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Abstract: 

 

The interpretation of dummy variables in regressions where the dependent variable is 
subject to a log transformation has been of continuing interest in economics.  However, in 
the main, these earlier papers do not deal with the inferential aspects of the parameters 
estimated.  In this paper we compare the inference implied by the hypotheses tested on the 
linear parameter estimated in the model and the tests applied to the proportional change that 
this parameter implies.  An important element in this analysis is the asymmetry introduced 
by the log transformation.  Suggestions are made for the appropriate test procedure in this 
case.  Examples are presented from some common econometric applications of this model 
in the estimation of hedonic price models and wage equations. 
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1. Introduction  

 There are many examples of semilog models in which discrete variables are used as 

regressors (e.g.  wage equations, hedonic price models).  However, it is well known that the 

traditional interpretation of these dummy variables does not follow in the case of the log of 

the dependent variable.  The percentage change in the level of the dependent variable is not 

equal to the coefficient of the dummy variable multiplied by 100 as it is in the case of 

continuous variables.  Writing the semilogarithmic regression equation as 

  
=1

log ( )      
k

t i it t t
i

y a b z cD u= + + +∑      (1) 

where zi represent continuous variables with corresponding coefficient bi, D is a dummy 

variable with coefficient c and ut is distributed identically and independently with mean of 

zero and variance 2
uσ .  Alternatively this model can be written as  

 
1

exp( )exp( )
k
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i
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=
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Halvorsen and Palmquist (1980) and Kennedy (1981) note that the appropriate measure for 

the proportional effect on Y given D=1 is defined by g thus 1 0(1 )D Dy g y= == +  and taking 

the logs of both sides we get 1 0log( ) log(1 ) log( )D Dy g y= == + + 2 thus the difference 

1 0log( ) log( )D Dy y= =−  log(1 )g c= + = and we can solve for g as 

  exp ( ) 1g c= −         (2)  

And we can define c as 

                                                 
2  As long as g > 0.  Since the sign of g can be changed by the redefinition of the dummy variable this 
condition should pose no problem.  In general, the estimated parameter for (1-D) is equal and of opposite sign 
of the estimate for c although the estimate of the constant will vary and one needs to be careful when using 
interaction of dummy variables since a redefinition will change the t-statistic on the non-interacted term. 
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  log(1 )c g= +         (3)  

 

2. Measures of the central tendency of g  

 

By making the same assumption as Kennedy (1981), that ut is normally distributed 

and �c  is the OLS estimate of c, we then have that �c  is distributed normally with an 

expected value of c and a variance of 2 2 cc
c u mσ σ=  where ccm  is the diagonal element of the 

1( ' )X X −  matrix that corresponds to the parameter c and X is the full matrix of regressors.  

We define  

 � �  exp ( ) 1g c= −        (4) 

consequently �g  is lognormally distributed with the mean given by  

 21
2�E( ) = exp (  + ) 1cg c σ −       (5) 

and the median of �g  given by  

 �Med( ) exp( ) 1g c= −        (6) 

and the mode is given by  

 2�Mode( ) exp( ) 1cg c σ= − −       (7) 

Due to the lognormal nature of �g  the distribution of �g  is positively skewed and the greater 

the variance of �c  the greater the skewness.  The relationship between these three measures 

of central tendency is given by 

 � � �Mode( ) Med( ) E( )g g g< <  
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 There has been some debate in the literature as to the appropriate point estimate 

of �g .  Kennedy (1981) suggests that the appropriate estimator is given by 

  * 21
2 c� �  exp( ) 1Kg c σ= − −       (8) 

where the estimate of the variance of �c  is used.  This estimator is equivalent to the 

maximum likelihood estimator for the expected value of g.  Giles(1982) proposes an 

alternative estimate for g defined as 
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Where v is the degrees of freedom of the estimate of c.  This estimator is the minimum 

variance unbiased (MVU)estimator for the median of g  as defined by Goldberger(1968).  

Both Shimizu and Iwase (1981) and Goldberger (1968) show that the MVU estimate for the 

expected value is given by 
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Simulations by Derrick (1984) show that the two estimators * *and K Gg g  are very similar 

when �c  is significant even in small samples.  However this may be more a sign of the 

symmetry of the distribution of the samples used in the simulation than a general statement 

about these estimators.  This symmetry is a function of the variance of the estimator for c. 

While much attention has been paid to the estimation of g little has been given to 

the tests on g.  In the next section we will show how it is also possible to specify g* in 
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terms of �c  and its t-statistic and then use this relationship to express an approximate t-

statistic for g* in terms of �c  and its t-statistic. 

3.   Tests for *
Kg  

It is common practice when estimating semilog equations with dummy variables to 

make inferences concerning g from tests based on c alone thus using a test of the form: 

 0

1

H : 0
H : 0

c
c

=
≠

 

which is equivalent to the test that: 

 0

1

H : exp( ) 1,  or exp( ) 1 0
H : exp( ) 1,  or exp( ) 1 0

c c
c c

= − =
≠ − ≠

 

However, since exp(c) - 1 is the median of �g , the usual t-test on the regression parameter is 

actually a test of the median of g rather than a test of the expected value of g which is the 

usual form of the tests.  In addition, since the median is always less than the expected value 

we would anticipate that this test might always result in more rejections of H0 than a test 

based on the expected value for the same case. 

Instead of testing *�Kg  directly we perform tests on the log of *�Kg .  If we wish to test 
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we can add one to both sides and take logs to get the equivalent test for the expected value 

of g to be; 
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The estimates of the log of *�Kg  (here referred to as!*
Kl_g ) are then given by  
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 ! "
2** ���log( +1)  +  

2
c

K Kl_g g c σ= =       (11) 

Defining the usual t-statistic reported for the regression coefficient ( �c ) as t, the estimated 

variance of �c  is then given by 2 2 2�� c tcσ =  and the log of *�Kg  can be written as 

  ! 2
*

2

�� +  
2K
cl_g c
t

= .       (12) 

Figure 1 plots the difference between !*
Kl_g  and �c  when t = 2.  When t < 2 the difference 

would be above the curve and when t > 2 it would be below this curve.  However the value 

of !*
Kl_g  cannot be interpreted alone thus the need to derive an equivalent t-statistic for 

!*
Kl_g .  
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Figure 1 The value of !* �Kl_g c−  versus �c  when t = 2. 

First, an estimate of the variance of !*
Kl_g  is needed.  Land (1972) refers to an 

approximation for the variance deviation of the expected value of !*
Kl_g  as Cox�s Direct 



 6

approximation.  He demonstrates that this approximation has quite good properties.  This 

approximation is derived by using the MVU estimator for 2
�cσ  defined as 2

��cσ . 

 *
2 2 41

2� �_
� � �( )

M
c cl g

vσ σ σ= +       (13) 

where v is the degrees of freedom for the estimate of 2
uσ  (n-k for a regression).  Thus as 

v → ∞  the estimates of the variances approach each other *
2 2

�_
� �

M
cl g

→σ σ .  Substituting the 

value of t in (13) we get: 

 ( ) ( ){ }2 2
2 2*

2 � �1
2_

� 1  
M

c c
t tl g

vσ  = +        (14) 

Now substituting (14) into the equation for the t-statistic of the log of *
Kg  and defining this 

as *t we obtain: 

 
! ( )*

K
2*�_

_ 2
� �4 2

�*= 2
l gK

l g v
tv c

t t c
+

= +σ       (15) 

as a function of v, �c and t.  Two levels of degrees of freedom are illustrated in Figures 2 and 

3.  In Figure 2 the values of t*- t are plotted as a function of both �c  and t for the case when 

the number of degrees of freedom (df or v) of 25.  We can see that for small values of t the 

test on the expected value of g results in much larger t-statistics than the t statistic for the 

estimated parameter value.  In Figure 3 we change the df to 1000 which is closer in 

magnitude to many common econometric applications.  From figures 2 and 3 we note that 

large discrepancies occur between the t and t* when the value of t is less than .5 in small 

samples and .2 in larger ones while at the same time the parameter estimate is quite large.   
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Figure 2  t*- t as a function of �c  and t when the df (v) of 25. 
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Figure3  t*- t as a function of �c  and t when the df (v) of 1000. 
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4.   Log dummies for more than two categories 
 

Generally a discrete variable may refer to more than two categories and hence the 

equation to be estimated includes a number of related dummy variables. Two equivalent 

ways of estimating involve either omitting one of the categories or alternatively imposing a 

constraint on the values of the dummy variable coefficients. The equivalence of these two 

approaches is shown in Lye and Hirschberg (1999).  

 Suppose the regression equation to be estimated is: 

1 1 2 2 3 3            y D D D= α + γ + γ + γ + β + εX    (16) 

where y is a Tx1 vector of observations on the dependent variable, X is a Txk vector of 

observations on k quantitative explanatory variables, α is the estimated intercept term, b is a 

kx1 vector of parameters, e  is a Tx1 vector of disturbances and Di are dummy variables 

defined as whether the observation is in one of three separate groups.  For example the 

observation in a wage equation may be for individuals and the dummy variables may 

indicate different occupations. 

  
  1 for occupation   1 , 2, 3

      0 otherwise
jD j= =

=
 

Two equivalent methods of estimating (16) are to either impose the restriction that 

the one group has a zero value and acts as the reference group whose effect is included in 

the intercept ( for example if 3γ 0= ) which would result in the following model to be 

estimated  

1 1 2 2            y D D= α + γ + γ + β + εX     (17) 



 9

Or to impose the restriction that the sum of the dummy variable coefficients is equal to zero 

( 1 2 3γ + γ + γ = 0) which implies that one coefficient can be set to minus the sum of the rest.  

In this case we can estimate the following model 

 1 1 3 2 2 3

3 1 2

y    ( )  ( )    
( );  

D D D D= ϕ + π − + π − + β + ε
π = − π + π

X
    (18) 

Note that the parameters estimated for the occupations are not the same ( j jγ ≠ π ) nor is the 

intercept the same in models (17) and (18).  Define g1 to be equal to the percentage effect 

on y given D1=1 then  

 1 3

3

1 1
1 1

1

  exp( ) 1  D D

D

y y
g

y
= =

=

−
= γ − =       (19) 

then in terms of equation (18) we have 

 1 1 2
1

1 2

exp( ) exp( ) 
exp( )

g π − −π − π=
−π − π

      (20) 

The following relationships can be found to related these parameters.  

  

(18) (17) 
1 2 1  

3 3 2
γ γ λϕ = α + + +  1 2 1  -α = ϕ π − π −ρ  

1 2
1

2
3

γ − γπ =  1 1 22γ = π + π  

2 1
2

2
3

γ − γπ =  2 2 12γ = π + π 

 

And we can show that 

 exp( ) - exp(- - )
exp(- - )

  exp(1 1 2

1 2
1

p p p
p p

g= -) 1    (21) 

If (17) is the form estimated then an estimate of g1 using  
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Kennedy's (1981) approach is given by  

{ }( )1 2 1 2

* 2 21
� � � �1 2 ,21 � � � � �  exp 2 4 4 1Kg π π π π= π + π − σ + σ + σ −     (22) 

Using a similar argument it can be shown that 

 1 1 2
2 2

1 2

exp( ) - exp(- - ) exp( ) -  1  
exp(- - )

g π π π= γ =
π π

    (23) 

and  

{ }( )1 2 1 2

* 2 21
� � � �1 2 ,22 � � � � �  exp 2 4 4 1Kg π π π π= π + π − σ + σ + σ −     (24) 

Following the discussion above we can also form the appropriate approximate test 

statistic for the parameter implied by these estimates as well by substituting the variance for 

the combination of parameters so that the formulas developed above can be used directly. 

 

5.   Typical econometric applications 

 5.1 Hedonic Price Model 

 In this section we consider two econometric applications that use dummy variables 

in log models.  The first is the estimation of hedonic price models and the second is in the 

estimation of wage equations.  Both applications are characterized by typical size parameter 

estimates and sample sizes. 

Rosen first coined the term Hedonic price model to describe models which were 

designed to explain the variation in market prices for different goods and services 

(Rosen(1974)).  However regressions that predict the market price as a function of product 

and service characteristics have a much longer history.  Berndt (chapter 4, 1991) details a 

number of earlier examples of these models.  Hedonic price models are used in a variety of 
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different markets and have been applied to the computation of price indexes (Chow (1967)) 

and for the imputation of the value of public amenities (see Bartik and Smith (1987)) 

among other uses.  Most commonly used models apply a lognormal transformation of the 

dependent variable (price or value) and include dummy variables as indicators for certain 

characteristics of the goods or services sold. 

A typical model would be a regression to explain the sale price of a house.  The 

characteristics of the house such as the presence of a swimming pool or the location on a 

cul de sac are usually represented by dummy variables.  The application presented below is 

for a set of 288 houses sold in Dallas Texas in July of 1986 where a model was fit to the log 

of the house price in thousands of dollars.  Note that even though the dependent variable 

has a mean of 4.6 the values of the parameters estimated for the dummy variables are less 

than one and in most cases much less than .5.  In this example from Hayes et al (1999) the 

variables DISTANCE, DISTANCE^2 are the distance to the center of the city and distance 

squared, FAC1_D, FAC1_H, FAC2_D, FAC2_H, FAC3_D, and FAC3_H are factors based 

on demographic and housing characteristics of the neighborhood measured in continuous 

values, SQFTLA is the square footage of the house and YRBLT is the year the house was 

built.  The dummy variables are FIREPL for the presence of a fire place, POOL for the 

presence of a swimming pool, and ND for whether the house is located north of the central 

business district in Dallas.  The dependent variable is the log of the house price and from an 

earlier analysis it was found that the model in the linear price resulted in a skewed 

distribution of the residuals.   

From the results listed in Table 1 it can be seen that values of the dummy variables 

fall in the range of 0 to .44.  The last column of the table lists the estimated values of the t-
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statistic based on the approximation given by t*.  Due to the high values of the t-statistics in 

this case we find no cases where there is a large difference between t and t* as predicted by 

the relationships plotted in figures 2 and 3.  

Dependent Variable: LPRICE 
Included observations: 288 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std.  Error t-Statistic t* 

C 3.577865 0.151789 23.57130 
DISTANCE -0.162585 0.114482 -1.420185 

DISTANCE^2 0.007287 0.022592 0.322566 
FAC1_D -0.174645 0.051026 -3.422666 
FAC1_H -0.007344 0.025801 -0.284656 
FAC2_D -0.161454 0.035083 -4.601993 
FAC2_H 0.014516 0.029969 0.484380 
FAC3_D -0.042816 0.022131 -1.934643 
FAC3_H -0.003601 0.042254 -0.085226 
FIREPL 0.149494 0.036014 4.151022 4.168999
POOL 0.004048 0.049260 0.082171 .106806

SQFTLA 0.000535 2.92E-05 18.28822 
YRBLT 0.004238 0.001628 2.603561 

ND 0.057615 0.051883 1.110476 1.136418
R-squared 0.889689     Mean dependent var 4.645586
Adjusted R-squared 0.884455     S.D.  dependent var 0.765940
S.E.  of regression 0.260357     Akaike info criterion 0.193868
Sum squared resid 18.57337     Schwarz criterion 0.371928
Log likelihood -13.91694     F-statistic 169.9909
Durbin-Watson stat 1.968638     Prob(F-statistic) 0.000000

 

Table 1.  An example from an Hedonic Price Regression. 

 

 5.2 Wage Equation 

Another common application of log models in econometrics are found in the 

estimation of wage equations (see Heckman and Polachek (1974)).  These models are 

typically used to determine the effects of particular characteristics of individuals on the 

level of there earnings.  They are often conducted using survey data and thus the number of 

observations tends to be at least 1000 or more.  Table 2 lists a typical set of regression 
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results from an application of this method to a set of household survey data from Australia 

collected in 1989 as described in (Hirschberg and Lye (1999)).  In this case age and age 

squared along with the level of alcohol consumed are included as independent variables.  In 

addition we have included dummy variables for gender, marital status and if they reside in a 

state capital (most major cities in Australia are the state capital).  Again note that even 

though the mean of the dependent variable (the log of income in dollars) is listed as 10.07 

we find that the majority of the dummy variables have coefficients with absolute values less 

than .5 (recall that the sign of these coefficients can always be reversed by a redefinition of 

the dummy variable). 

In this case we find that the dummy variable for gender indicates that male workers 

are paid significantly more than female workers and that married workers are paid less than 

non-married workers.  The values for the proportional change in this case are also 

significant for all the dummy variables in this model due to the very high t-statistics for the 

regression parameters and the large number of degrees of freedom � over 10,000 in this 

case.   

Dependent Variable: LINC 
Included observations: 11515 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std.  Error t-Statistic t* 

FEMALE -0.476528 0.011042 -43.15588 -43.16147
AGE 0.228030 0.006586 34.62471 

CAPCITY -0.120499 0.009168 -13.14370 -13.14802
AGE^2 -0.001001 3.06E-05 -32.74577 

ALCOHOL 2.79E-05 1.83E-05 1.520986 
MARRIED -0.010228 0.002937 -3.481808 -3.483934

C 9.529160 0.047897 198.9519 
R-squared 0.295094     Mean dependent var 10.07627
Adjusted R-squared 0.294726     S.D.  dependent var 0.548213
S.E.  of regression 0.460392     Akaike info criterion 1.287132
Sum squared resid 2439.249     Schwarz criterion 1.291601
Log likelihood -7403.665     F-statistic 802.9283
Durbin-Watson stat 1.910517     Prob(F-statistic) 0.000000
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Table 2.  An example from a Wage Equation Regression. 

6. Conclusions 

 This paper shows that inferences drawn from the standard t-statistic for dummy 

variables in regressions with log transformed dependent variables are equivalent to tests of 

the median of the proportional change.  We propose an approximation for the equivalent t-

statistic for the expected value of the proportional change and examine how these two test 

statistics vary with the parameters of the model under consideration.  The potential for large 

deviations in the inferences drawn between the median and the expected value occurs where 

parameters that have estimated values that are greater than .5 and t-statistics of less than .2.  

We note that this difference is greatest with small sample sizes.  In examining two 

representative econometric applications of the estimation of simple dummy variables with a 

log transformed dependent variable, we find that they do not have result in parameter 

estimates that would indicate any changes in inference.   

 In addition to considering the case of a dummy variables for a single category we 

also considered the multiple category case as well where we show that the approximation 

for the multiple category case can be defined in the same manner as for the single category 

situation. 

 A concern with the approximation proposed here is the employment of t-statistics to 

form confidence bounds due to the symmetric nature of the distribution implied.  One 

future direction for this research would be the investigation of bootstrap based confidence 

intervals based on the pivot statistic that can be formed using the approximate t-statistic 

defined as t*.
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