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Abstract

Poskitt and Skeels (2005) provide a new approximation to the sampling distribu-
tion of the IV estimator in a simultaneous equations model, the approximation is
appropriate when the concentration parameter associated with the reduced form
model is small. We present approximations to the sampling distributions of vari-
ous functions of the IV estimator based upon small-concentration asymptotics, and
investigate hypothesis testing procedures and confidence region construction using
these approximations. We explore the relationship between our work and the K
statistic of Kleibergen (2002) and demonstrate that our results can be used to ex-
plain the sampling behaviour of the K statistic in simultaneous equations models
where identification is weak.

Key words: simultaneous equations model, IV estimator, weak identification,
weak instruments, small-concentration asymptotics
JEL codes: C10, C12, C13, C30.

1 Introduction

In a recent contribution to the literature on instrumental variables (IV) esti-
mation Poskitt and Skeels (2005) present a new approximation to the exact
sampling distribution of the IV estimator of the coefficients on the endogenous

? Preliminary and not to be quoted without permission. We would like to thank
Murray Smith and Giovanni Forchini for helpful comments.
∗ Corresponding author.

Email address: Chris.Skeels@unimelb.edu.au (C.L. Skeels).
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regressors in a single equation from a linear system of simultaneous equa-
tions. More specifically, they examine the properties of the two-stage least
squares estimator (2SLS) and show that when the concentration parameter
associated with the reduced form model is small then the distributions of cer-
tain functions of the IV estimator can be closely approximated by various
t-distributions. These distributions are different, in general, from those that
have previously appeared in the literature (see, for example, Phillips, 1980,
p. 870), and they are applicable under circumstances that differ significantly
from those for which the classical asymptotic normal approximation and Edge-
worth type expansions of the distribution of the IV estimator, as described in
Sargan and Mikhail (1971) and Anderson and Sawa (1973, 1979), are designed.
The basic aim of this paper is to examine the properties of hypothesis testing
procedures and confidence regions constructed using the approximation.

Asymptotic methods often yield simple approximations in situations where
the evaluation of exact analytic solutions would be difficult or nigh impos-
sible. Unfortunately such approximations can sometimes be poor. For exam-
ple, large sample approximations to the sampling properties of 2SLS have
been shown to perform poorly in the face of weak identification; see the sur-
veys of Stock, Wright, and Yogo (2002) and Hahn and Hausman (2003). This
has motivated the development of alternative approaches, such as the many-
instrument asymptotics considered in Bekker (1994), local-to-zero asymptotics
as investigated in Staiger and Stock (1997), and the many-weak-instruments
asymptotics considered by Chao and Swanson (2005b,a) and Stock and Yogo
(2005). No one of these alternative approaches is more correct than any other,
they differ essentially in the structure of the hypothetical sequence in which
they nest the problem of interest. The only criterion on which they might be
compared is the usefulness of the statistical procedures that they ultimately
yield.

The small-concentration asymptotics of Poskitt and Skeels (2005) indexes the
nesting sequence of problems by an ever diminishing value of the concentration
parameter. The resulting approximations have very simple functional forms
and have been shown to be extremely accurate when, inter alia, identification
is weak. 1 In this paper we explore inference based upon small-concentration
asymptotic approximations. Our results provide insight into the sampling be-

1 One interesting feature of the approximations of Poskitt and Skeels (2005) is their
ability to capture many of the stylized facts that have been obtained under the
different asymptotic paradigms that have been used to analyze weak identification.
They provide a framework that goes some way towards unifying the qualitatively
similar but technically distinct results of Staiger and Stock (1997), Wang and Zivot
(1998), Zivot, Startz, and Nelson (1998) and Zivot, Startz, and Nelson (2005), on the
one hand, and Phillips (1989), Nelson and Startz (1990) and Choi and Phillips (1992)
on the other. Similarly, results constructed using the many-instrument asymptotics
of Bekker (1994) can also be obtained as a special case.
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haviour of some existing techniques that have been developed to deal with
this special case.

The structure of the remainder of the paper is as follows. In the next section
we outline the model and present our basic notation and assumptions. Section
3 presents various approximations to the sampling distribution of functions of
the IV estimator based on the application of small-concentration asymptotics.
Section 4 develops appropriate inferential procedures using the approximations
given in Section 3, both hypothesis testing and confidence region construction
are addressed. In Section 5 we discuss the practical implemetation of our
results and, in particular, relate them to the K statistic of Kleibergen (2002).
We also provide some examples which illustrate that our analysis goes some
way towards explaining the sampling characteristics of K, and other statistics,
in the presence of weak instruments. Section 6 presents a brief conclusion.
Finally, Appendix A establishes a non-central density referred to in Theorem
3 and all other proofs are presented in Appendix B.

2 The Model, Notation and Assumptions

Consider the classical structural equation model

y = Yβ + Xγ + u (1)

where the endogenous matrix variables y and Y are N ×1 and N ×n, respec-
tively, the matrix of exogenous variables X is N × k, and u denotes a N × 1
vector of uncorrelated stochastic disturbances with zero mean and variance σ2

u.
The vectors of structural coefficients β and γ are n×1 and k×1, respectively.

If we define [X Z] to be the N ×K instrument set, where Z denotes a N × ν
matrix of instruments — exogenous regressors not appearing in equation (1)
— and K = k+ ν, then we are interested in making inferences about β using
the IV estimator

β̂ = (Y′PY)−1Y′Py, (2)

where P = P[X Z] − PX = RX − R[X Z]. For any N × k matrix X of full
column rank PX denotes the idempotent, symmetric matrix X(X′X)−1X′ and
RX = IN −PX. The matrix PX is of course the N ×N (prediction) operator
of rank k that projects on to the space spanned by the columns of X and
RX is the associated (residual) operator of rank N − k which projects on
to the orthogonal complement of that space. We can assume, without loss
of generality, that the exogenous regressors and the instruments contain no
redundancies, so that [X Z] has full column rank, ρ{[X Z]} = K almost surely.
In this case

P = RXZ(Z′RXZ)−1Z′RX
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is a N ×N matrix of rank ν ≥ n.

The corresponding reduced form model is

[y Y] = [X Z]

π1 Π1

π2 Π2

+ [v V] . (3)

Here the rows of the N×(n+1) matrix [v V] are uncorrelated random vectors
with zero mean and common (n+ 1)× (n+ 1) covariance matrix

Σ =

ω2 ω′

ω Ω

 , (4)

ω2 scalar, where [v V] is partitioned conformably with [y Y]. We assume that
0 < Σ < ∞, meaning that the smallest and largest characteristic roots of Σ
are positive but bounded, viz. 0 < λmin(Σ) ≤ λmax(Σ) <∞. The components
of the reduced form coefficient matrix Π — namely π1, Π1, π2 and Π2 — are
of dimension k × 1, k × n, ν × 1 and ν × n, respectively.

We will assume that sufficient regularity can be imposed to ensure that the ma-
trix S = [y Y]′P[y Y] has a non-central Wishart distribution with ν degrees
of freedom, covariance matrix Σ and non-centrality parameter Σ−1/2ΛΣ−1/2,
where Σ1/2 is a symmetric matrix square root of Σ and

Λ = [π2 Π2]
′Z′RXZ[π2 Π2] ,

which shall be denoted S ∼ Wn+1(ν,Σ,Σ
−1/2ΛΣ−1/2). 2 We will also assume

that the usual compatibility conditions hold; namely

π1 −Π1β = γ , π2 = Π2β , σ2
u = σ2

u,β ≡ [1,−β′]Σ[1,−β′]′ . (5)

It follows that

Λ = [β, In]′Π′
2Z

′RXZΠ2[β, In] =

δ2 δ′

δ ∆

 ,
where the partition of Λ occurs after the first row and column, as in (4).

2 Clearly S will be non-central Wishart if vec[v V] ∼ N(0,Σ ⊗ IN ), for then
vec[y Y] ∼ N(vec([X Z]Π),Σ ⊗ IN ) and the result follows. It will also apply if
vec[v V] has a distribution from the elliptically symmetric family. We might also
expect S to be approximately non-central Wishart provided that the rows of [y Y]
satisfy an appropriate mixing condition, in which case the arguments underlying
subsequent developments will still apply, with perhaps minor modifications.
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Exploiting properties of the Wishart distribution, in conjunction with the
compatibility conditions (5), Poskitt and Skeels (2005) show that if ν−1‖∆‖
approaches zero then β̂ converges in probability to a random vector possessing
an n-variate t-distribution with ν−n+1 degrees of freedom, location parameter

µβ = β + (Ω + ν−1∆)−1(ω −Ωβ) (6)

and dispersion parameter

Dβ =
Ω + ν−1∆

σ2
u,β − (ω −Ωβ)′(Ω + ν−1∆)−1(ω −Ωβ)

, (7)

Here, and in what follows, we use ‖A‖ =
√

tr{A′A} to denote the Euclidean
norm of a matrix A. We will also use the tilde symbol ∼ underset with an
‘a’ to denote convergence in probability to a random variable with the stated
distribution. Thus we shall write

β̂ ∼
a

tn(ν − n+ 1,µβ,Dβ) .

Note that the distribution tn(ν − n+ 1,µβ,Dβ) has mean vector µβ and, for
ν > n + 1, variance-covariance matrix [(ν − n− 1)Dβ]−1, where the notation
is designed to highlight the dependence of both the mean vector and covari-
ance matrix on β. If one thinks of ν as being fixed this result can be viewed
as providing a small concentration asymptotic approximation since it is ap-
plicable as ν−1‖∆‖ → 0, as compared to the more conventional asymptotic
normal approximation and Edgeworth type expansions which require that the
concentration parameter ∆ be large, see Rothenberg (1984). If one allows for
the possibility of ν tending to infinity then this result can be used to demon-
strate various aspects of many-instrument asymptotics; see Poskitt and Skeels
(2005) for further discussion of this point.

3 Small Concentration Asymptotic Results

Let us begin by stating a basic result from Poskitt and Skeels (2005) which
forms the foundation of subsequent developments.

Lemma 1 Suppose that S = [y Y]′P[y Y] ∼ Wn+1(ν,Σ,Σ
−1/2ΛΣ−1/2). Let

r̂ = {(ν − n+ 1)Dβ}1/2(β̂ − µβ) , (8)

where β̂, µβ and Dβ are as defined in equations (2), (6), and (7), respectively.
Then as ν−1‖∆‖ → 0 the vector r̂ converges in probability to a random variable

5



r, where the density function of r is given by

f(r) =
Γ
(

ν+1
2

)
[(ν − n+ 1)π]n/2Γ

(
ν−n+1

2

) [1 +
r′r

(ν − n+ 1)

]−(ν+1)/2

. (9)

Lemma 1 implies that β̂ has approximately an n-variate t distribution with
ν−n+1 degrees of freedom, location parameter µβ and dispersion parameter
Dβ. For the purposes of implementation in subsequent inferential applications
it proves useful to re-couch Lemma 1 in a different form.

Corollary 2 Under the same conditions as in Lemma 1, the quadratic form
(ν −n+ 1)Q(β)/n converges in distribution to Snedecor’s F distribution with
degrees of freedom n and ν − n+ 1 as ν−1‖∆‖ → 0, where

Q(β) = (β̂ − µβ)′Dβ(β̂ − µβ) ;

that is,

Q(β) ∼
a

nF{n, ν − n+ 1}
(ν − n+ 1)

.

In the Appendix we establish both Corollary 2 and the following extension to
it.

Theorem 3 Under the same conditions as in Lemma 1, the quadratic form

Q(β0) = (β̂ − µβ)′Dβ(β̂ − µβ)
∣∣∣
β=β0

∼
a

Ψ{n, ν − n+ 1, κ0}
(ν − n+ 1)q0

as ν−1‖∆‖ → 0, where Ψ denotes the distribution defined in Lemma A.1,

κ0 = (ν − n+ 1)(µβ − µβ0
)′Dβ(µβ − µβ0

)

and

q0 =

[
σ2

u,β − (ω −Ωβ)′(Ω + ν−1∆)−1(ω −Ωβ))
]
β=β0

σ2
u,β − (ω −Ωβ)′(Ω + ν−1∆)−1(ω −Ωβ)

.

The import of Theorem 3 is that it gives us the distribution of the quadratic
form when calculated at an arbitrary point β0 in the parameter space, rather
than when evaluated at the erstwhile true parameter point β.
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4 Inference

4.1 Hypothesis Testing

Consider testing the null hypothesis H0 : β = β0 against the alternative H1 :
β 6= β0. From either Theorem 3 or Corollary 2 it follows that an asymptotic
size α critical region for testing H0 against H1 is given by

CR =

{
β̂ : Q(β0) ≥

nF(1−α){n, ν − n+ 1}
(ν − n+ 1)

}

where F(1−α){n, ν−n+1} denotes the (1−α)100% percentile point of Snedecor’s
F distribution with n and ν − n + 1 degrees of freedom. We will therefore
consider the statistical properties of inferential procedures based upon the
quadratic form Q(β).

4.1.1 Behaviour Under the Null Hypothesis

Substituting the expressions for µβ and Dβ into Q(β) it is straightforward to
establish that the quadratic form equals the ratio of

(β̂ − β)′(Ωβ + ν−1∆)(β̂ − β)− 2(β̂ − β)′(ω −Ωβ)

+ (ω −Ωβ)′(Ω + ν−1∆)−1(ω −Ωβ) (10)

to

dβ = σ2
u,β − (ω −Ωβ)′(Ω + ν−1∆)−1(ω −Ωβ) . (11)

As ∆ approaches zero it is obvious that Ω+ν−1∆ approaches Ω and a little al-
gebra shows that the inverse (Ω+ν−1∆)−1 = Ω−1−ν−1Ω−1∆Ω−1+o(‖∆‖/ν).

Expanding and rearranging terms in (10) and (11), whilst making use of the
fact that

σ2
u,β = (ω −Ωβ)′Ω−1(ω −Ωβ) + ω2 − ω′Ω−1ω ,

we find that the numerator in (10) equals

(β̂ −Ω−1ω)′Ω(β̂ −Ω−1ω) + ν−1(β̂ − β)′∆(β̂ − β)

− ν−1(β −Ω−1ω)′∆(β −Ω−1ω) + o(‖∆‖/ν)

and that the denominator dβ equals

ω2 − ω′Ω−1ω + ν−1(β −Ω−1ω)′∆(β −Ω−1ω) + o(‖∆‖/ν) .
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It follows that

Q(β) =
Lβ − ν−1Qβ

σ2
u + ν−1Qβ

+ o(‖∆‖/ν)

where σ2
u = ω2 − ω′Ω−1ω, Qβ = (β −Ω−1ω)′∆(β −Ω−1ω) and

Lβ = (β̂ −Ω−1ω)′Ω(β̂ −Ω−1ω) + ν−1(β̂ − β)′∆(β̂ − β) .

Now, restricting attention to the null behaviour of Q(β), rearranging the in-
equality Q(β0) ≥ nF(1−α){n, ν − n + 1}/(ν − n + 1) we can see that the set
{β : Q(β0) ≥ nF(1−α){n, ν − n+ 1}/(ν − n+ 1)} is equivalent to {β : Qβ0 ≤
q(1−α)} where

q(1−α) =

[
(ν − n+ 1)Lβ0 − nσ2

uF(1−α){n, ν − n+ 1}
nF(1−α){n, ν − n+ 1}+ (ν − n+ 1)

]
ν .

Thus, as ‖∆‖ → 0, Q(β0) will fall in the critical region for all β ∈ {β : Qβ0 ≤
q(1−α)}, no matter how small α may be. Hence we find that a test based on CR
will ultimately lead to the rejection of any hypothesized value β0 that lies in
the interior of {β : Qβ0 ≤ q(1−α)}, the elliptical region in Rn centred at Ω−1ω,
with principle axes of length 2(q(1−α)/λmax(∆))1/2, . . . , 2(q(1−α)/λmin(∆))1/2.

Such behaviour is not unreasonable. Unless β = Ω−1ω, so that OLS is un-
biased for β, we know that values of β that lie in a neighbourhood of Ω−1ω
are unlikely to be sensible candidates for the true value, and only values of
β that lie in a region of Rn that is outside a neighbourhood of Ω−1ω should,
perhaps, be considered acceptable. If β = Ω−1ω, Qβ0 = 0 and CR reduces to
a somewhat more familiar F-type rejection region:

(β̂ − β0)
′(Ω + ν−1∆)(β̂ − β0)/n

σ2
u/(ν − n+ 1)

≥ F(1−α){n, ν − n+ 1} .

4.1.2 Power Properties

We have seen that, for given values of the endogenous variables [y,Y] and the
exogenous variables [X,Z], any hypothesized value β0 that lies in the region
in the parameter space given by {β : Qβ ≤ q(1−α)} will be rejected by tests
based on CR. Although β is not itself random {β : Qβ ≤ q(1−α)} is, of course, a
realization of a random set, the randomness being a function of the distribution
of the statistic β̂ from which it is derived. Likewise, the probability that CR
leads to a rejection will also be governed by the distributional properties of β̂.
In particular, we are interested in the impact that the distribution of β̂ has
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on the expected value of the indicator function φCR. 3

Lemma 4 Let

φCR =

1, if β̂ ∈ CR,

0, otherwise,

so that πCR(β) = E[φCR] denotes the power function of the test CR. Then

lim
ν−1‖∆‖→0

πCR(β) = 1−Ψ{%0;n, ν − n+ 1, κ0}

where q0 and κ0 are as defined in Theorem 3, and %0 = nq0F(1−α){n, ν−n+1}.

It follows from Lemma 4 that CR defines a test procedure with a power func-
tion that is increasing in κ0, but is inversely related to the magnitude of q0.
This suggests that πCR(β) could be subject to countervailing forces as the
magnitudes of κ0 ≥ 0 and q0 ≥ 0 change as functions of β.

To gain additional insight into the power of CR let us consider the behaviour
of the non-centrality parameter κ0. Substituting the expression

µβ − µβ0
=
[
I− (Ω + ν−1∆)−1Ω

]
(β − β0)

into κ0, and using the second-order expansion

(Ω + ν−1∆)−1 = Ω−1 − ν−1Ω−1∆Ω−1 + ν−2Ω−1∆Ω−1∆Ω−1 + o(ν−2‖∆‖2) ,

we find that

κ0 = (ν − n+ 1)
(β − β0)

′∆Ω−1∆(β − β0)

ν2dβ

+ o(ν−2‖∆(β − β0)‖2)

where dβ is defined in equation (11). The denominator dβ converges to a
constant as ‖∆‖ → 0 and the size of κ0 is clearly controlled by the magnitude
of ν−2‖∆(β − β0)‖2. Since ∆ is presumed to be small, it follows that κ0 can
still be local to zero even if ‖β − β0‖ is itself quite large.

Similarly, the difference dβ − dβ0 equals

(ω −Ωβ)′
(
ν−1Ω−1∆Ω−1 − ν−2Ω−1∆Ω−1∆Ω−1

)
(ω −Ωβ)

− (ω −Ωβ0)
′
(
ν−1Ω−1∆Ω−1 − ν−2Ω−1∆Ω−1∆Ω−1

)
(ω −Ωβ0)

plus terms o(ν−2‖∆‖2). In general it is not possible to sign this difference,
implying that q0 = dβ0

/dβ can be greater than, equal to, or less than one.

3 Strictly speaking, our notation should indicate that φCR is a function of the data
[y,Y] and [X,Z], but this dependence is omitted for simplicity.
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Hence changes in q0 can either amplify or attenuate any changes in πCR(β)
induced by changes in κ0.

The upshot of these observations is that although CR may be, in the terminol-
ogy of Wald (1941), a locally stringent test in some directions in the parameter
space, it is possible for CR to exhibit low power even when the true value β
deviates from β0 by a considerable margin.

4.2 Confidence Region Construction

Thinking of a confidence region as being equivalent to those values of β that
are consistent with the data indicates that confidence regions with the correct
asymptotic coverage probability can be constructed by inverting the critical
region CR. 4 Following the previous development and applying this idea leads
us to the confidence region

CI =

{
β : Q(β) ≤

nF(1−α){n, ν − n+ 1}
(ν − n+ 1)

}
.

The set CI determines a (1−α)100% confidence region for β, but unlike con-
fidence regions constructed in many standard situations, the region given by
CI does not equate to the interior of an ellipsoid in Rn because of the nonlin-
ear manner in which the parameter β enters into both the location parameter
µβ and the dispersion parameter Dβ. Thus, although D

1/2
β (β̂ − µβ) has a

spherically symmetric distribution, the confidence sets derived from Q(β) are
not conventional Wald-type regions. Indeed, it follows from our previous argu-
ments that CI will lie in the complement of {β : Qβ ≤ q(1−α)} and hence the
region CI need not be either convex or connected. Nor need CI be bounded.

To verify the latter point suppose that

Lβ ≤ (σ2
u + ν−1Qβ)

nF(1−α){n, ν − n+ 1}
(ν − n+ 1)

.

so that β ∈ CI . Tedious rearrangement of the inequality Qβ ≥ q(1−α) yields

(1− ε)β′∆β + 2β′∆(εβ̂ −Ω−1ω) ≥ terms not involving β,

where 0 < ε = (ν − n + 1)/[(ν − n + 1) + nF(1−α){n, ν − n + 1}] < 1. But
if β satisfies this latter condition then so too does ψβ for any ψ > 1. We
have thus exhibited a subset of CI in which ‖β‖, and therefore the diameter

4 The view point taken here was first espoused by Neyman (1937) and is now
commonly adopted.
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Fig. 1. Graphs of Q(β): weakly identified case. The asterisk denotes β0, the plus
sign β̂, the circle (Y′Y)−1Y′y and the square Ω−1ω. The black dotted contour
represents the level curve at 2F(0.95){2, 1} = 399. 0.

of the subset, is unbounded. Hence inferential procedures based upon CI will
not suffer from problems described by Dufour (1997). Theorem 3.3 of Dufour
(1997) is satisfied and confidence regions for β constructed using Q(β) would
be valid.

The phenomena described in the preceding paragraphs are clearly illustrated in
Figure 1, which depicts the surface generated by the Q(β) in a neighbourhood
of the ordinary least squares value (Y′Y)−1Y′y. The figure is based on a
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hypothetical model in which n = ν = 2, β = 12(1, 1)′,

Σ = 12


1 −0.5 0.5

−0.5 1 0

0.5 0 1

 and ∆ =

0. 0678 0. 0508

0. 0508 0. 0520

 .

This gives ‖∆‖ = 0.1114. The 95% confidence region CI consists of all those
β’s that lie outside the area enclosed by the contour corresponding to the
critical value 2F(0.95){2, 1} = 399. 0. Those β’s that lie inside the region en-
closed by the contour will be rejected by CR at the 5% level of significance.
Note that the least squares value and Ω−1ω lie roughly at the centre of this
region. Because the model is weakly identified the conditional regression of y
on Y implicit in the reduced form, namely Ω−1ω, is close to the ordinary least
squares estimate. The latter estimate of β is known to be inconsistent however.
And so it is natural to reject those values of β that lie in a neighbourhood of
these two, almost coincident, points.

Note, in passing, that q(1−α) decreases monotonically with α, so that as the
level of significance falls the volume of {β : Qβ ≥ q(1−α)} increases (ceteris
paribus) and the set of values of β that are potentially consistent with the
data increases. In the limit, of course, the model becomes totally unidentified
as the concentration parameter approaches zero and β cannot be determined
from the data. In this case the volume of {β : Qβ ≤ q(1−α)},

(πq(1−α))
n/2

Γ
(

n+1
2

)
(det∆)1/2

,

will become unbounded as ‖∆‖ → 0 and ultimately all values of β will be
deemed unacceptable, whatever the value of α. This type of behaviour is seen
in Figure 2, where the contours of Q(β) are presented for the same hypo-
thetical model as before, except that a redundant instrument has been added,
implying that the model is partially unidentified. Virtually all β being con-
sidered are now rejected. Following Dufour (1997) we might interpret such an
occurrence as providing evidence that the model is misspecified.

5 Practical Implementation

In virtual all conceivable circumstances the construction of CR and CI will
not be feasible because Ω and ∆ will be unknown. Consequently we need
to adapt our previous arguments to allow for this fact. The following result
provides a parallel to Lemma 1 and Corollary 2 that provides a step in this
direction.
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Fig. 2. Contour plot of Q(β): partially unidentified case. The asterisk denotes β0,
the plus sign β̂, the circle (Y′Y)−1Y′y and the square Ω−1ω. The black dotted
contour represents the level curve at F(0.95){2, 2} = 19. 0.

Theorem 5 Let ỹβ = y −Yβ and Ỹβ = XΠ1 + ZΠ2 + Ṽ, where

Ṽ = V − u(ω −Ωβ)′/σ2
u,β ,

and set

Ω̃β = Ω− (ω −Ωβ)(ω −Ωβ)′

σ2
u,β

.

Then the matrix [ỹβ Ỹβ]′P[ỹβ Ỹβ] has a non-central Wishart distribution
with ν degrees of freedom, covariance matrix

Σ̃ =

σ2
u,β 0′

0 Ω̃β


and non-centrality parameter

Λ̃ =

0 0′

0 ∆

 .
Furthermore, as ν−1‖∆‖ → 0,

β̃ =
(
Ỹ′

βPỸβ

)−1
Ỹ′

βPỹβ ∼
a

tn(ν − n+ 1,0, D̃β)

13



and

β̃
′
D̃ββ̃ ∼

a

nF{n, ν − n+ 1}
(ν − n+ 1)

,

where D̃β = (Ω̃β + ν−1∆)/σ2
u,β.

Note that a consequence of Theorem 5 is that the mean vector required to
construct our previous critical regions and confidence intervals, namely µβ,

has been mapped into zero. The dispersion parameter, however, D̃β in this
transformed space, is still unknown, as is the transformation itself.

As ν−1‖∆‖ → 0 we know from Theorem 1 of Poskitt and Skeels (2005) that the
marginal distribution of Ỹ′

βPỸβ can be approximated by Wn(ν, Ω̃β + ν−1∆).

Thus, for given β, a natural estimator of (Ω̃β + ν−1∆) would be ν−1Ỹ′
βPỸβ

if Σ were known. Of course, as Σ is unknown we still cannot construct Ỹβ.
However,

Σ̂ =
1

(N −K)
[y,Y]′(RX −RXZ(Z′RXZ)−1Z′RX)[y,Y] =

ω̂2 ω̂′

ω̂ Ω̂

 ,
provides a consistent estimator of Σ, whatever the values of Π2 and ∆, and
Σ̂ can clearly be used to provide “plug in” values for the nuisance parameters.
Replacing the unknown elements of

Φ =

1 −β′

0 In

Σ

 1 0′

−β In

 (12)

by

Φ̂ =

1 −β′

0 In

 Σ̂

 1 0′

−β In

 ,
gives us an empirical version of Ỹβ, namely

Ŷβ = Y − ỹβ(ω̂ − Ω̂β)/σ̂2
u,β , (13)

where σ̂2
u,β = [1,−β′]Σ̂[1,−β′]′. Substituting (13) for Ỹβ, and replacing Ω̃β +

ν−1∆ by ν−1Ŷ′
βPŶβ in the quadratic form β̃

′
D̃ββ̃ yields

1

ν

ỹ′βPŶβ

(
Ŷ′

βPŶβ

)−1
Ŷ′

βPỹβ

σ̂2
u,β

=
1

ν
K(β) ,
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where K(β) denotes the K statistic of Kleibergen (2002).

Kleibergen (2002) shows that K(β) is asymptotically distributed as Chi-
squared with n degrees of freedom, χ2(n), as N →∞. Bekker and Kleibergen
(2003) determine bounds for the exact distribution of K(β) and suggest using
critical values from the F{n,N − K} distribution for the lower and, when
re-scaled by N/(N − k), upper bound exact critical values of K(β)/n. We
refer to Bekker and Kleibergen (2003) for more detailed particulars. The ar-
guments used in Bekker and Kleibergen (2003) depend upon an examination
of the properties of K(β) in the totally unidentified case. They show that if
ν → ∞ as N → ∞, such that ν/N → τ > 0, then (1 − ν/N)K(β) has an
asymptotic χ2(n) distribution. Note that a consequence of the small concen-
tration asymptotics that we have adopted here is that we have an alternative
finite sample approximation to the sampling distribution of K(β) based on
the F distribution which, as ν → ∞, yields the same limiting chi-squared
distribution as that originally obtained by Kleibergen (2002). The benefit of
using our small concentration asymptotic approach is that it provides insights
into the power properties of K(β), when identification is weak, that are not
available with existing results. This latter feature is well illustrated by the
following example taken from Kleibergen (2002).

Consider a simple model in which

y = Yβ + u

Y = ZΠ2 + V
(14)

with n = 1, N = 100, Z ∼ N(0, Iν ⊗ IN), where ν = 5, Π2 = (0.1, 0, 0, 0, 0)′,
and [u V] ∼ N (0,Φ⊗ IN), where

Φ =

 1 0.99

0.99 1


is the matrix defined in (12). The value of Π2 implies that four superfluous
instruments are being used and the remaining instrument is weak. The in-
struments are held fixed across the replications and the implied value of ∆ is
0.9063. The correlation of 0.99 in the distribution of [u V] implies that y and
Y are strongly endogenous.

Figures 3a and 4a plot simulated power curves for Q(β), K(β), and the LIML
statistic of Bekker (1994) (denoted BLIML hereafter) which also has a χ2(n)
asymptotic distribution. These figures were generated on the basis of 10, 000
replications of (14). For Q(β) critical regions were constructed using the small
concentration F approximation, whereas for K(β) and BLIML they were de-
termined on the basis of their asymptotic χ2(n) approximations. In Figure 3a
the null hypothesis is H0 : β = 0 and in Figure 4a it is H0 : β = 5. In both
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(a) Simulated Power Curves: Q(β) (solid), K(β)
(dash-dot), BLIML (dash), 5% line (dotted)
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(b) Values 1 + κ0 (dash-dot), 1 + q0 (dashed) and
1 + 1/q0 (solid)

Fig. 3. Testing H0 : β = 0 against H1 : β 6= 0

cases we are testingH0 against the two-sided alternative at the 5% significance
level.

The key features of these figures are:

(1) Although Q(β) and K(β) exhibit the correct nominal size, they both
have very unusual looking power curves, with greatest power close to
the null hypotheses but poor power elsewhere. In particular, the power
functions are neither monotonically increasing functions of β − β0 nor
are they symmetric about the null value.
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(a) Simulated Power Curves: Q(β) (solid), K(β)
(dash-dot), BLIML (dash), 5% line (dotted)
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(b) Values 1 + κ0 (dash-dot), 1 + q0 (dashed) and
1 + 1/q0 (solid)

Fig. 4. Testing H0 : β = 5 against H1 : β 6= 5

(2) Although K(β) dominates Q(β) in terms of power, their power functions
have profiles that are not too dissimilar. In particular, they both have
greatest power at approximately β0 − 1.

(3) BLIML has very different properties to the other two. It has a much
more conventional looking power curve but, as previously observed by
Kleibergen (2002), at the expense of a serious size distortion. 5 Its power

5 It is worth noting that the chi-squared approximation for K(β) is a large N
approximation whereas that for BLIML is a large ν approximation. One might
imagine that for this particular experimental design, taken from Kleibergen (2002),
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curve is asymmetric and appears to have a minimum at the point where
the other tests have their maximum power.

(4) Both Q(β) and BLIML are biased tests, that is, there exist values of β
such that the probability of a Type II error exceeds 1− α.

An important difference between Q(β), on the one hand, and K(β) and
BLIML, on the other, is that the latter pair are asymptotically pivotal statis-
tics whereas the former is not because it depends on other, usually unknown,
nuisance parameters. Nevertheless, the behaviour of Q(β) is of interest be-
cause (i) it displays similar patterns to those of K(β) at values of β close to
β0 and (ii) because the expression for the small concentration power of Q(β),
which is presented in Lemma 4, obviously explains the behaviour of Q(β) ob-
served here. In particular, we recall the dependence of the power function on
the values of κ0 and q0. In the light of this we present in Figures 3b and 4b
graphs showing how κ0 and q0 vary with β.

From our previous arguments we know that the non-centrality parameter κ0

is strictly positive for all β 6= β0, and from Lemma 4 it follows that whenever
q0 ≤ 1 it will reinforce any reduction in the probability of a Type II error
brought about by increases in κ0. When q0 > 1, however, increases in q0
will lead to a reduction in power, other things being equal. We can therefore
anticipate that πCR(β) will vary inversely with q0 and in Figures 3b and 4b
we have therefore also shown the variation in 1/q0 as a function of β.

From these graphs it is clear that it is the variations in q0 that are critical in
determining the power characteristics of Q(β) rather than the variations in
κ0. Indeed, there is almost a one–to–one correspondence between the graphs of
1/q0 and the observed power function of Q(β). From Lemma 4 we can see that
the impact of q0 on %0 has greater influence on the value of Ψ{%0;n, ν−n+1, κ0}
than do changes in κ0, hence we will couch subsequent discussion in terms of q0
alone. Perhaps not too surprisingly, since we may view Kleibergen’s statistic as
a feasible version of our own in the transformed space, this correspondence also
carries over to K(β), albeit somewhat less strikingly. The rejection frequencies
of BLIML behave very differently from those of Q(β) and K(β), but again
they appear to be influenced directly by the value of q0 more strongly than
they do by the value of κ0.

We observed above that the power functions of all three tests considered ap-
pear to have turning points at approximately β0−1, which corresponds to the
minimum value of q0. The point β0 − 1 is readily shown to be an artefact of
the parameter choices of (14), although it demonstrates an interesting prop-
erty of Q(β), and seemingly also of K(β) and BLIML. It is a useful exercise

K(β) is deeper into its approximating sequence with N = 100 than is BLIML with
ν = 5, and so the chi-squared approximation might work better for the former than
it does the latter.
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to consider why q0 is minimized at about this value because it highlights an
important implication of the experimental design.

To begin, as defined in Theorem 3, for given values of Σ and ν−1∆ the ratio
q0 is a function of β and β0. However, in this experimental design

Σ =

1 β′

0 In

Φ

1 0′

β In

 , where Φ =

σ2
u,β σuV

σVu Ω

 (say) ,

is held fixed. Therefore Σ is itself implicitly a function of β for given Φ, so
that q0 is actually a function of β and β0, given ν−1∆ and Φ. It is useful to
re-express q0 as a function of β − β0 and β0. For given ν−1∆ and Φ, it is a
relatively simple matter to then show that q0 is minimized at the point where
β − β0 = −Ω−1σVu. In the current example, Ω = 1 and σVu = 0.99 and so,
rather than β0− 1, we see that the turning points are occurring at β0− 0.99.

If instead of choosing σVu = 0.99 we had chosen σVu = 0.55, for example, then
we see from Figure 5 that the turning points occur much closer to β0 = 5 than
they did in Figure 4. As with Figure 4, Q(β) and K(β) attain their maximum
power at values of β in the closed interval defined by those values of β for
which q0 ≤ 1; namely, the interval corresponding to the intersections of the
curves ln(1 + q0) and ln(1 + 1/q0) in Figures 4b and 5b, respectively. 6 For
σVu = 0.55 this interval is much shorter than it was previously and the overall
effect of this is that both Q(β) and K(β) have no useful power. The BLIML
statistic, on the other hand, tends to have useful power for those values of β for
which q0 > 1, and so this narrowing of the interval corresponds to an increase
in power for BLIML. But BLIML still suffers from a significant size distortion,
in contrast to both Q(β) and K(β) which display good size properties.

Recall that a basic assumption underlying our theoretical development is that
[y Y]′P[y Y] ∼ Wn+1(ν,Σ,Σ

−1/2ΛΣ−1/2) where the parameters of the non–
central Wishart distribution are determined from the regression coefficients
and residual variance-covariance matrix of the reduced form in (3). Under this
scenario the properties of the reduced form determine the underlying statis-
tical features that characterize the observed behaviour of the data generating
mechanism. The statistical properties of the structural equation, which repre-
sents an externally imposed theoretical economic construct, are derived from
the reduced form via the compatability conditions in (5). This suggests that
the experimental design of Kleibergen (2002), in which Φ and ν−1∆ are fixed
and β, and implicitly Σ, are allowed to vary, is not in direct accord with the
conceptual framework underlying such an analysis. Let us consider therefore

6 Observe that these intersections occur when q0 = 1 and β = β0 will always be
one of these points.
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(a) Simulated Power Curves: Q(β) (solid), K(β)
(dash-dot), BLIML (dash), 5% line (dotted)
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(b) Values 1 + κ0 (dash-dot), 1 + q0 (dashed) and
1 + 1/q0 (solid)

Fig. 5. Testing H0 : β = 5 against H1 : β 6= 5

a slightly different model in which

y = ZΠ2β + v

Y = ZΠ2 + V

where [v V] ∼ N (0,Σ⊗ IN) and Σ is held fixed at

Σ =

 1 0.99

0.99 1

 ,
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(a) Simulated Power Curves: Q(β) (solid), K(β)
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(b) Values 1 + κ0 (dash-dot), 1 + q0 (dashed) and
1 + 1/q0 (solid)

Fig. 6. Testing H0 : β = 0 against H1 : β 6= 0

with n, ν, N , Z and Π2 specified as previously.

Figure 6a provides a counterpart to Figure 3a, and presents the power curves
obtained using this alternative experimental design when testing the null hy-
pothesis H0 : β = 0 at the 5% significance level. We now find that various
properties of Q(β) and K(β), and BLIML are reversed. In particular, Q(β)
and K(β) still exhibit the correct nominal size, with power functions that are
neither monotonically increasing functions of β−β0 nor symmetric about the
null value, but their power functions have profiles that are more conventional
in appearance. The BLIML statistic once again has very different properties.
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It still has serious size distortion, and now this is accompanied by a very un-
usual looking power curve with greatest power close to the null hypotheses
but poor power elsewhere. Its power curve is asymmetric and appears to have
a maximum at the point where Q(β) has its minimum power. Both Q(β) and
BLIML are biased tests.

Once again it is clear that variations in q0 are more critical in determining the
power characteristics of the tests than are variations in κ0. Under the current
scenario we find that q0 is maximized at the point where β = Ω−1ω and in the
current example, Ω = 1 and ω = 0.99, and so the turning points are occurring
at β = 0.99. As previously, Q(β) and K(β) exhibit useful power for values
of β for which q0 ≤ 1, whereas BLIML only has any useful power for those
values of β for which q0 > 1. In Figure 6b the values of β for which q0 > 1 now
correspond to the open interval delineated by the intersections of the curves
ln(1+q0) and ln(1+1/q0), rather than its complement, as in Figure 3b. Hence
the reversal of the observed power characteristics.

Finally, Figure 7 repeats the experiment underlying Figure 6, except now we
are testing the null hypothesis H0 : β = 5 at the 5% significance level. The
first observation is that now the power curves are not simply translated along
the horizontal axis as they were previously, contrast this with Figures 3 and 4,
their shape is contingent on the value of β0. Second, although Q(β) and K(β)
exhibit U-shaped power curves they do not have much power and, indeed,
Q(β) is biased over a reasonably long interval. Third, the BLIML statistic is
still size distorted, with an unusual looking power curve with greatest power at
β = 0.99, the point where the maximum of q0 occurs. Once more it is readily
apparent that the observed power characteristics of the tests can be explained
by reference to our analytical results ‘and, of course, simulation evidence never
can be viewed as a substitute for an analytical theory.’ (Dufour and Taamouti,
2005, p. 1352)

6 Conclusion

This paper has been concerned with the characterization of confidence inter-
vals and hypothesis tests for the coefficients on the endogenous regressors (β)
in a single equation in a simultaneous equations model. Our approach has
exploited a small-concentration asymptotic approximation to the sampling
distribution of the 2SLS estimator. This has enabled us to provide both the
null distribution and the power function for Q(β), a function of the 2SLS
estimator. On the basis of these results we are able to investigate the impact
of various parameters on the behaviour of Q(β). We construct confidence re-
gions by inverting Q(β) and demonstrate that these regions possess certain
desirable properties.
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(a) Simulated Power Curves: Q(β) (solid), K(β)
(dash-dot), BLIML (dash), 5% line (dotted)
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(b) Values 1 + κ0 (dash-dot), 1 + q0 (dashed) and
1 + 1/q0 (solid)

Fig. 7. Testing H0 : β = 5 against H1 : β 6= 5

Unfortunately Q(β) is not a feasible statistic, being a function of unknown
parameters whose estimation is problematic. Nevertheless, it is shown that
replacement of these parameters by natural plug-in statistics yields, after suit-
able transformation, a feasible statistic whose empirical behaviour is similar to
that of Q(β) in important ways. It transpires that this statistic is equivalent
to the K(β) statistic of Kleibergen (2002), and so our developments provide
analytical insight into the sampling behaviour of K(β) which heretofore has
been missing from the literature. It is also the case that these observations
go some way towards explaining the behaviour of the LIML-based statistic
of Bekker (1994), although developing a stronger theoretical basis for these

23



links remains the subject of ongoing research. Finally, our results indicate that
any attempt to rank these statistics is likely to be fraught with difficulties,
particularly as such rankings will themselves be contingent on the conceptual
and analytical framework adopted.
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A On Quadratic Forms in Non-Central Multivariate t Random
Variables

Lemma A.1 Let t = r + µ, where r ∼ tp(ν,0, I); that is, r has a standard
p-variate t distribution with ν degrees of freedom, and µ is an arbitrary vector.
Then the probability density function of r = t′t is given by

ψ(r : p, ν, κ) =
νν/2Γ

(
ν+p

2

)
Γ
(

ν
2

)
Γ
(

p
2

) r(p−2)/2[ν + κ+ r]−(ν+p)/2

× 2F1

(
ν + p

4
,
ν + p+ 2

4
;
p

2
;

4κr

[ν + κ+ r]2

)
(A.1)

wherein 2F1 (k, l;m;x) denotes the hypergeometric function
∑∞

j=0
(k)j(l)j

j!(m)j
xj, with

(k)j = Γ(k+j)/Γ(k), Pochhammer’s forward factorial function, κ = µ′µ. The
corresponding distribution function, denoted Ψ{%; p, ν, κ} = P (r ≤ %), is

Ψ{%; p, ν, κ} =
∞∑

j=0

wj
%j+p/2

j + p/2
2F1

(
2j +

ν + p

2
, j +

p

2
; j +

p+ 2

2
;− %

ν + κ

)
(A.2)

where

wj =
νν/2Γ

(
ν+p

2

)
Γ
(

ν
2

)
Γ
(

p
2

)
(

ν+p
4

)
j

(
ν+p+2

4

)
j

j!
(

p
2

)
j

(4κ)j

(ν + κ)2j+(ν+p)/2
.

PROOF. Since the Jacobian of the transformation from r to t − µ is unity
the probability density function of t is

f(t) =
Γ
(

ν+p
2

)
(νπ)p/2Γ

(
ν
2

) [1 + ν−1(t− µ)′(t− µ)]−(ν+p)/2 .

Using the result

s−αΓ(α) =
∫ ∞

0
e−sxxα−1dx (A.3)

we obtain

f(t) = c1

∫ ∞

0
exp{−[1 + ν−1(t− µ)′(t− µ)]x}x(ν+p−2)/2dx

= c1

∫ ∞

0
exp{−[1 + ν−1(t′t + µ′µ)]x}x(ν+p−2)/2 exp{2ν−1xµ′t}dx ,

where c1 =
[
(νπ)p/2Γ

(
ν
2

)]−1
. Next transform from t to vr1/2 where r = t′t > 0,
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v = t(t′t)−1/2, so that v′v = 1, and dt = 2−1r(p−2)/2dvdr. Hence

f(v, r) =
c1
2
r(p−2)/2

∫ ∞

0
exp{−[1 + ν−1(r + µ′µ)]x}

x(ν+p−2)/2 exp{2ν−1r1/2xµ′v}dx .

Averaging over the Stieffel manifold, using Herz (1955, Lemma 3.7), we have

∫
v′v=1

exp{v′k}dv =
2πp/2

Γ
(

p
2

) 0F1

(
p

2
;
1

4
k′k

)

for any fixed p-vector k and, writing κ = µ′µ, we obtain

f(r) =
r(p−2)/2

νp/2Γ
(

ν
2

)
Γ
(

p
2

) ∫ ∞

0
exp{−[1 + ν−1(r + κ)]x}

x(ν+p−2)/2
0F1

(
p

2
; ν−2rκx2

)
dx . (A.4)

Expanding the hypergeometric function in (A.4) and using (A.3) to integrate
term by term we now find that

I =
∫ ∞

0
exp{−[1 + ν−1(r + κ)]x}x(ν+p−2)/2

0F1

(
p

2
; ν−2rκx2

)
dx

=
∞∑

j=0

(ν−2rκ)j

j!
(

p
2

)
j

∫ ∞

0
exp{−[1 + ν−1(r + κ)]x}x2j+(ν+p−2)/2dx

=
∞∑

j=0

(ν−2rκ)j

j!
(

p
2

)
j

[1 + ν−1(r + κ)]−(2j+(ν+p)/2)Γ
(
2j +

ν + p

2

)

=Γ
(
ν + p

2

)
[1 + ν−1(r + κ)]−(ν+p)/2

∞∑
j=0

(
ν+p

2

)
2j

j!
(

p
2

)
j

[
κr

[ν + κ+ r]2

]j

.

Finally, using the result (c)2j = (c/2)j((c + 1)/2)j2
2j (Slater, 1966, I.25), we

have

I = Γ
(
ν + p

2

)
[1 + ν−1(r + κ)]−(ν+p)/2

∞∑
j=0

(
ν+p

4

)
j

(
ν+p+2

4

)
j

j!
(

p
2

)
j

[
4κr

[ν + κ+ r]2

]j

= Γ
(
ν + p

2

)
[1 + ν−1(r + κ)]−(ν+p)/2

2F1

(
ν + p

4
,
ν + p+ 2

4
;
p

2
;

4κr

[ν + κ+ r]2

)
.

Using Hölder’s inequality — and noting that ν > 0, κ ≥ 0 and r ≥ 0 — we
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see that

0 ≤ 4κr

[ν + κ+ r]2
<

4κr

[κ+ r]2
≤ 1 ,

and so the hypergeometric function is convergent (Slater, 1966, Section 1.1.1).
Substituting this final expression for I back into (A.4) yields the density as
given in (A.1).

Expanding the hypergeometric function in (A.1) and integrating term by term
yields

Ψ{%; p, ν, κ} =
∞∑

j=0

wj

∫ %

0

rj+(p−2)/2

[1 + r/(ν + κ)]2j+(ν+p)/2
dr , (A.5)

where

wj =
νν/2Γ

(
ν+p

2

)
Γ
(

ν
2

)
Γ
(

p
2

)
(

ν+p
4

)
j

(
ν+p+2

4

)
j

j!
(

p
2

)
j

(4κ)j

(ν + κ)2j+(ν+p)/2
.

Resolving the integral in (A.5) using Gradshteyn and Ryzhik (1980, Equation
3.194.1) gives (A.2). 2

We shall use Ψ{p, ν, κ} to denote a random variable with probability density
and distribution functions as given in (A.1) and (A.2), respectively. Note that
if κ = 0 then (A.1) collapses to

Γ
(

ν+p
2

)
νp/2Γ

(
ν
2

)
Γ
(

p
2

) r(p−2)/2
[
1 +

r

ν

]−(ν+p)/2

,

which corresponds to the density function of the product of p times a random
variable r with the (central) F{p, ν} distribution. We will therefore refer to κ
as the non-centrality parameter. It should be emphasized, however, that the
probability distribution Ψ{p, ν, κ} does not equate to the standard non-central
F distribution when κ > 0.

B Proofs

In this Appendix we gather proofs of results developed in Sections 3–5.

Proof of Corollary 2 Let q̂ = D
1/2
β (β̂ − µβ). Substituting into (9) using

(8), noting that the Jacobian of the mapping from β̂ to q̂ is |Dβ|−1/2, gives

Γ
(

ν+1
2

)
[π]n/2Γ

(
ν−n+1

2

) [1 + q̂′q̂]
−(ν+1)/2

(B.1)
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for the asymptotic distribution of q̂. Transforming from rectangular to polar
co-ordinates in (B.1), integrating with respect to the angular rotations, and
applying Slutzky’s theorem, we find that q̂ = q̂′q̂ converges in probability to
q where the distribution of q is given by

Γ
(

ν+1
2

)
Γ
(

n
2

)
Γ
(

ν−n+1
2

) qn/2−1(1 + q)−(ν+1)/2 .

The stated result now follows. 2

Proof of Theorem 3 First observe that Dβ0 = Dβ/q0. It follows that

(β̂ − µβ)′Dβ(β̂ − µβ)|β=β0
=

t̂′0t̂0

(ν − n+ 1)q0
,

where

t̂0 = ((ν − n+ 1)Dβ)1/2(β̂ − µβ0
) = r̂ + µ ,

with

r̂ = ((ν − n+ 1)Dβ)1/2(β̂ − µβ)

and

µ = ((ν − n+ 1)Dβ)1/2(µβ − µβ0
) .

As β̂ ∼
a
tn((ν −n+ 1),µβ,Dβ), it follows from Slutsky’s theorem and Lemma

A.1 that

t̂′0t̂0 ∼
a

Ψ{n, ν − n+ 1,µ′µ} ,

which establishes the desired result. 2

Proof of Lemma 4 Using notation from the proof of Theorem 3

P

(
(β̂ − µβ)′Dβ (β̂ − µβ)

∣∣∣
β=β0

≥
nF(1−α){n, ν − n+ 1}

(ν − n+ 1)

)

= P

(
t̂′0t̂0

(ν − n+ 1)q0
≥
nF(1−α){n, ν − n+ 1}

(ν − n+ 1)

)
= 1− P

(
t̂′0t̂0 < nq0F(1−α){n, ν − n+ 1}

)
.

The statement of the lemma follows directly. 2
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Proof of Theorem 5 Let

T =

 1 0′

−β In


1 −(ω −Ωβ)′/σ2

u,β

0 In

 =

 1 −(ω −Ωβ)′/σ2
u,β

−β In + β(ω −Ωβ)′/σ2
u,β


By assumption [y Y]′P[y Y] ∼ Wn+1(ν,Σ,Σ

−1/2ΛΣ−1/2) and, by construc-
tion, [ỹβ Ỹβ] = [y Y]T. Some tedious algebra reveals that T′ΣT = Σ̃ and

T′ΛT = Λ̃. Hence [ỹβ Ỹβ]′P[ỹβ Ỹβ] ∼ Wn+1(ν, Σ̃, Σ̃
−1/2

Λ̃Σ̃
−1/2

), which
establishes the first part of the theorem. Noting from (1) that the implied
structural equation for the transformed variables is ỹβ = Xγ +u, the remain-
ing results of the theorem follow immediately on application of Lemma 1 and
Corollary 2, respectively. 2
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