized by an m−dimensional vector. Types

of consumers are distributed according to a density function f(·) defined

over a convex open bounded set Ω ⊂ Rm. Assume that f(·) is continuously
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differentiable on Ω and can be extended by continuity on its closure. The

monopolist is interested in maximizing profits by choosing a tariff, which

is a function from the set of bundles of goods to the real line. The tariff

determines how much a consumer will pay for a particular bundle of goods.

Finding the solution often involves solving a boundary problem for a

system of nonlinear partial differential equations (see, Basov (2001, 2002)).

Though no general methods for solving such problems exist, the problem

can be considerably simplified and even solved explicitly if it possesses some

symmetry.

In this paper I demonstrate how the theory of Lie groups of partial differ-

ential equations can be applied to the multidimensional screening problems.

I also give a brief outline of the theory. For a detailed exposition see, for

example, Cantwell (2002).

The paper is organized as follows. In Section 2 I formulate the monop-

olist’s problem and illustrate by an example how symmetry considerations

allow to arrive at solutions of particular problems. The example shows that

application of symmetry considerations can be executed in two steps: finding

the symmetry group of the problem and finding the invariants of this group.

In Section 3 I describe a regular way to find a symmetry group of a system
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of partial differential equations. In Section 4 the linear partial differential

equation, which holds for the invariants of a group is derived. In Section

5 I revisit the example of Section 2 and solve a new example. Section 6

concludes.

2 THE MONOPOLIST’S PROBLEM AND

AN EXAMPLE

In this Section I will formulate the monopolist’s problem and illustrate by

an example how symmetry considerations may help to arrive at the solution of

a multidimensional screening problem. Consider a multi-product monopoly

producing n goods. Consumers have preferences over the bundles of these

goods that are parameterized by an m−dimensional column vectors. The

types of consumers are distributed according to a density f(·) function, on

the set Ω ⊂ Rm. The set Ω is assumed to be open, bounded, and convex.

Furthermore, in this paper I will assume that Ω = ×m
i=1(ai, bi) and f is

continuous and strictly positive on a convex open subset of Ω. The utility of

a consumer of type α ∈ Ω, when she consumes a bundle x ∈ X ⊂ Rn
+ and

makes a payment of t, is given by:
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U(α, x, t) =
mX
i=1

αivi(x)− t, (1)

where each of the functions vi(·) is increasing and continuously differentiable,

and satisfies a Lipschitz condition in x on X. For a given tariff t : X → R,

the firm’s profits are given by:

π =

Z
[t(x(α))− c(x(α))]f(α)dα (2)

where c(·) is the cost of production and x(α) is the bundle purchased by all

type-α consumers. The firm is interested in choosing a tariff t(·) to maximize

its profits.

Given such a tariff, let

s(α) = maxx∈X(U(α, x, t(x))). (3)

Thus, s(α) is the surplus of a consumer of type α who chooses a bundle

x ∈ X that maximizes her utility. One can solve (1), (3) to get:

t(α) =
mX
i=1

αivi(x(α))− s(α). (4)
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It is possible to show that s(·) is continuous, convex (and, hence, almost

everywhere differentiable), and satisfies the envelope conditions:

∂s

∂αi
(α) = vi(x(α)), i = 1, ...,m. (5)

For a proof see Armstrong (1996).

Conditions (4) and (5) show that the monopolist can be assumed to choose

the consumer surplus s(α) subject to the envelope and convexity constraints.

The usual practice is to drop the convexity constraint and than to check

whether the solution satisfies it. The monopolist’s problem with the convex-

ity constraint dropped is called relaxed. problem.

Example 1. Let the utility of a consumer be given by:

U = α1x− 1
γ
(α2 + c)xγ − t,

where α1 and α2 are distributed independently and uniformly on (0, a)×(0, b)

(i. e. a1 = 0, a2 = a, b1 = c, b2 = b + c), γ > 1 and c > b/2. The cost of

production is zero. In the case γ = 2, a = b = c = 1 this problem was first

considered by Laffont, Maskin, and Rochet (1987) and revisited by Basov
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(2001). The envelope conditions (5) imply that

s1 = x, s2 = −x
γ

γ
.

Basov (2001) showed that if s(·) solves the monopolists problem then there

exists µ ∈ H1(Ω) such that the following system holds:


s2 +

1
γ
sγ1 = 0

µ1s
γ−1
1 + (γ − 1)µsγ−21 s11 + µ2 = 3

µ = c at α2 = 0, µ = b+ c at α2 = b, µsγ−11 = a at α1 = a

. (6)

Note that system (6) is invariant under the following transformation


fα1 = βα1, ea = βa

fα2 = βγα2, eb = βγb, ec = βγc

eµ = βγµ

. (7)

This implies that if s(α1, α2; a, b, c) is a solution to (6) so is es(α1, α2; a, b, c) =
s(βα1, β

γα2;βa, β
γb, βγc). Since the solution to the monopolist’s problem

should be unique (see, Basov (2001)) it should depend on the invariants of

the transformation (7).
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Let us introduce new variables


ξ = (α1 − δ1a)

γ/(α2 − δ2b)

ζ = (α2 − δ2b)/a
γ

, (8)

where δ1 and δ2 are homogenous of zero degree functions of a, b, and c but

do not depend on α1 and α2.

Note that both ξ and ζ are invariant under transformation (7). In this

variables the first equation of system (6) will have a form

ξγ−1sξ((γsξ)γ−1 − ξ2−γ) + ζsζ = 0. (9)

Note that for sξ to remain finite as ξ → 0 it should be that sζ = 0. Therefore,

the non-trivial non-singular solutions of (9) are given by

s(ξ, ζ) =
γ − 1
γ

ξ
1

γ−1 + C, (10)

where C is an arbitrary constant. Since surplus function (10) satisfies the

envelope conditions and is convex, it is implementable (see, Rochet (1987)).
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Using (11) and the definition of ξ one calculate that

x = (
α1 − δ1a

α2 − δ2b
)

1
γ−1 . (11)

Substituting this into (6) we will get the following boundary problem for µ:


(α1 − δ1a)µ1 + (α2 − δ2b)µ2 = 3(α2 − δ2b)− µ

µ = c at α2 = 0, µ = b+ c at α2 = b, µxγ−1 = a at α1 = a

(12)

The boundary conditions should be satisfied as equalities almost every-

where on the intersection of the exterior boundary with the participation

region. First, note that a continuous µ could not satisfy these conditions.

Indeed, consider point (a, 0). The boundary conditions imply that x(a,

0) = (a/c)1/(γ−1). Therefore, there is no distortion at the bottom right point.

If µ were continuous then x1−γ(a, b) = 1/µ = (a/(b+ c))1/(γ−1), which is the

efficient level. But the incentive compatibility constraint between types (a, 0)

and (a, b) implies that it should but biased downwards.

The reason for the discontinuity of µ is non-smoothness of the boundary

of set Ω. Since x(·, ·) is continuous inside the participation the solution to

(12) should be sought separately in two regions separated by an isoquant
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passing through the point (a, b).

The general solution of the partial differential equation for µ has a form

µ =
3

2
(α2 − δ2b) +

φ(α1−δ1a
α2−δ2b )

α2 − δ2b
, (13)

where φ is arbitrary continuously differentiable function. At the neighbor-

hood of point (a, 0) the following boundary conditions should be satisfied:

µ = c at α2 = 0, µxγ−1 = a at α1 = a. (14)

The first boundary condition implies that φ = 0 and

µ = c+
3

2
α2, δ2 = −2c

3b
.

Using the second boundary condition and (11) one obtains:

δ1 =
1

3
. (15)

Therefore,

x = (
α1 − a

3

α2 +
2c
3

)
1

γ−1 (16)
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Note that µ(a, b) = c+ 3
2
b 6= b+ c, therefore this solution cannot be extended

to the region containing the upper boundary. The solution in that region is

given by (12) subject to

µ = c at α2 = 0, µ = b+ c at α2 = b. (17)

It is straightforward to show that (12) and (17) imply


δ2b =

b−2c
4

φ = − 1
32
(3b+ 2c)(b− 2c)

. (18)

Therefore,

x = (
4(α1 − δ1a)

4α2 − b+ 2c
)

1
γ−1 . (19)

Using continuity of x(·, ·) at point (a, b) one obtains

δ1 =
1

2
. (20)
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and


x = 0 if α1 ≤ a

2

x = ( 4α1−2a
4α2−b+2c)

1
γ−1 if α1 ≥ a

2
and (3b+ 2c)α1 − 2aα2 ≤ 2ac+ ab

x = ( 3α1−a
3α2+2c

)
1

γ−1 if α1 ≥ a
2
and (3b+ 2c)α1 − 2aα2 ≥ 2ac+ ab

. (21)

The optimal tariff is determined by

t(x) = max
α
(α1x− 1

γ
(α2 + c)xγ − s(α)), (22)

where s(·) is given by (10) with δ1 and δ2 given above and C determined

from t(0) = 0. Therefore,

t(x) =


a
2
x− 1

γ
( c
2
+ b

4
)xγ, if x < ( 2a

3b+2c
)

1
γ−1

a
6
( 2a
3b+2c

)
1

γ−1 − 1
γ
( c
6
+ b

4
)( 2a
3b+2c

)
γ

γ−1 + a
3
x− c

3γ
xγ, if x ≥ ( 2a

3b+2c
)

1
γ−1

.

(23)

If γ = 2 and a = b = c = 1 this solution coincides with one obtained by

Laffont, Maskin, and Rochet (1987). Note that as γ →∞ the tariff becomes

piecewise affine

t(x) =


a
2
x if x < 1

a
6
+ a

3
x if x ≥ 1.

. (24)
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3 CALCULATINGA SYMMETRYGROUP

FOR A BOUNDARY PROBLEM

In the previous Section I used symmetry considerations to arrive at the

solution of a multidimensional screening problem. Arriving at the solution

involved going through the following steps. First, it is necessary to find an

invariance group of the problem. In the example above the group is given by

transformations (6). Second, find all independent invariants of the group. In

the above example they are ξ and ζ. Third, rewrite the problem in terms of

group invariants and attempt to solve it. If m > n it may happen that the

number of independent invariants of group is bigger than the number of the

instruments. In that case one the solution will depend only on n invariants.

One might try to guess from economic considerations which invariants will

enter into the solution. Such a guess, if correct, can considerably simplify the

calculations. However, while one can describe a regular procedure for the

first two steps, guessing the right set of invariants is largely an art.

In this Section I describe a regular procedure for finding a symmetry

group of the problem. Next Section deals with finding the invariants of the

group. I will give only the basic outline of the theory and will omit all proofs
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and lengthy derivations. For the details, see Cantwell (2002). First, let us

defining the notion of a group.

Definition 1 A set G together with a binary operation m : G × G → G is

called a group if the following properties hold:

a). (Associativity) m(g1,m(g2, g3)) = m(m(g1, g2), g3) ∀g1, g2, g3 ∈ G

b). (Identity) ∃e ∈ G : m(g, e) = g ∀g ∈ G

c). (Inverse) ∀g ∈ G ∃eg ∈ G : m(g, eg) = e. eg ≡ g−1.

Operationm(·, ·) is usually called multiplication and denoted by ·, som(g1, g2) =

g1 · g2, e is called the identity element and eg ≡ g−1 is called the inverse of g

(it is straightforward to prove the identity element is unique and that each

element has a unique inverse).

Definition 2 Let (G,m) be a group and let H ⊂ G. If (H,m) is a group

on its own write it is called a subgroup of (G,m).

To check that (H,m) is a subgroup of (G,m) one has to verify that

m(h1, h2) ∈ H for any h1, h2 ∈ H. If there is no confusion about operation

m one usually refers to group (G,m) simply as group G.

Intuitively, Lie group consists of elements which can be represented as

values of an analytical function of some set of real variables. In this paper

we will be interested only in the so-called one parametric Lie groups.
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Definition 3 Let Ξ ⊂ Rm be an open set and τ ∈ R. Assume that function

F : Rm×R→ Ξ is infinitely differentiable in α and analytic in τ . Consider

set G of coordinate transformations

gτ : {α = F (eα, τ)}. (25)

with together with a binary operation m defined by

m(gτ1 , gτ2) : {α = F (F (eα, τ 1), τ 2)}. (26)

If (G,m) is a group it is called a one-parametric Lie group. Parameter τ is

usually chose in such a way that g0 = e.

Clearly, a set that contains one element, call it e, together with m :

G×G→ G defined bym(e, e) = e is a group. We will call such group trivial.

A group with more than one element is called non-trivial.

Proposition 1 Let (G,m) be a group and (H1,m) and (H2,m) its subgroups.

Let H = H1 ∩H2. Then (H,m) is a subgroup of (G,m). Moreover, it is a

subgroup of (H1,m) and (H2,m).

Again, if there is no confusion about the nature of the group multiplica-

tion, we will simply phrase Proposition 1 as: An intersection of two subgroups
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is a subgroup.

The proof of this proposition is trivial and is omitted. I will use it below

to construct the symmetry group for a system of partial differential equations

(PDEs). The link between a linear multidimensional screening problem and a

boundary value problem for a system of PDEs was established by Rochet and

Chone (1998) and Basov (2001) (see, also Basov (2002) for the generalization

of the results for the non-linear case). Even if the screening problem is linear

the resulting system of partial differential equation will typically be non-

linear (recall the example in the previous Section). No general technique

for solving the boundary value problem for a system of nonlinear PDEs is

available. However, if the exists a non-trivial group of transformation, which

covers both dependent and independent variables, and the parameters of the

model (in the previous example the parameters are a, b, and c) that leaves

the boundary problem invariant, than this often can be used to arrive at the

explicit solution.

The group of a PDE can be calculated in a systematic way. I will restrict

attention to the first and second order PDEs, since these arise in screening
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problems. Consider a PDE:

Φ(α, u,∇u,D2u) = 0, (27)

where α ∈ Rm, u : Rm → R is twice continuously differentiable, ∇u is

gradient of u, D2u is the symmetric tensor of its second derivatives and

Φ : Rm2/2+5m/2+1 → R is a continuously differentiable function, and trans-

formation of the independent and dependent variables:


eαi = Fi(α, u; τ)

eu = G(α, u; τ)

, (28)

where functions Fi and G are infinitely differentiable in α and u and analytic

in τ , and Fi(α, u; 0) = αi, G(α, u; 0) = u. Let us define


θj = ∂F

∂τ
(α, u; 0)

χ = ∂G
∂τ
(α, u; 0)

. (29)

Then one can write up to O(τ) terms:
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eαi = αi + τθi(α, u)

eu = u+ τχ(α, u)

. (30)

Expression (30) is known as the infinitesimal form of (28).

Note that the transformations (28) form a one-parametric Lie group (rep-

resentation (28) is called a finite form) if we define product of two transfor-

mations to be their composition, that is define m by (26).

Definition 4 A subgroup of group (28) which leaves equation (27) invariant

is called its symmetry group.

To calculate the symmetry group of equation (27) one has first to extend

group (28) to cover the transformations of the first and second derivatives of

u. In doing so, one arrives at the so-called twice-extended group:



eαi = αi + τθi(α, u)

eu = u+ τχ(α, u)

eui = ui + τχ{i}(α, u,∇u)

euij = uij + τχ{ij}(α, u,∇u,D2u)

., (31)
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where 

ui = ∂u/∂αi, uij = ∂2u/∂αi∂αj

χ{i} = Diχ−
mX
j=1

ujDiθ
j

χ{ij} = Diχj −
mX
k=1

ujkDiθ
k

, (32)

and the total differentiation operator Di is defined by

Diω(α, u) =
∂ω

∂αi
+ ui

∂ω

∂u
. (33)

The invariance group of equation (27) can be found from the condition

mX
j=1

θj
∂Φ

∂αj
+ χ

∂Φ

∂u
+

mX
k=1

χ{i}
∂Φ

∂ui
+

mX
k=1

χ{ij}
∂Φ

∂uij
= 0, (34)

which should hold on the surface Φ(α, u,∇u,D2u) = 0. Carrying out ex-

plicit calculations will result is a system of partial differential equations for

functions (θi, χ). Since we have to find a symmetry group, we will be usually

interested in a particular finite parametric set of solutions to the system.

Cantwell (2002) contains a software that can deal with the problem. In

Section 5 we will illustrate this approach on some examples.
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If one has to deal with the system of PDEs

Φi(α, u,∇u,D2u) = 0, i = 1, .., p (35)

the above technique can be used to calculate the symmetry groups Hi of each

of the equations. Then

H = ∩pi=1Hi (36)

will be the symmetry group of the system.

Note that since the solution to a system of PDEs is typically not unique

the fact that the system posses a symmetry group does not mean that each

solution will be invariant with respect to it. It will rather mean that the

transformations of the group will take a solution into a solution. If one

deals with a boundary value problem, the symmetry group of the equation

is typically not the symmetry group of the problem. This, however, can be

remedied if one allows transformations not only of the dependent and inde-

pendent variables, but also parameters of the model. One has to supplement

(29) with 
eai = Fi(α−i, ai, u)

ebi = Fi(α−i, bi, u)
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and modify (30) accordingly. If the boundary problem is invariant under this

extended group of transformations then, since the solution to the boundary

value problem is usually unique, it will possesses the symmetry of the prob-

lem, i. e. will depend on variables and parameters only through the invariants

of the symmetry group. In the next Section I will provide a regular method

to find the invariants of a group.

4 FINDING THE INVARIANTS OF A LIE

GROUP

Consider a one-parametric Lie group of transformations given by (28),

whose infinitesimal form is given by (30). The main idea behind calculating

the invariance group is to calculate its infinitesimal form and then to integrate

to obtain the finite form. I will not try to justify this approach here. An

interested reader should see Cantwell (2002).

Definition 5 A continuously differentiable function Υ : Rm2/2+5m/2+1 → R

is called an invariant of group (28) if ∀τ > 0

Υ(eα, eu, f∇u, gD2u) = Υ(α, u,∇u,D2u). (37)
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Here f∇u and gD2u are calculated using twice extended group (31). Expres-

sion on the left hand side of (37) can be viewed as a function of the group

parameter τ and the invariance condition can be read to say that it does not

depend on τ , therefore

dΥ

dτ
= 0 (38)

or, taking the full derivative of (37) and using 31)

mX
j=1

θj
∂Υ

∂αj
+ χ

∂Υ

∂u
+

mX
k=1

χ{i}
∂Υ

∂ui
+

mX
k=1

χ{ij}
∂Υ

∂uij
= 0. (39)

If the transformation affects not only the coordinates α but also vectors of

parameters a and b (as in Example 1), they should be treated as additional

arguments in Υ. Note that (39) is a linear homogenous partial differential

equation. Often such an equation can be solved explicitly. We see that the

problem of finding the invariants of a group is easier than finding the sym-

metry group. However, while for the last problem we usually are interested

in finding a solution, for this problem we are usually interested in finding all

independent invariants.

Consider an important case when χ = 0 (pure coordinate transformation)

and suppose we are interested in finding and invariant a function of α that
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is invariant with respect to (30). Then (39) reduces to

mX
j=1

θj
∂Υ

∂αj
= 0. (40)

This is the case that arises in the screening applications. The role of Υ is

played by the consumer surplus function.

5 APPLICATIONS OF THE DEVELOPED

TECHNIQUE

In this Section I give examples of applications of the developed technique.

Example 1 (revisited). Let us start with calculating the symmetry group

of boundary problem (6). First, consider the first equation of the system

s2 +
1

γ
sγ1 = 0. (41)

Our objective is to calculate pure coordinate transformations (χ = 0) that

leave equation (41) invariant. The invariance equation (34) for this case takes

the form:

χ{1}s
γ−1
1 + χ{2} = 0, (42)
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where 
χ{1} = −s1θ11 − s2θ

2
1,

χ{2} = −s1θ12 − s2θ
2
2

. (43)

Substituting (43) into (42) and taking into account (41) one obtains:

(θ11 −
1

γ
θ22)s

γ
1 −

1

γ
s2γ−11 θ21 + s1θ

1
2 = 0. (44)

Since (44) should equal to zero identically for any function s1 for which

(39) has a solution coefficients before different powers of s1 should vanish

simultaneously. Therefore,


θ11 − 1

γ
θ22 = 0

θ21 = 0

θ12 = 0

. (45)

The last two equations of system (45) imply that θi depends only on αi. Now,

since θ11 depends only on α1, while θ
2
2 depends only on α2, the first of the

equation of system (45) implies that both of these derivatives are constant
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and finally the solution is given by:


θ1 = A(α1 − α∗1)

θ2 = Aγ(α1 − α∗2)
, (46)

where A, α∗1, and α
∗
2 are arbitrary constants. The finite form of the symmetry

group of equation (41) has the form


fα1 = α∗1 + (α1 − α∗1) exp(Aτ)

fα2 = α∗2 + (α2 − α∗2) exp(Aγτ)

es = s

. (47)

Introducing β by

β = exp(Aτ) (48)

and putting α∗1 = α∗2 = 0 one can recognize the coordinate transformation

(7). Now it is straightforward to check that in order for the second equation

of system (6) and the boundary conditions to be invariant , function µ and

parameters a, b, and c should transform according to (7).

So far, we have established that the boundary problem (6) is invariant

with respect to transformations (7). Since these transformations leave the
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surplus function unchanged (es = s), it should be under (7). To find the most

general form of such an invariant, consider equation (39), where a, b, c are

treated as additional coordinates. Therefore,

α1
∂s

∂α1
+ γα2

∂s

∂α2
+ a

∂s

∂a
+ γb

∂s

∂b
+ γc

∂s

∂c
= 0. (49)

To find the general solution start with writing the system of characteristics:

dα1
α1

=
dα2
γα2

=
da

a
=

db

γb
=

dc

γc
=

ds

0
. (50)

Five independent first integrals of system (50) are



b/c = C1

b/aγ = C2

(α1 − δ1(b/c, b/a
γ))γ/(α2 − δ2(b/c, b/a

γ)) = C3

(α2 − δ2(b/c, b/a
γ))/aγ = C4

s = C5

. (51)

Therefore, the general solution of equation (49) has a form

s = s(
(α1 − δ1(b/c, b/a

γ))γ

α2 − δ2(b/c, b/aγ)
,
α2 − δ2(b/c, b/a

γ)

aγ
,
b

c
,
b

aγ
). (52)
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Introducing ξ and ζ by (8) and omitting the parametric dependence one can

write s = s(ξ, ζ), which is the change of variables that lead to equation (9).

Example 2. Let the individual’s utility be given by:

u(α, x, t) = α1x1 + α2x2 +
√
α1α2x3 − t

and the cost of production is

c(x) =
1

2
(x21 + x22 + κx23).

The set of possible types is given by

Ω = {α ∈ R2+ : α1 + α2 < b}, (53)

which is an open convex set of (0, b) × (0, b). The distribution of types is

given by a density function:

f(α1, α2) =
exp(−α1 − α2)

1− (b+ 1) exp(−b) .

The value of the outside option is type independent and normalized to be
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zero. It can be shown (Basov, (2002)) that if the surplus function solves the

relaxed screening problem it should satisfy the following system

2X
i=1

(
∂(xi(α,∇s)− αi)

∂αi
− xi(α,∇s) + αi) = 1 (54)


2X

i=1

(∂(xi(α,∇s)−αi)
∂αi

− xi(α,∇s) + αi) = 1

2X
i=1

xi(α,∇s) = b for α1 + α2 = b

, (55)

where

x1(α,∇s) =
α1((4κα2 + α1)s1 − α2s2)

α21 + α22 + 4κα1α2

x2(α,∇s) =
α2((4κα1 + α2)s2 − α1s1)

α21 + α22 + 4κα1α2
.

Calculating the symmetry group of the system (54) may seem a daunting

task. Notice, however, that this group should take the boundary α1+α2 = b

into itself. The most general transformation that does it has a form


fα1 = α1 − τθ(α)

fα2 = α2 + τθ(α)

. (56)
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Surplus function invariant with respect to transformations (56) solves

θ
∂s

∂α1
− θ

∂s

∂α2
= 0. (57)

Assuming θ 6= 0 one finds

s = ϕ(α1 + α2), (58)

where ϕ is arbitrary differentiable function. Substituting (58) into (54) one

can see that the system has a solution of this form if and only if κ = 1/2. In

this case the solution is given by



ϕ(z) = z2

2
− z − ln z +

zZ
1

exp(t−b)
t

dt+ C

C + ϕ(z∗) = 0

ϕ0(z∗) = 0.

(59)

Using envelope conditions (5) one can find the allocation


x1 = α1(1− α1+α2+1

(α1+α2)2
)

x2 = α2(1− α1+α2+1
(α1+α2)2

)

x3 = 2
√
α1α2(1− α1+α2+1

(α1+α2)2
)

. (60)
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Note that for κ = 1/2 the optimal allocation can be found using two other

techniques developed by Armstrong (1996): using integration by rays and

showing that the optimal tariff is cost based (see, Basov (2002)). Basov

(2002) also showed that allocation (60) is implementable.

For κ 6= 1/2 the solution cannot be found in the form (58), which implies

that θ = 0 and the symmetry group of the problem (54) is trivial. In this

case the only way to solve system (54) is by numerical integration. Knowing

solution (60) is, however, useful even in this case, since implementability of

(60) implies that the numerical solution for (54) is also implementable for κ

sufficiently close to 1/2.1

6 DISCUSSION AND CONCLUSIONS

In this paper I described group theoretic methods that can be used for

analyzing the boundary problems, which arise when the Hamiltonian method

is applied to solve the relaxed problem for the multidimensional screening

problem. This technique can provide some useful insights into the structure

of solutions and some times may help to arrive at particular solutions.

1See Basov (2002) for the implementability condition for nonlinear problems and its
economic discussion.
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In this paper I dealt mainly with the relaxed problem (though the explicit

solutions obtained in both examples are implementable). It is well known

(see, Carlier (2002) and Basov (2002)) that the implementability constraint

can be formulated as a generalized convexity condition for surplus. There

exists now simple characterization of the set of generalized convex functions

for arbitrary utility. One might, however, hope to obtain such a characteri-

zation for a class of generalized convex functions symmetric with respect to

a particular group. This, if achieved, can allow to characterize the solution

of the complete problem in a closed form.
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