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Abstract 
 
In this paper we demonstrate that a simple duality relation underlies balanced growth 
models with non-joint production. Included in this class of models is the standard 
neoclassical growth model and endogenous growth models that admit balanced 
growth paths. In all of these models, the optimal transformation frontier and the factor 
price frontier take precisely the same mathematical formulation. Studying these 
identical frontiers in the context of the different models provides new insights into the 
relative structures of these models, the role of savings, and the nature of dynamic 
efficiency in each. 
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1. INTRODUCTION 
 

 In this paper, we revisit an important theorem that was developed in the 

1960’s in the context of the neoclassical growth theory, which has been absent from 

recent discussions about growth, and which (appropriately modified) has significant 

relevance for modern endogenous growth theory – both in understanding the 

mechanics of the theory itself, and in understanding it’s relationship with neoclassical 

theory. This theorem was originally developed by Bruno (1969) in the context of 

dynamic Leontief models, but was adapted to neoclassical models by Burmeister and 

Kuga (1970a,b) and further developed in Burmeister and Dobell (1970). The theorem 

concerns a duality result that pervades models with “neoclassical” production 

technologies – significantly, technologies with constant returns to scale. It identifies 

an equivalence between two frontiers that exist within these models: the “optimal 

transformation frontier” (OTF) and the “factor price frontier” (FPF). These two 

frontiers have very different interpretations, one normative and the other positive, but 

have precisely the same mathematical formulation. This equivalence, within the 

neoclassical model, was known 37 years ago.  

 

 Here, we consider the relevance of this theorem in endogenous growth models 

with neoclassical production technologies. This is an important class of endogenous 

growth models, and the generic model we consider here can include well-known 

models such as convex versions of Romer’s (1986) model, Lucas’ (1988) model, and 

Aghion and Howitt’s (1992) model as special cases (albeit sometimes distorted).1 We 

show that, as in neoclassical models, the equivalence of the OTF and FPF holds in 

this class of endogenous growth models. Moreover, the equivalence result extends 

further: across models. In particular, we show that the OTF and FPF in our generic 

endogenous growth model are not only identical to each other, but are also identical to 

                                                 
1 See Ferguson (1994), or Jones and Manuelli (1997) for a discussion.  
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the OTF and FPF in the comparable neoclassical model. This equivalence holds for 

both one-sector models and multi-sector models.  

 

 The OTF and FPF frontiers themselves are also interesting objects to study 

and, in the context of the equivalence results across the models, shed light on the 

common features and distinctions between neoclassical and endogenous growth 

models. We present a simple diagrammatic analysis of these frontiers that illustrates 

the fundamental causal differences in these models, and (we believe) significantly 

clarifies the issue of dynamic efficiency in each case.  

 

 The remainder of the paper is structured as follows. Section 2 considers one-

sector models. We start with a brief review of the one-sector neoclassical model, 

highlighting the roles (and equivalence) of the OTF and the FPF, using somewhat 

more modern notation than in, for example, Burmeister and Dobell (1970).2 We then 

consider the role of savings in this model, allowing for two different alternatives (a 

fixed savings rate and optimal savings) and review the issue of dynamic efficiency. A 

one-sector endogenous growth model is then introduced, based on Barro and Sala-i-

Martin’s (2004) textbook. We generate the OTF and FPF in this model, and 

demonstrate the basic equivalence result, both within and across the models. Section 3 

then extends the analysis to cover multi-sector models, both neoclassical and 

endogenous growth, and shows that the OTF and FPF equivalencies still hold and that 

they can also be represented simply on the same two-dimensional diagram as is used 

for the one-sector model. Our conclusions are then presented in Section 4. 

 

 

                                                 
2 As much as possible, we follow the notation used in the Barro and Sala-i-Martin (2004) text, which 
provides an excellent overview of modern growth theory. 
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2. ONE SECTOR MODELS 
 

 Here, we consider models in which homogeneous output can be adapted 

instantaneously and costlessly into either a consumption good or a capital good. The 

key distinction between the neoclassical and endogenous growth models is the 

interpretation of the labour input. In neoclassical models, labour is a productive asset, 

but its accumulation is not determined by market forces. Typically, in these models, 

labour grows at an exogenous constant rate.3 A key feature of endogenous growth 

models is that, in these models, the accumulation of the labour component 

(augmented by human capital) is influenced by market forces. We first review the 

known results of the neoclassical model, as discussed in Burmeister and Dobell 

(1970), but using more modern notation.  

 

2.1 The Neoclassical Growth Model4 

 

Output Y is produced, using the capital stock K and labour L, according to the 

neoclassical production function:5  

 

                                                             ),( LKFY =                                              (2.1.1) 

 

This output can be used either for consumption C or gross investment in capital : KI

 

                                                              KICY +=                                                (2.1.2) 

 

                                                 
3 A constant growth rate of labour is not necessary for the distinction. What is important is this growth 
rate is not determined by market forces.  
4 This model is identical to the one considered in Barro and Sala-i-Martin (2004), chapters 1 and 2. 
5 See Burmeister and Dobell (1970), p. 10, for a formal definition of the neoclassical production 
function. Importantly, the function is increasing in both arguments, has continuous second partial 
derivatives, is homogeneous of degree one and is strictly quasiconcave. 
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Net investment K  is gross investment minus depreciation, where a constant fraction 

Kδ  of capital depreciates at each moment in time: 

 

                                                                                                       (2.1.3) KIK KK δ−=

 

The stock of labour grows exogenously at the constant rate : 0>n

 

                                                                                                                   (2.1.4) nLL =

 

Substitution of (2.1.1) and (2.1.3) into (2.1.2) yields: 

 

KKCLKF Kδ++=),(  

 

Now, defining LKk /≡ , , LCc /≡ )1,/()( LKFkf ≡ , , and , 

rearrangement of the above equation gives us: 

KKK /≡γ LLL /≡γ

 

                                                      kkfc KK )()( δγ +−=                                      (2.1.5) 

 

Along any balanced growth path, we have the additional condition: 

 

                                                           nLK == γγ                                                 (2.1.6) 

 

 

2.1.1 The Optimal Transformation Frontier 

 

With Kδ  as a parameter, and Kγ  pinned down by equation (2.1.6), we can consider 

the problem of choosing k to maximize per capita consumption c in (2.1.5) along a 

balanced growth path. The solution to this problem is, of course, the golden rule: 
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                                                                                                   (2.1.7) KKkf δγ +=)(' *

Inverting, we have: 

                                                                                               (2.1.8) )(' 1*
KKfk δγ += −

 

Substitution, then, of this balanced growth consumption-maximizing value of k into 

the objective function (2.1.5) leads to the value function: 

 

                  ( ) )()(')()(' 11*
KKKKKKKK Gfffc δγδγδγδγ +≡++−+= −−        (2.1.9) 

 

This value function is known as the optimal transformation frontier (OTF). For any 

given values of Kγ  and Kδ , it tells us the maximal value of per capita consumption 

available along any balanced growth path.  

 

[Figure 1 about here.] 

 

Figure 1 illustrates this frontier. The shape of the frontier is very easy to ascertain. 

From (2.1.9), using (2.1.8) and the envelope theorem, we 

have: . Using this and equation (2.1.7), one can find: 

.  

0)(' * <−=+ kG KK δγ

0)("/1)(" * >−=+ kfG KK δγ

 

A Cobb-Douglas Example 

 

If the production technology takes the Cobb-Douglas form 

 

                                     ,     ,    αα −= 1),( LAKLKF 0>A )1,0(∈α                     (2.1.10) 

 

then the golden rule value of  is given by *k
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and the OTF is given by: 

                                                
α
α

δγ
αα

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
1

* )1(
KK

AAc                                  (2.1.12) 

 

2.1.2 The Factor Price Frontier 

 

We now add more structure to the economy by assuming that firms are competitive, 

facing a given real wage rate w and a gross rate of return on capital r. The net rate of 

return on capital, after depreciation, is given by KK r δρ −= . Here, as is standard, we 

normalize the number of firms to unity, and each firm acts to maximize profits: 

 

wLrKLKF −−=Π ),(  

 

Expressed in terms of k, the first order conditions are: 

 

                                                               )(' kfr =                                               (2.1.13) 

 

                                                       kkfkfw )(')( −=                                         (2.1.14) 

 

For any given value of r, equation (2.1.13) can be inverted to find the profit 

maximizing value of k: 

                                                                                                          (2.1.15) )(' 1 rfk −=
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Substitution of (2.1.13) and (2.1.15) in (2.1.14) then gives us the following 

relationship between w and r, consistent with profit maximization: 

 

                                        ( ) )()(')()(' 11 rVrfrrffw ≡−= −−                              (2.1.16) 

 

This is known as the factor price frontier (FPF). In the Cobb-Douglas example, using 

(2.1.10), the FPF is given by: 

                                                   
α
α

αα
−

⎟
⎠
⎞

⎜
⎝
⎛−=

1
)1(

r
AAw                                        (2.1.17) 

 

This frontier tells us, for any given values of the parameters, the pairs of w and r that 

are consistent with competitive equilibrium. Figure 2 provides an illustration of the 

FPF.  

 

[Figure 2 about here.] 

 

 

Comparing the OTF in equation (2.1.9) (or equation 2.1.11) with the FPF in equation 

(2.1.16) (or equation (2.1.17) it is immediately apparent that they have precisely the 

same mathematical formulation. Since the profit maximization for firms can be cast, 

equivalently, as a cost minimization problem (as we consider below) then this is a 

duality result: the value function from maximizing per capita consumption is identical 

to the value function from minimizing costs.  

 

At this point, it is worth noting that these two frontiers have very different 

interpretations. The OTF is a normative concept: it identifies maximal values of c 

obtainable in the economy with balanced growth. The content of FPF positive: it 

identifies pairs of w and r that are consistent with competitive equilibrium.  
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2.1.3 Closing the Model: the Savings Decision 

 

Up to this point, no savings decision has been specified. In this paper, we consider 

two alternative savings regimes: the Solow savings function with a fixed savings rate, 

and optimal (Ramsey-Cass-Koopmans) savings.  

 

Fixed Savings Rates 

 

The consumption function consistent with a fixed savings rate is: , 

where  is a parameter. Substitution of this function into equation (2.1.5), and 

collecting terms, we obtain, along the balanced growth path: 

)()1( kfsc −=

)1,0(∈s

 

                                                     kksf KK )()( δγ +=                                         (2.1.18) 

 

Equation (2.1.18) determines a unique equilibrium value of k, call it k~ . With k~  

determined, all the other equilibrium values of the variables along the path are 

determined. With the Cobb-Douglas production technology (2.1.10), it is simple to 

use equation (2.1.18) to solve for: 

                                                        
α

δγ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
1

1

~

KK

sAk                                        (2.1.19) 

 

Optimal Savings 

 

Consider the following standard optimal savings problem. Identical infinitely-lived 

households, each growing in size at rate n, with marginal rate of time preference 

)1,0(∈θ , and constant elasticity of substitution 0/1 >σ , given a path of wages  

and a path of net returns on assets 

}{ tw

}{ Ktρ , choose a path of consumption , with an 

implied path of assets to solve: 

}{ tc

}{ ta
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}{ tc

Max dte
c

U tnt )(
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1

0 1
1 −−

∞ −
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                             (2.1.20) 

 

subject to: a)  ttttKtt cnawaa −−+=
•

ρ
 

b) 00 aa =   (given) 

c) 0  lim 0

)(

≥
∫ −−

∞→

t

Kv dvn

tt
ea

ρ

 

Necessary conditions for this problem imply the Euler equation: 

 

                                                           σθρ /)(/ −= Kcc                                     (2.1.21) 

 

In a balanced growth equilibrium 0=c , in which case equation (2.1.21) implies: 

 

                                                                  θρ =K                                               (2.1.22) 

 

Now, recalling that the gross rate of return is KKr δρ += , and using equation 

(2.1.13) to substitute out Kρ  in equation (2.1.22), we have, in equilibrium: 

 

                                                         Kkf δθ +=)('                                             (2.1.23) 

 

This equation determines a unique value of k, call it k , in the balanced growth 

equilibrium. Inverting the function in (2.1.23), we obtain: 

ˆ

 

                                                                                                 (2.1.24) )('ˆ 1
Kfk δθ += −

 

In the Cobb-Douglas example, equation (2.1.24) becomes: 
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α

δθ
α −

⎟⎟
⎠

⎞
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⎝

⎛
+

=
1

1

ˆ
K

Ak                                         (2.1.25) 

 

2.1.4 Dynamic Efficiency 

 

Following Cass (1972), a balanced growth equilibrium allocation is said to be 

dynamically efficient if there exist no other feasible balanced growth paths where 

consumption is at least as high at all moments in time and strictly higher for at least 

one moment in time. In the context of the neoclassical growth model, it is easy to 

show that this implies that the value of k in the steady state equilibrium is no greater 

than the golden rule , given in equation (2.1.8).*k 6 It is clear that, in these models, 

whether or not the balanced growth equilibrium is dynamically efficient depends 

crucially on the savings behaviour presumed.  

 

 With a fixed savings rate s, the equilibrium will be dynamically inefficient if s 

is too large. In the Cobb-Douglas example, comparing k~  in (2.1.19) with  in 

(2.1.11), we can see that the equilibrium will be dynamically inefficient if and only if 

*k

α>s . That is, in the Solow-Swan model, the steady state equilibrium is dynamically 

inefficient if and only if the savings rate is greater than capital’s share of income.  

 

 When agents choose their savings optimally, according to the standard 

formulation, a comparison of  in (2.1.24) with  in (2.1.11) reveals that the 

relative sizes of 

k̂ *k

Kγ  and θ  matter. Recalling, from (2.1.6), that nK =γ , we find 

θ>n  as the critical condition for dynamic inefficiency. This, however, is typically 

ruled out in order to keep the objective function (2.1.20) bounded.  

 

                                                 
6 See, for example, Proposition 2.4 in de la Croix and Michel (2002). 
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 Most generally, *k  is defined by (2.1.7), where . Since 

 for all k, then an allocation is dynamically inefficient if and only if 

. Recalling (2.1.13): 

KKkf δγ +=)(' *

0)(" <kf

KKkf δγ +<)(' * )(' kfr = , and the definition KKr δρ += , this 

condition can be re-written in the way expressed in Gale and Rockwell (1975), which 

applies to all models that admit balanced growth paths: an allocation is dynamically 

efficient if and only if 7 

                                                                K Kγ ρ≤                                                (2.1.26) 

 

2.2 A Simple Endogenous Growth Model8 

 

Here, output is produced using the capital stock K as before, but together with an 

accumulable factor H (which we will call “human capital”), using the neoclassical 

production function: 

 

                                                             ),( HKFY =                                             (2.2.1) 

 

This output can be used either for consumption C or gross investment in capital , 

or gross investment in human capital : 

KI

HI

 

                                                            HK IICY ++=                                          (2.2.2) 

 

As in the previous subsection, net investment K  is gross investment minus 

depreciation, where a constant fraction Kδ  of capital depreciates at each moment in 

time: 

                                                                                                       (2.2.3) KIK KK δ−=

                                                 
7 See King and Ferguson (1993) for a detailed discussion. 
8 This model is identical to the one presented in section 4.2 of Barro and Sala-i-Martin (2004). 
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The variable H, unlike the variable L in the neoclassical model, accumulates in a 

similar fashion: 

 

                                                                                                      (2.2.4) HIH HH δ−=

 

Substitution of (2.2.1), (2.2.3), and (2.2.4) into (2.2.2) yields: 

 

HHKKCHKF HK δδ ++++=),(  

 

Now, defining , HKk /≡ HCc /≡ , )1,/()( HKFkf ≡ , , and 

, rearrangement of the above equation gives us: 

KKK /≡γ

HHH /≡γ

 

                                                 kkfc KKHH )()( δγδγ +−=++                         (2.2.5) 

 

 

2.2.1 The Optimal Transformation Frontier 

 

Consider now the problem of choosing k to maximize )( HHc δγ ++  in (2.2.5). Given 

any particular values of Kγ  and Kδ , this problem is identical to the one in the 

previous section, where we chose k to maximize c in (2.1.5). The solution is given in 

equations (2.1.7) and (2.1.8), and substitution of  from (2.1.8) back into (2.2.5) 

yields the following optimal transformation frontier. 

*k

 

  ( ) )()(')()(')( 11*
KKKKKKKKHH Gfffc δγδγδγδγδγ +≡++−+=++ −−    

(2.2.6) 

 

In the Cobb-Douglas example, we have: 
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α
α

δγ
ααδγ

−

⎟⎟
⎠
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⎝

⎛
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−=++
1

* )1()(
KK

HH
AAc                    (2.2.7) 

 

This is represented in Figure 3.  

[Figure 3 about here.] 

 

 

2.2.2 The Factor Price Frontier 

 

Firms, once again, are assumed to be competitive, and maximize profits. As in the 

previous section, r denotes the gross rate of return on K: KKr δρ += , where Kρ  is 

the net return on capital. A similar distinction now applies to the return on human 

capital. Let w denote the gross rate of return, and Hρ  denote the net return to human 

capital. Thus: HHw δρ += . Each firm chooses K and H to maximize profits: 

 

wHrKHKF −−=Π ),(  

 

Expressed in terms of , the first order conditions are precisely the same as 

in the previous section, given by equations (2.1.13) and (2.1.14). Hence, this leads to 

precisely the same factor price frontier (2.1.16). We can express this, though, in terms 

of the net returns: 

HKk /≡

 

        ( ) )()(')()(' 11
KKKKKKKKHH Vfff δρδρδρδρδρ +≡++−+=+ −−      

(2.2.8) 

 

In the Cobb-Douglas example, using (2.1.10), this is given by: 
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α
α

δρ
ααδρ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=+
1

)1(
KK

HH
AA                        (2.2.9) 

 

This frontier is illustrated in Figure 4. 

 

[Figure 4 about here.] 

 

Clearly, as in the neoclassical model, in this endogenous growth model, the optimal 

tranformation frontier (given in (2.2.6) and (2.2.7)) is mathematically identical to the 

factor price frontier (given in (2.2.8) and (2.2.9)). Moreover, this same mathematical 

formulation for the two frontiers is common across the two models.  

 

2.2.3 Balanced Growth 

 

As in the neoclassical model, balanced growth implies that the growth rates of the two 

assets are the same: 

                                                                                                       (2.2.10) *γγγ == HK

 

However, the endogenous growth model requires an extra condition that is not present 

in the neoclassical model – a no-arbitrage condition: the net rates of return on the two 

assets must also be equalized: 

                                                                                                     (2.2.11) *ρρρ == HK

 

The introduction of this condition has profound implications, both positively (in terms 

of the causal structure of the equilibrium) and normatively (in terms of dynamic 

efficiency). To see these effects most clearly, it is useful to consider two different 

cases. The first case shuts down consumption (and thus corresponds closely with the 
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growth model considered by von Neumann (1936)) and second allows for positive 

consumption.  
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Case 1:  Zero Consumption (the von Neumann Case) 

 

In this case, the OTF simplifies down to: 

 

      ( ) )()(')()(')( 11*
KKKKKKKKHH Gfff δγδγδγδγδγ +≡++−+=+ −−    (2.2.6’) 

 

with the Cobb-Douglas example: 

                                              
α
α

δγ
ααδγ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=+
1

* )1()(
KK

HH
AA                      (2.2.7’) 

 

Figure 5 illustrates the economy with no consumption. 

 

[Figure 5 about here.] 

 

In this diagram, both the OTF and the FPF are represented. The horizontal axis 

measures both KK δγ + , for the OTF, and KK δρ +  for the FPF. Similarly, the vertical 

axis measures both HH δγ +  and HH δρ +  for the OTF and FPF, respectively. The 

strictly convex line represents both the OTF and the FPF – they coincide on this 

diagram. To make the diagram as clear as possible, we have picked particular values 

for the depreciation rates Kδ and Hδ . Having specified these values, we can draw 

additional axes, with the origin at ( Kδ , Hδ ), representing Kγ  and Hγ  for the OTF and 

Kρ  and Hρ  for the FPF. Assuming that both Kδ and Hδ  are positive, as we have in 

the diagram, this second set of axes lies above and to the right of the originals.  

 

 The equilibrium conditions (2.2.10) and (2.2.11) can both be represented as 45 

degree lines from the origin of this second set of axes. The intersection, then, of this 

45 degree line with the OTF and FTF represents the unique equilibrium balanced 

growth point on this diagram. This then determines the equilibrium rate of return on 
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both factors , and the model is solved. Algebraically, substitution of (2.2.11) into 

(2.2.8) yields one equation in one unknown: : 

*ρ

*ρ

 

                            ( ) )(')()(' *1**1*
KKKH fff δρδρδρδρ ++−+=+ −−          (2.2.12) 

 

 With  determined, then  can be determined through equation (2.1.13): *ρ *k

 

                                                                                                (2.2.13) )(' ** kfK =+δρ

 

Similarly, substitution of (2.2.10) into the OTF (2.2.6’) yields a unique solution for 

: *γ

                             ( ) )(')()(' *1**1*
KKKH fff δγδγδγδγ ++−+=+ −−           (2.2.14) 

 

Thus, the equilibrium growth rate is now determined. This is the von Neumann 

growth rate and, in general, it represents the maximal balanced growth rate possible in 

balanced endogenous growth models.  

 

One final point to notice in this case, which can be seen clearly by comparing 

equations (2.2.12) and (2.2.14), is that the equilibrium growth rate and net return to 

assets are equal: 

                                                                                                                (2.2.15) ** ργ =

 

 

Case 2:  Positive Consumption 

 

 We now consider the more common case where consumption is not set equal 

to zero, but is determined by a savings decision (yet to be specified). Figure 6 

illustrates this case.  
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[Figure 6 about here.] 

 

This figure is identical to Figure 5 except for one crucial detail: the OTF and the FPF 

no longer coincide. The axes remain the same as in Figure 5, so the introduction of a 

positive consumption value shifts the OTF downwards by the amount c.  

 

 As in Case 1, the intersection of the 45 degree line with the FPF (i.e., 

equations (2.2.8) and (2.2.11)) uniquely determines  and, through (2.2.13), . 

That is, the equilibrium values of the rates of return and the mix of capital to human 

capital are independent of the savings decision. These are determined purely by the 

production technology, the firm’s optimization conditions, and the no-arbitrage 

condition, as in the von Neumann model. 

*ρ *k

 

 Here, however, while the intersection of the 45 degree line and the OTF does 

play a crucial role in the determination of the growth rate, it does not fully determine 

this rate. We can see this by substitution of (2.2.10) into (2.2.6):  

 

  ( ) )()(')()(')( **1**1**
KKKKH Gfffc δγδγδγδγδγ +≡++−+=++ −−    (2.2.16) 

 

Equation (2.2.16) is one equation in two unknowns:  and c . To close this model, 

we need to specify some sort of consumption/savings decision. Thus, in this case, the 

consumption/savings decision influences the growth rate. This is illustrated, in Figure 

6, by the fact that  is determined by the intersection of the OTF and the 45 degree 

line, where the OTF is drawn for some positive value of c .  

*γ

*γ
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If, for example, the savings rate is fixed by some parameter s, consumption per 

unit of H is given, as in the previous section, by )()1( kfsc −= . With  determined 

in (2.2.12), we then determine: 

*k

                                                                                                 (2.2.17) )()1( ** kfsc −=

 

Substitution of  in (2.2.17) into (2.2.16) then determines the growth rate . *c *γ

 

 Alternatively, using the Ramsey-Cass-Koopmans optimal savings structure, 

we need to re-specify the problem introduced in the previous section. Here, 

population growth is zero, and we normalize the size of each family to unity. 

Households can own two assets: K or H. Each of these assets earns the same net 

return , fixed by (2.2.12). Hence, households are indifferent about the mix of 

assets, and we can define the amount of assets per household as 

*ρ

HKZ += . 

Household choose a path of consumption , with an implied path of assets to 

solve: 

}{ tC }{ tZ

 

                                              
}{ tZ

Max dte
C

U tt θ
σ

σ
−

∞ −

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
0

1

0 1
1

                              (2.2.18) 

 
subject to: a)  tttt CZZ −= *ρ
 

d) 00 ZZ =   (given) 

e) 0  lim 0

*

≥
∫−

∞→

t

vdv

tt
eZ

ρ

 

Necessary conditions for this problem imply the Euler equation: 

 

                                                                                              (2.2.19) σθρ /)(/ * −=CC
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With balanced growth, we have the additional condition: 

 

                                                                                                    (2.2.20) */ γγ =≡ CCC

 

Thus, substituting (2.2.20) into (2.2.19), we have determined the balanced growth 

rate: 

                                                                                                  (2.2.21) σθργ /)( ** −=

 

Finally, substitution of (2.2.21) into (2.2.16) determines consumption , and the 

model is entirely solved.  

*c

 

2.2.4 Dynamic Efficiency 

 

However  is determined, any positive value of  will reduce the growth rate  

below it’s von Neumann rate of . As in the case with zero consumption,  is 

determined by equation (2.2.12), rearranged here: 

*c *c *γ

*ρ *ρ

 

                            ( ) HKKK fff δδρδρδρρ −++−+= −− )(')()(' *1**1*          (2.2.22) 

 

For any given , the growth rate  is determined by equation (2.2.16), which we re-

write as: 

*c *γ

                          ( ) **1**1* )(')()(' cfff HKKK −−++−+= −− δδγδγδγγ       (2.2.23) 

 

Using equations (2.2.22) and (2.2.23), it is straightforward to show that, for any 

, we have: 0* >c

                                                                                                                (2.2.24) ** ργ <
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This point is also comes out very clearly in Figure 6: any positive level of 

consumption implies . This condition, together with equation (2.2.15), 

covering the case where , implies the equilibrium satisfies condition (2.1.26). 

Hence, the balanced growth equilibrium in this model is dynamically efficient, 

regardless of savings behaviour.

** ργ <

0* =c

9  

 

2.3 The Cost Function Approach 
 

 Before moving on to consider multi-sector models, we first take a detour by 

redrafting the one sector models, and deriving the FPF, using cost functions. This 

simplifies the analysis considerably.  

 

The Neoclassical Model 

 

For a representative firm, define the unit cost function as  With competitive 

pricing, and with goods at the numeraire, we have: 

).,( rwm

 

                                                                 1),( =rwm                                             (2.3.1) 

 

This is exactly the factor price frontier. In the Cobb-Douglas example, the cost 

function is given by: 

                                                                                                (2.3.2) αα rwArwm −= 1~),(

 

Where . Now, using (2.3.2) in (2.3.1) gives us an explicit 

formulation for the FPF: 

)1(1 )1(~ αα αα −−−− −= AA

α
α

α −
−

−
−

= 11
1~ rAw  

                                                 
9 This last point was made in King and Ferguson (1993), in a somewhat different setting. 
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Rearranging: 

α
α

αα
−

⎟
⎠
⎞

⎜
⎝
⎛−=

1
)1(

r
AAw  

This is precisely the same equation as derived above, in (2.1.17). 

 

The Endogenous Growth Model 

 

In this case, the unit cost function is given by  

 

                                                                             (2.3.3) ),(),( **
KHmrwm δρδρ ++=

 

The growth rate  can be solved immediately from the competitive condition  *ρ

 

                                                                                       (2.3.4) 1),( ** =++ KHm δρδρ

 

Similarly, the equilibrium , (known as the “von Neumann ray”) can be found from 

the following condition: 

*k

 

                                                        
),(
),(

**

**
*

KHr

KHr

rrm
rrm

k
H

K=                                            (2.3.5) 

 

Where  and . In the Cobb-Douglas example, equations 

(2.3.4) and (2.3.5) become, respectively: 

KKr δρ += **
HHr δρ += **

 

                                                 1)()(~ *1* =++ − αα δρδρ KHA                               (2.3.6) 
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K

Hk
δρ
δρ

α
α

+
+

−
= *

*
*

1
                                        (2.3.7) 

 

In the special case where δδδ == KH , equations (2.3.6) and (2.3.7) collapse down 

to, respectively, δρ −= −1* ~A  and . This is the case considered in 

Barro and Sala-i-Martin (2004). 

)1/(* αα −=k

 

 

3. MODELS WITH TWO OR MORE SECTORS 
 

 With a little modification in the manner of presentation, the above results 

carry over to neoclassical and endogenous growth models with two or more sectors. 

The modifications are of two sorts. First, in the two sector endogenous growth models 

in the literature, the convention has been to treat consumption and investment in 

physical capital as the joint product of a single goods sector. Hence, in the diagrams, 

in contrast to figures 3-6 (which combine consumption with growth in H) 

consumption will henceforth be combined with growth in K. Second, since these are 

now outputs of different production processes, it is no longer the case that the 

production of both assets requires the usage of both. In particular, the Uzawa-Lucas 

model, and all of the other models that map into it, suppose that only H is used to 

produce . As we shall see, these modifications have implications for the shape of 

the OTF and the FPF, and for the labelling of the axes, but not for the duality relation 

itself.  

HI

 

3.1 The Neoclassical Two Sector Model 
 

 In this section, we consider a standard two-sector neoclassical model, based on 

Uzawa (1964), and covered in Burmeister and Dobell (1970), Chapter 4. In this 
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model, consumption goods are produced in in one sector (which we give the index 0), 

investment goods are produced in the other sector (given the index 1), and labour 

grows exogenously. Both production technologies are neoclassical, and both factors 

(capital and labour) are able to move costlessly and instantaneously across the sectors.  

 

 Expressed in inequality form (to be consistent with the general statement of 

the duality result presented below) the technology for producing consumption goods 

is given by: 

                                                   ))1(,)1((0 LuKvFC −−≤                                    (3.1.1) 

 

Where  and  respectively denote the fractions of capital and labour allocated to 

investment goods production. The technology for producing investment goods is 

given by: 

v u

                                                             ),(1 uLvKFI K ≤                                         (3.1.2) 

 

As in the single sector model, a constant fraction Kδ  of capital depreciates at each 

moment in time: 

                                                                                                       (3.1.3) KIK KK δ−=

 

And the stock of labour grows exogenously at the constant rate : 0>n

 

                                                                                                                   (3.1.4) nLL =

 

Now, defining LKk /≡ , , , and , substitution of 

(3.1.3) into (3.1.2) and rearrangement yields the following two equations in per capita 

terms: 

LCc /≡ KKK /≡γ LLL /≡γ

                                                     ))1(,)1((0 ukvFc −−≤                                      (3.1.5) 
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                                                    ),()( 1 uvkFkKK ≤+δγ                                       (3.1.6) 

 

Where it is understood that, with balanced growth: 

 

                                                             nLK == γγ                                               (3.1.7) 

 

Let p denote the price of the investment good relative to the consumption good (which 

is the numeraire). The gross real rate of return on capital is KKr δρ += . Expressed in 

terms of the consumption good, this gross return is pr . Thus, the competitive price – 

unit cost relations, for consumption and investment goods respectively, are: 

 

                                                            ),(1 0 prwm≤                                              (3.1.8) 

 

                                                            ),(1 prwmp ≤                                             (3.1.9) 

 

The fundamental duality theorem of neoclassical growth theory10 states that, with 

suitable qualifications about the technologies, the optimal transformation frontier is 

mathematically identical to the factor price frontier where: 

 

• Given KK δγ + , the optimal transformation )( KKGc δγ +=  is the value 

function for the problem of choosing ),,( vuk  to maximize c subject to (3.1.5) 

and (3.1.6), with the inequality constraints 1),(0 ≤≤ vu . 

 

• Given r, the factor price frontier )(rVw =  is the value function for the 

problem of choosing p to minimize w subject to (3.1.8) and (3.1.9).  

 

                                                 
10 For a general statement with arbitrary finite numbers of sectors, see Theorem 10 in Chapter 9 of 
Burmeister and Dobell (1970).  
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This theorem implies that the diagrams used in, and the discussion surrounding, the 

one sector neoclassical model can also be carried over to the two sector model (and, in 

fact, any finite number of sectors). That is, the OTF and the FPF for this two-sector 

model are represented in Figures 1 and 2 respectively.11 To make this as clear as 

possible, we now consider an example. 

 

The Cobb-Douglas Example 

 

Let the two production technologies take the following respective forms: 

 

         ,    ,   αα −−−=−− 1
0 ))1(())1(())1(,)1(( LuKvALuKvF 0>A )1,0(∈α    (3.1.10) 

 

                                 ,     ,   ββ −= 1
1 )()(),( uLvKBuLvKF 0>B )1,0(∈β            (3.1.11) 

 

Choosing  to maximize c subject to (3.1.5) and (3.1.6), using (3.1.10) and 

(3.1.11) with the inequality constraints 

),,( vuk

1),(0 ≤≤ vu , we find: 

 

                                                      ,                                              (3.1.12) α=*u β=*v

And the golden rule k: 

                                                     
βββ

δγ
αβ −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
1

1
1

*

KK

Bk                                        (3.1.13) 

 

Substitution of (3.1.12) and (3.1.13) into the objective function 

 
αα −−−= 1)1())1(( ukvAc  

yields the OTF: 

                                                 
11 Although, of course, the precise functional forms for the OTF are different across the one and two 
sector models. Similarly for the FPF.  
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                                  β
α

αβ
αβ

β
α

αα δγββαα −
−

−−− +−−= 1111 )()1()1( KKBAc             (3.1.14) 

 

Similarly, to minimize costs, firms choose p so that (3.1.8) and (3.1.9) hold with 

equality. Using (3.1.10) and (3.1.11), this implies: 

 

                                                           αα )(~1 1 prwA −=                                         (3.1.15) 

and 

                                                           ββ )(~ 1 prwBp −=                                        (3.1.16) 

 

where )1(1 )1(~ αα αα −−−− −= AA  and )1(1 )1(~ ββ ββ −−−− −= BB . Substitution of (3.1.16) 

into (3.1.15), and solving for w, gives us the FPF: 

 

                                        β
α

αβ
αβ

β
α

αα ββαα −
−

−−− −−= 1111 )1()1( rBAw                    (3.1.17) 

 

Clearly, the OTF in (3.1.14) and the FPF in (3.1.17) have the same formulation. 

 

The Savings Decision and Dynamic Efficiency 

 

 Up to this point, we have not specified the form of the savings behaviour in 

the two-sector model. The above results hold true regardless of the specifics of this 

behaviour. As in the one-sector neoclassical model, however, closing the model and 

determining the equilibrium values of the variables requires some sort of savings 

specification. Analysis of equilibrium behaviour is complicated in multi-sector 

models such as this, though, by the potential (not present in the one-sector model) for 

multiple steady states, and even cyclical equilibria.  
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 If all agents save a constant fraction s of their income, a simple sufficient 

condition for a unique steady state equilibrium is that the capital-labour ratio in the 

investment good sector be no greater than the its counterpart in the consumption 

goods sector.12 In this model, this condition implies: uv ≤ . Assuming this condition 

holds, as in the one-sector model, a steady state allocation is inefficient if and only if  

 

                                                               .KK γρ <                                                (3.1.18) 

 

 

3.1 The Two Sector Endogenous Growth Model 
 

 The corresponding two sector endogenous growth model, as presented in 

Chapter 5 of Barro and Sala-i-Martin (2004), has the same mathematical structure, but 

with different labels for the outputs of the two sectors. Specifically, human capital 

(rather than consumption) is the good produced in sector 0, and consumption now 

comes out of the output produced in sector 1 – which also produces physical capital. 

The technology for producing gross investment in human capital is given by: 

 

                                                 ))1(,)1((0 HuKvFI H −−≤                                   (3.2.1) 

 

Where v and u denote the fractions of physical and human capital allocated to the 

production of physical capital and consumption. Human capital also depreciates at the 

rate Hδ . Thus, net investment in human capital is given by: 

 

                                                                                                      (3.2.2) HIH HH δ−=

 

                                                 
12 See Burmeister (1980), p. 79. For necessary and sufficient conditions, see Burmeister and Dobell 
(1970), section 4.4.  
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Production of physical capital and consumption comes occurs according to the 

technology: 

 

                                                            ),(1 uHvKFY ≤                                          (3.2.3) 

 

This output can be used either for consumption C or gross investment in physical 

capital : KI

                                                              KICY +=                                                (3.2.4) 

 

Net investment in physical capital K  is gross investment minus depreciation, where a 

constant fraction Kδ  of capital depreciates at each moment in time: 

 

                                                                                                       (3.2.5) KIK KK δ−=

 

The population is constant, and normalized to unity. Now, defining , HKk /≡

KCc /~ ≡ , , and , substitution of (3.2.2) into (3.2.1) together 

with substitution of (3.2.4) and (3.2.5) into (3.2.3) yields the following two equations: 

KKK /≡γ HHH /≡γ

 

                                                   ))1(,)1((0 ukvFHH −−≤+δγ                             (3.2.6) 

 

                                                   ),()~( 1 uvkFkcKK ≤++δγ                                  (3.2.7) 

 

With respect to pricing, as in the neoclassical model, we set output from sector 0 (in 

this case, human capital) to be the numeraire. Let )( KKK pr δρ +=  and 

HHHr δρ +=  denote the gross rentals on the two assets. Hence, the competitive price 

– unit cost relations for the two goods are: 
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                                                ))(,(1 0 KKHH pm δρδρ ++≤                                (3.2.8) 

 

                                                ))(,(1 KKHH pmp δρδρ ++≤                               (3.2.9) 

 

Comparing equations (3.2.6) and (3.2.7) with equations (3.1.5) and (3.1.6), 

respectively, reveals that they have the precisely the same mathematical structure, but 

where )( HH δγ +  replaces c, and )~( cKK ++δγ  replaces )( KK δγ + . Similarly, 

equations (3.2.8) and (3.2.9) have the same structure as (3.1.8) and (3.1.9), but where 

)( HH δρ +  replaces w and )( KKp δρ +  replaces pr . This equivalence leads us to the 

following result.  

 

Theorem: The optimal transformation frontier in this model is mathematically 

identical to the factor price frontier, where 

 

• Given cKK
~++δγ , the optimal transformation )~( cG KKHH ++=+ δγδγ  is 

the value function for the problem of choosing ),,( vuk  to maximize 

)( HH δγ +  subject to (3.2.6) and (3.2.7), with the inequality constraints 

1), . (0 ≤≤ vu

 

• Given )( KK δρ + , the factor price frontier )( KKHH V δρδρ +=+  is the 

value function for the problem of choosing p to minimize )( HH δρ +  subject 

to (3.2.8) and (3.2.9).  

 

 This theorem implies that the diagrams used in, and the discussion 

surrounding, the one sector endogenous growth model can also be carried over to the 

two sector model (and, in fact, any finite number of sectors). That is, the OTF and the 

FPF for this two-sector model are represented in Figures 3 and 4 respectively. 
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The Cobb-Douglas Example 

 

Let the two production technologies take the following respective forms: 

 

         ,   ,  αα −−−=−− 1
0 ))1(())1(())1(,)1(( HuKvAHuKvF 0>A )1,0(∈α    (3.2.10) 

 

                                ,    ,   ββ −= 1
1 )()(),( uHvKBuHvKF 0>B )1,0(∈β            (3.2.11) 

 

Choosing  to maximize ),,( vuk )( HH δγ +  subject to (3.2.6) and (3.2.7), using 

(3.2.10) and (3.2.11) with the inequality constraints 1),(0 ≤≤ vu , we find: 

 

                                                      ,                                              (3.2.12) α=*u β=*v

and: 

                                                     
βββ

δγ
αβ −−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
1

1
1

*

KK

Bk                                        (3.2.13) 

 

Substitution of (3.2.12) and (3.2.13) into the objective function 

 
ααδγ −−−=+ 1)1())1(( ukvAHH  

yields the OTF: 

 

                     β
α

αβ
αβ

β
α

αα δγββααδγ −
−

−−− ++−−=+ 1111 )~()1()1( cBA KKHH        (3.2.14) 

 

Similarly, to minimize costs, firms choose p so that (3.2.8) and (3.2.9) hold with 

equality. Using (3.2.10) and (3.2.11), this implies: 
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                                                αα δρδρ ))(()(~1 1
KKHH pA ++= −                        

(3.2.15) 

and 

                                                ββ δρδρ ))(()(~ 1
KKHH pBp ++= −                      (3.2.16) 

 

where )1(1 )1(~ αα αα −−−− −= AA  and )1(1 )1(~ ββ ββ −−−− −= BB . Substitution of (3.2.16) 

into (3.2.15), and solving for )( HH δρ + , gives us the FPF: 

 

                         β
α

αβ
αβ

β
α

αα δρββααδγ −
−

−−− +−−=+ 1111 )()1()1( KKHH BA         (3.2.17) 

 

Clearly, the OTF in (3.2.14) and the FPF in (3.2.17) have the same formulation. 

 

Balanced Growth 

 

As in the neoclassical model, balanced growth implies that the growth rates of the two 

assets are the same: 

                                                                                                       (3.2.18) *γγγ == HK

 

We also have the no-arbitrage condition: the net rates of return on the two assets must 

also be equalized: 

                                                                                                     (3.2.19) *ρρρ == HK

 

As with the one-sector endogenous growth model, here we consider two different 

cases: with zero consumption (the von Neumann case), and with positive 

consumption.  
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Case 1:  Zero Consumption (the von Neumann Case) 

 

 In this case, the OTF simplifies down to: )( KKHH G δγδγ +=+ . The 

diagrammatic analysis of this case is identical to the one given, for the one-sector 

endogenous growth model in Section 2.2.3 above. That is, Figure 5 illustrates both the 

OTF and the FPF. The intersection of the 45 degree line, (representing conditions 

(3.2.18) and (3.2.19)) with the FPF ( )( KKHH V δρδρ +=+ ) determines the 

equilibrium net rate of return , and with the OTF (*ρ )( KKHH G δγδγ +=+ ) 

determines the equilibrium (von Neumann) growth rate . Moreover: *γ

 

                                                                                                                (3.2.20) ** ργ =

 

With  determined, then  can be determined through either cost equation (3.2.15) 

or (3.2.16).  

*ρ *p

 

Case 2:  Positive Consumption 

 

 We now consider the more general case where consumption is not set equal to 

zero, but is determined by a savings decision. As in the one-sector endogenous growth 

model of Section 2.2, Figure 6 illustrates this case. The axes remain the same as in 

Figure 5, so the introduction of a positive consumption value shifts the OTF leftwards 

by the amount c~ .  

 

 The intersection of the 45 degree line with the FPF uniquely determines  

and . That is, the equilibrium values of the rates of return and the mix of capital to 

human capital are independent of the savings decision. These are determined purely 

by the production technology, the firm’s optimization conditions, and the no-arbitrage 

condition. As in the one-sector model, however, the intersection of the 45 degree line 

*ρ

*k
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and the OTF does not entirely determine the growth rate. We are left with one 

equation in two unknowns (γ  and c~ ): 

 

                                                    )~( cG KH ++=γ + γδ δ                                   (3.2.21) 

 

To close this model, we need to specify some sort of consumption/savings decision. 

Thus, in this case, the consumption/savings decision influences the growth rate.  

 

 Regardless of the precise specification of the savings decision, however, it is 

clear from Figure 6 (and equation (3.2.21)) that any positive level of consumption will 

reduce the growth rate below it’s von Neumann value of . Thus, we have, with 

positive consumption: 

*ρ

                                                                                                                (3.2.20) ** ργ <

 

Hence, the balanced growth equilibrium is dynamically efficient.  

 

 

4. CONCLUSIONS 
 

 The fundamental duality theorem, concerning the optimal transformation and 

factor price frontiers, identified in the neoclassical models many years ago, extends 

quite naturally to endogenous growth models that admit balanced growth paths. As 

such, this theorem applies to a very wide and important class of models, and helps us 

to understand the relationships between key variables in the models. Interestingly, the 

equivalence identified in the theorem also extends across models and helps us to 

recognize both common features and distinctions across these models.  
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 One key distinction between neoclassical and endogenous growth models that 

comes out very clearly from this analysis is the role of savings in these different 

models. In the neoclassical model, with long run growth given exogenously, savings 

plays a role in the determination of the capital labour ratio, and hence, factor prices 

and dynamic efficiency. In endogenous growth models, savings play no role at all in 

the determination of the capital labour ratio, or factor prices, or the dynamic 

efficiency of the balanced growth equilibrium – these variables are determined purely 

by the production side of the economy. In these models, the macroeconomic role of 

savings is to determine the rate of growth.  

 

Perhaps the most important result that comes out of this analysis is that the key 

source of inefficiency in balanced growth models is the mispricing of one or more 

factors of production. In the neoclassical model, this mispricing arises because labour 

is not produced according to competitive market forces. In endogenous growth 

models, externalities associated with knowledge or human capital can play a similar 

role. In the context of these models, a role for policy may exist to correct for these 

distortions. However, particularly in the case of the neoclassical model, it may be 

worthwhile to reconsider if any important ingredients are missing from the model 

itself which, in a more general model, would move us away from what might be seen 

as an odious conclusion.  
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 4
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