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STOCHASTIC GROWTH WITH NONCONVEXITIES:
THE OPTIMAL CASE

KAZUO NISHIMURA, RYSZARD RUDNICKI, AND JOHN STACHURSKI

Abstract. This paper studies optimal investment and dynamic

behaviour of stochastically growing economies. We assume neither

convex technology nor bounded support of the productivity shocks.

A number of basic results concerning the investment policy and the

Ramsey–Euler equation are established. We also prove a funda-

mental dichotomy pertaining to optimal growth models perturbed

by standard econometric shocks: Either an economy is globally

stable or it is globally collapsing to the origin.

1. Introduction

The stochastic optimal growth model (Brock and Mirman, 1972) is a

foundation stone of modern marcroeconomic and econometric research.

To accommodate the data, however, economists are often forced to go

beyond the convex production technology used in these original studies.

Nonconvexities lead to technical difficulties which applied researchers

would rather not confront. Value functions are in general no longer

smooth, optimal policies contain jumps, and the Euler equation may

fail. This reality precludes the use of many standard tools. Further,

convergence of state variables to a stationary equilibrium is no longer

assured. The latter is a starting point of much applied analysis (see,

e.g., Kydland and Prescott, 1982; or Long and Plosser, 1983) and fun-

damental to the rational expectations hypothesis (Lucas, 1986).

This research was partially supported by the Japan Society for the Promotion

of Science and the State Committee for Scientific Research (Poland) Grant No. 2

P03A 031 25.
1
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Although nonconvexities are technically challenging, the richer dynam-

ics that they provide help to replicate key time series. For example,

nonconvexities often lead to the kind of regime-switching behaviour

found in aggregate income data (e.g., Prescott, 2002), or the growth

miracles and growth disasters in cross-country income panels. Also,

nonconvexities can arise directly from micro-level modeling, taking the

form of fixed costs, threshold effects, ecological properties of natural

resource systems, economies of scale and scope, network and agglom-

eration effects, and so on.

The objective of this paper is to investigate in depth the fundamen-

tal properties of stochastic nonconvex one-sector models and the series

they generate using assumptions which facilitate integration with em-

pirical research (as opposed to analytical convenience).1

Previously, in the deterministic case, optimal growth models with non-

convex technology were studied in continuous time by Skiba (1978).

In discrete time, Majumdar and Mitra (1982) examined efficiency of

intertemporal allocations. Dechert and Nishimura (1983) studied the

standard discounted model with convex/concave technology, and char-

acterized the dynamics of the model for every value of the discount

factor. More recently, Amir, Mirman and Perkins (1991) used lattice

programming techniques to study solutions of the Bellman equation

and associated comparative dynamics. Kamihigashi and Roy (2003)

study nonconvex optimal growth without differentiability or even con-

tinuity.

In the stochastic case, a very rigorous and comprehensive treatment

of optimal growth with nonconvex technology is given in Majumdar,

Mitra and Nyarko (1989). Amir (1997) studies optimal growth in

1We consider only optimal dynamics. There are many studies of nonoptimal com-

petitive dynamics in nonconvex environments. See for example Mirman, Morand

and Reffett (2003) and their extensive list of references.
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economies that have some degree of convexity. Using martingale argu-

ments, Joshi (1997) analyzes the classical turnpike properties when the

production is nonstationary. Schenk-Hoppé (2002) considers dynamic

stability of stochastic overlapping generations models with S-shaped

production function. Mitra and Roy (2003) study nonconvex renew-

able resource exploitation and stability of the resource stock.

All of the above papers assume that the shock which perturbs activity

in each period has compact support. This assumption makes the anal-

ysis more straightforward, but limits applicability to standard econo-

metric models. We assume instead that the distribution of the shock

has a density, which may in general have bounded or unbounded sup-

port.

The density representation of the shock turns out to be very convenient

in proving interiority of the optimal policy and smoothness in the form

of Ramsey–Euler equations and related results. Working with these

findings and some additional assumptions, we also obtain a fundamen-

tal dichotomy for stochastic growth models from this general class. In

particular, the economy is either globally stable in a strong sense to be

made precise, or globally collapsing to the origin. This result simplifies

considerably the range of possible outcomes. We connect the two pos-

sibilities to the discount rate, and also provide conditions to determine

which outcome prevails for specific parameterizations.

Section 2 introduces the model. Section 3 discusses optimization and

properties of the optimal policies. Section 4 considers the dynamics of

the processes generated by these policies (i.e., the optimal paths). All

of the proofs are given in Section 5 and the appendix.

2. Outline of the Model

Let R+ := [0,∞) and let B be the Borel subsets of R+. At the start

of each period t a representative agent receives current income yt ∈
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R+ and allocates it between current consumption ct and savings. On

current consumption c the agent receives instantaneous utility u(c). For

convenience, depreciation is assumed to be total, and current savings

determines one-for-one the stock kt of available capital. Production

then takes place, delivering at the start of the next period output

(1) yt+1 = f(kt)εt,

where εt is a shock taking values in R+.

Let (Ω,F ,P) be a probability space where uncertainty is generated. In

particular, (εt)
∞
t=0 is a random sequence on this space. The sequence is

selected at the start of time according to P and progressively revealed.

When the time t savings decision is made ε0, . . . , εt−1 are observable.

We assume that each εt has the same marginal distribution, which can

be represented by density ψ. That is, P[ε−1
t (B)] =

∫
B
ψ(z)dz for all

B ∈ B. Here and in what follows, by density is meant a nonnegative

and B-measurable function on R+ that integrates to unity. For no-

tational convenience the same symbol ψ is used throughout the paper

to denote the density function and the distribution of ε, so that ψ(dz)

and ψ(z)dz have the same meaning.

The agent seeks to maximize the expectation of a discounted sum of

utilities. Future utility is discounted according to % ∈ (0, 1).

Assumption 2.1. The function u is strictly increasing, twice differen-

tiable on (0,∞), and satisfies

(U1) limc→0 u
′(c) = ∞;

(U2) u′′(c) < 0 for all c > 0; and

(U3) u is bounded and u(0) = 0.

The Inada condition (U1) is needed to obtain the Ramsey–Euler equa-

tion. Strict concavity is critical to the proof of monotonicity of the

optimal policy, on which all subsequent results depend. Note that if
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u is required to be bounded, then assuming u(0) = 0 sacrifices no

additional generality.2

Assumption 2.2. The production function f is nondecreasing and

twice differentiable on (0,∞). In addition,

(F1) f(k) = 0 if and only if k = 0;

(F2) lim supk→∞ f ′(k) = 0; and

(F3) lim infk→0 f
′(k) > 1.

Condition (F2) is the usual decreasing returns assumption. Actually

for the proofs we require only that f is majorized by an affine function

with slope less than one. This is implied by (F2), as can be readily

verified from the Fundamental Theorem of Calculus.

Assumption 2.3. The shocks (εt)t≥0 and their density ψ satisfy

(S1) the sequence (εt)t≥0 is uncorrelated; and

(S2) EP[εt] =
∫
zψ(z)dz = 1.

Assumption (S2) is just a finite mean assumption—there is no loss of

generality in assuming then that the mean is 1.

An economy is defined by the collection (u, f, ψ, %), for which Assump-

tions 2.1–2.3 are always taken to hold.

By a control policy is meant a function σ : R+ 3 y 7→ k ∈ R+ associat-

ing current income to current savings. The policy is said to be feasible

if is is B-measurable and 0 ≤ σ(y) ≤ y for all y. An initial condition

and a feasible policy complete the dynamics of the model (1), determin-

ing a stochastic process (yt)t≥0 on (Ω,F ,P), where yt+1 = f(σ(yt))εt

for all t ≥ 0.

2The theoretical literature uses bounded and unbounded utility functions for

dynamic programming. We use the former, because bounded functions are a natural

dual pair for probabilities.
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Investment behavior is determined by the problem

(2) sup
σ

EP

[
∞∑

t=0

%tu(yt − σ(yt))

]
,

where EP denotes integration over Ω with respect to P, an initial condi-

tion y0 is given, and the supremum is over the set of all feasible policies.

By (U3) the functional inside the integral is bounded independent of

σ, and the supremum always exists. A policy is called optimal if it is

feasible and attains the supremum (2).

3. Optimization

In this section we solve the optimization problem by dynamic program-

ming, and characterize the properties of the value function and control

policy. To begin, define as usual the value function V by setting V (y)

as the real number defined by (2) when y = y0 is the initial condition.

Let bB be the space of real bounded B-measurable functions. Define

also the usual operator T mapping bB into itself by

(3) (Tv)(y) = sup
0≤k≤y

{
u(y − k) + %

∫
v[f(k)z]ψ(dz)

}
.

It is well-known that T is a uniform contraction on bB in the sense of

Banach, and that the value function V is the unique fixed point of T

in bB.

Lemma 3.1. For any economy (u, f, ψ, %), the value function V is

continuous, bounded and strictly increasing. An optimal policy σ exists.

Moreover, if σ is optimal, then

V (y) = u(y − σ(y)) + %

∫
V [f(σ(y))z]ψ(dz), ∀y ∈ R+.

The proof does not differ from the neoclassical case (see for example

Stokey et al., 1989) and is omitted.
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As a matter of notation, define

Σ(y) := argmax0≤k≤y

{
u(y − k) + %

∫
V [f(k)z]ψ(dz)

}
,

so that y 7→ Σ(y) is the optimal correspondence, and σ is an optimal

policy if and only if it is a B-measurable selection from Σ.3

3.1. Monotonicity of the policy. Monotone policy rules play an

important role in economics, particularly with regards to the charac-

terization of equilibria. That monotonicity of the optimal investment

function holds in one-sector nonconvex growth environments was estab-

lished by Dechert and Nishimura (1983) and is now well-known. In-

deed, monotone controls are a feature of many very general stochastic

dynamic environments. See in particular Mirman, Morand and Reffett

(2003, Theorem 6 and the discussion in Section 6.2). A simple proof of

the following fact is provided for completeness. (Here and below proofs

are deferred to Section 5.)

Lemma 3.2. Let an economy (u, f, ψ, %) be given, and let σ be a feasible

policy. If σ is optimal, then it is nondecreasing on R+.

Put differently, one cannot construct a measurable selection from the

optimal correspondence Σ that is not nondecreasing. (In contrast to

the neoclassical case, in nonconvex models consumption is not generally

monotone with income.) It should be emphasized that Lemma 3.2 holds

under much weaker conditions—in particular without interiority-type

assumptions (Mirman, Morand and Reffett, 2003), continuity (Kami-

higashi and Roy, 2003) and so on.

One supposes that as % decreases—increasing the rate at which the

future is discounted—the propensity to save will fall. The following

result was established for the stochastic neoclassical case in Danthine

3Regarding the existence of a measurable selection σ, see, for example, Hopen-

hayn and Prescott (1992, Lemma 2).
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and Donaldson (1981, Theorem 5.1), and in the nonconvex, determinis-

tic case by Amir, Mirman and Perkins (1991). The second paper gives

an attractive proof using lattice programming. Here we provide a very

elementary proof.

Lemma 3.3. The optimal policy is nondecreasing in the discount factor

%, in the sense that if (u, f, ψ, %0) and (u, f, ψ, %1) are two economies,

and if σ0 (resp. σ1) is optimal for the former (resp. latter), then %1 ≥ %0

implies σ1 ≥ σ0 pointwise on R+.

Moreover, any sequence of optimal policies not only decreases, but also

converges to zero as % does—in fact uniformly on compacts:

Lemma 3.4. For u, f and ψ given, let (%n) be a sequence of discount

factors in (0, 1), and for each n let σn be a corresponding optimal policy.

If %n ↓ 0, then σn ↓ 0 pointwise, and the convergence is uniform on

compact sets.

3.2. Derivative characterization of the policy. Optimal behav-

ior in growth models is usually characterized by the Ramsey–Euler

equation—an intuitive and tractable intertemporal arbitrage condition.

In stochastic models, where sequential arguments are unavailable, the

obvious path to the Ramsey–Euler equation is via differentiability of

the value function and a well-known envelope condition (Mirman and

Zilcha, 1975, Lemma 1). In the case of the one-sector neoclassical

model, all of these results were already established and carefully inves-

tigated by Mirman and Zilcha (1975) and others.

Further progress was made by Blume, Easley and O’Hara (1982), who

demonstrated differentiability of the optimal policy under convexity

and absolute continuity of the shock by way of the implicit function

theorem. Amir (1997) extended these results to a weaker convexity

requirement.
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Without any convexity, however, there may be jumps in the optimal

policy, which in turn affect the smoothness of the value function. The

validity of the Ramsey–Euler characterization is by no means clear.

However, Dechert and Nishimura (1983, Theorem 6, Lemma 8) showed

that in their model the value function has both left and right deriva-

tives at every point, and that these agree off an at most countable set.

The intuition is that nondifferentiability of the value function coincides

pointwise with jumps in optimal investment. But by Lemma 3.2, the

only optimal jumps are increases. To each jump, then, can be associ-

ated a unique rational, which precludes uncountability.

These results were extended to the stochastic case by Majumdar, Mi-

tra and Nyarko (1989). In addition to the above results concerning

the value function, they were able to show for the first time that the

Ramsey–Euler equations holds everywhere, irrespective of jumps in the

optimal policy.

Although their findings remain an important, they require that shocks

are supported on a compact interval bounded away from zero, which

excludes standard empirical formulations. Also, they assume the exis-

tence of a neighborhood of zero in which output strictly exceeds capital

input with probability one. In the present paper a different approach

is used, starting from the essential idea of Blume, Easley and O’Hara

(1982), but without convexity or compact state. From this we prove

interiority of the policy and the Ramsey–Euler equation for standard

econometric shocks.

Assumption 3.1. The shock εt is such that

(S3) the density ψ is continuously differentiable on (0,∞), and

(S4) the integral
∫
z|ψ′(z)|dz is finite.

The set of densities satisfying (S3) and (S4) is norm-dense in the set

of all densities when the later are considered as a subset of L1(R+).
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They also hold for many standard econometric shocks on R+, such

as the lognormal distribution. We these assumptions in hand we can

establish the following without convexity or bounded shocks.

Proposition 3.1. Let (u, f, ψ, %) satisfy Assumptions 2.1–3.1.

1. If policy σ is optimal, then it is interior. That is, 0 < σ(y) < y

for all y ∈ (0,∞).

2. The value function V has right and left derivatives V ′
− and V ′

+

everywhere on (0,∞).

3. If policy σ is optimal, then it satisfies V ′
−(y) ≤ u′(y − σ(y)) ≤

V ′
+(y) for all y ∈ (0,∞).

4. The functions V ′
− and V ′

+ disagree on an at most countable sub-

set of R+.

In the stochastic nonconvex case, Part 1 of Proposition 3.1 was proved

by Majumdar, Mitra and Nyarko (1989, Theorem 4). Their proof re-

quires that the shock has compact support bounded away from zero,

and there exists an a > 0 such that f(k)ε > k with probability one

whenever k ∈ (0, a). Part 2 was proved in the deterministic case by

Dechert and Nishimura, as was Part 4 (1983, Theorem 6 and Lemma

8).4 Part 3 is due in the stochastic neoclassical case to Mirman and

Zilcha (1975, Lemma 1), and the proof for the nonconvex case is the

same.5

Corollary 3.1. For a given economy (u, f, ψ, %), any two optimal poli-

cies are equal almost everywhere.

4On Part 2 see also Askri and Le Van (1998, Proposition 3.2) and Mirman,

Morand and Reffet (2003).
5Differentiability of the value function for the stochastic neoclassical growth

model was first established by Mirman and Zilcha (1975, Lemma 1). They argued

that if V is concave on some open interval, then the subdifferentials exist everywhere

on that interval, and V ′
+ ≤ V ′

−. If follows from Part 3 of the Proposition, then, that

concavity immediately gives differentiability, and, moreover, V ′(y) = u′(y − σ(y)).
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Proof. Immediate from Parts 3 and 4. �

It will turn out that under the maintained assumptions, differences on

null sets do not really concern us (see Lemma 4.1). So we can in some

sense talk about the optimal policy (i.e., when a.e.-equivalent policies

are identified).

It turns out that even with the maintained assumptions the Ramsey–

Euler equation continues to hold.

Proposition 3.2. Let Assumptions 2.1–3.1 hold. If σ is optimal for

(u, f, ψ, %), then for all y > 0,

u′(y − σ(y)) = %

∫
u′[f(σ(y))z − σ(f(σ(y))z)]f ′(σ(y))zψ(z)dz.

Using Proposition 3.2 we can strengthen the monotonicity result for

the optimal policy (Lemma 3.2). The proof is straightforward and is

omitted.6

Corollary 3.2. For a given economy (u, f, ψ, %), every optimal policy

is strictly increasing.

With these restrictions it becomes possible to investigate in detail the

dynamical behavior of the optimal paths.

4. Dynamics

Next we discuss the dynamics of the stochastic process (yt)t≥0. For the

nonconvex deterministic case a detailed characterization of dynamics

was given by Dechert and Nishimura (1983). Not surprisingly, for some

parameter values multiple equilibria obtain. For the convex stochastic

growth model, Mirman (1970) and Brock and Mirman (1972) proved

that the sequence of marginal distributions for the process converge to

6Strict concavity of u is necessary here. See for example Mirman, Morand and

Reffett (2003, Section 6.2).
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a unique limit independent of the initial condition. Subsequently this

problem has been treated by many authors.7

For the stochastic convex model the stability proofs require convex

technology and infinite marginal product of capital at the origin. How-

ever, not all environments are convex, and there is little empirical evi-

dence to suggest that in the aggregate production function an infinite

marginal productivity of capital at the origin is certain, or even likely.

Indeed, casual observation shows that not all economies converge up-

wards on a stable growth path. Stagnation and collapse also occur.

When the Brock-Mirman conditions are weakened the potential for

instability arises. Which kind of dynamical behavior prevails will be

determined by a complex interaction between preferences, technology

and the investment behavior of agents. Regarding asymptotic stability

of optimal stochastic growth models without convexity, relatively little

is known.8 Kamihigashi (2003) shows that even for shocks which are

only stationary and ergodic, sufficiently adverse distributions lead to

a.s. convergence to zero for every feasible policy. Mitra and Roy (2003)

give interesting discussions of extinction and conservation in renewable

resource models. Joshi (1997) uses monotonicity and martingale argu-

ments to prove various turnpike results.

Below it is shown that optimal processes satisfy a fundamental di-

chotomy. Either they are globally stable or globally collapsing to the

origin, independent of the initial condition. This result reduces consid-

erably the possible range of asymptotic outcomes. For example, path

depedence never holds. More importantly, global stability can now

be established by showing only that an economy does not collapse to

the origin. The proof is based on the Foguel Alternative for Markov

7See for example Stachurski (2002) and references.
8This is mainly because the properties of the optimal policies are difficult to de-

termine, rather than any inherent difficultly in analyzing nonlinear or discontinuous

stochastic dynamics.
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chains (Foguel 1969, Rudnicki 1995). Some conditions are provided to

distinguish between the two possibilities.

To begin, let P be the set of probability measures on (R+,B). For

a fixed policy σ and initial condition y0, we consider the evolution of

the income process (yt)t≥0 satisfying yt+1 = f(σ(yt))εt, and the corre-

sponding sequence of marginal distributions (ϕt)t≥0 ⊂ P.9 By (S1)

the process is Markovian, with yt independent of εt. In particular, for

any bounded Borel function h : R+ → R,

EPh(yt+1) = EPh[S(yt)εt] =

∫ ∫
h[S(y)z]ψ(dz)ϕt(dy).

Specializing to the case h = 1B and using yt ∼ ϕt gives the recursion

(4) ϕt+1(B) =

∫ [∫
1B[S(y)z]ψ(z)dz

]
ϕt(dy).

When σ is optimal, the sequence of marginal distributions (ϕt) defined

inductively by (4) is called an optimal path. Evidently it depends on

σ and the initial condition y0 ∼ ϕ0, which is taken as data.

If y0 = 0 the dynamics require no additional investigation. Henceforth

by an initial condition is meant a random variable y0 such that P{y0 >

0} = 1 holds. This convention makes the results a bit neater, and is

maintained throughout the proofs without further comment.

When studying convergence of probabilities two topologies are com-

monly used. One is the so-called weak topology, under which distri-

bution functions converge if and only if they converge pointwise at all

continuity points.10 The other is the norm topology, or strong topology,

generated by the total variation norm. Under the latter, the distance

9As before, (yt)t≥0 is a stochastic process on (Ω,F ,P). By the marginal distri-

bution ϕt ∈ P of yt is meant its distribution on R+ in the usual sense. Precisely,

ϕt := P ◦ y−1
t , the image measure induced on (R+,B) by yt.

10It is the smallest topology on P making the functionals P 3 µ 7→
∫
gdµ ∈ R

continuous for each g ∈ Cb(R+). Here Cb(R+) is the continuous bounded functions

on R+.
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between µ and ν in P is the supremum of
∑N

n |µ(Bn) − ν(Bn)| over

all finite measurable partitions of R+.

Definition 4.1. Let an economy (u, f, ψ, %) be given, and let σ be an

optimal policy. Following Mirman (1970), an equilibrium or stochastic

steady state for (u, f, ψ, %) is a measure ϕ∗ ∈ P, such that ϕ∗({0}) = 0

and

(5)

∫ [∫
1B[f(σ(y))z]ψ(dz)

]
ϕ∗(dy) = ϕ∗(B), ∀B ∈ B,

where 1B is the indicator function of B. The policy σ is called globally

stable if for σ there is a unique equilibrium ϕ∗, and the optimal path

(ϕt) generated by σ and starting at ϕ0 satisfies ϕt → ϕ∗ in the norm

topology as t→∞ for all initial conditions ϕ0. The economy (u, f, ψ, %)

is called globally stable if every optimal policy is globally stable.

Equation (5) should be understood as follows. The integral term in-

side the brackets is the probability that income is in B next period,

given that it is currently equal to y. The outer integral averages this

over all y, weighted by ϕ∗. Thus the left hand side is the probability

that income is in B next period given that it is currently distributed

according to ϕ∗. If this is again equal to ϕ∗(B) then the economy is in

equilibrium.

The stability condition defined above is a particularly strong one. It

implies many standard stability conditions for Markov processes, such

as recurrence, and also convergence of the marginal distributions in the

weak topology.11

11In the present case it also implies uniform convergence of distribution functions,

which is the criterion of Brock and Mirman (1972). See Dudley (2002, p. 389).
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For stochastic growth instability has been studied less than stability.

There are various notions which capture instability; we borrow a rel-

atively strong one from the Markov process literature referred to as

sweeping.12

Definition 4.2. Let an economy (u, f, ψ, %) be given, and let σ be an

optimal policy. Let B0 ⊂ B. In general, the Markov process generated

by the policy σ is called sweeping with respect to B0 if each optimal

path (ϕt) generated by σ satisfies ϕt(A) → 0 as t → ∞ for every

A ∈ B0 and every initial condition ϕ0. Here we say that policy σ is

globally collapsing to the origin if it is sweeping with respect the the

collection of intervals [a,∞), a > 0. Also, (u, f, ψ, %) will be called

globally collapsing to the origin if every optimal policy is.

The following result indicates that there is a fundamental dichotomy

for the dynamic behavior of the economy. In the proofs monotonicity

and interiority of the optimal policy play key roles.

Assumption 4.1. Density ψ is strictly positive (Lebesgue almost)

everywhere on R+

Proposition 4.1. Let an economy (u, f, ψ, %) be given. If in addition

to Assumptions 2.1–3.1, Assumption 4.1 also holds, then there are only

two possibilities. Either

1. (u, f, ψ, %) is globally stable, or

2. (u, f, ψ, %) is globally collapsing to the origin.

Remark. Assumption 4.1 can be weakened significantly (Rudnicki,

1995, Lemma 3 and Theorem 2), but it holds for many standard econo-

metric shocks so we maintain it.

Thus for stochastic optimal growth models with these assumptions

multiple equilibria are never observed, regardless of nonconvexities in

12See, for example, Lasota and Mackey (1994, Section 5.9).
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production technology. Instead long run outcomes are completely de-

termined by the structure of the model, and historical conditions are

asymptotically irrelevant. However, the equilibrium distribution may

well be multi-modal, concentrated on areas that are locally attracting

on average.

Nonconvex technology introduces the possibility that many optimal

policies exist for the one economy. For the deterministic nonconvex

case it has been shown (Dechert and Nishimura, 1983, Lemma 6) that

different optimal trajectories can have very different dynamics, even

from the same initial condition. For our stochastic model this is not

possible:

Lemma 4.1. Let an economy (u, f, ψ, %) be given. If one optimal pol-

icy (i.e., measurable selection from Σ) is globally asymptotically sta-

ble, then every optimal policy (selection from Σ) is, and hence so is

(u, f, ψ, %). Conversely, if one optimal policy is globally collapsing to

the origin, then every optimal policy is, and hence so is (u, f, ψ, %).

We have seen that an increase in the discount rate (a decrease in %)

is associated with less savings and investment, which in turn should

increase the likelihood of collapse to the origin. Conversely, lower dis-

count rates (higher %) should increase the likelihood that the economy

is stable. Precisely,

Lemma 4.2. For economies E0 := (u, f, ψ, %0) and E1 := (u, f, ψ, %1)

with %0 ≤ %1, the following implications hold.

1. If E1 is globally collapsing to the origin, then so is E0.

2. If E0 is globally asymptotically stable, then so is E1.

Combining the above results we can deduce that the dynamic behavior

of the stochastic optimal growth model has only three possible types.

Precisely,
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Proposition 4.2. For u, f , and ψ given, either

1. (u, f, ψ, %) is globally stable for all % ∈ (0, 1),

2. (u, f, ψ, %) is globally collapsing for all % ∈ (0, 1), or

3. there is a %̂ ∈ (0, 1) such that (u, f, ψ, %) is globally stable for

all % > %̂, and globally collapsing for all % < %̂.

We emphasize that under the current hypotheses one cannot rule out

the possibility that the economy is globally stable or globally collapsing

for every % ∈ (0, 1). For example, Kamihigashi (2003) shows that very

general one-sector growth models converge almost surely to zero when

f ′(0) < ∞ and shocks are sufficiently volatile. Determining which of

the above three possibilities holds, then, requires careful study of indi-

vidual models. To this end we prove the following dynamical systems

result which gives sufficient conditions against which different model

primitives can be tested. It shows that the difference between global

stability and global instability depends only on the behavior of the

model in the neighborhood of the origin.

Assumption 4.2. Density ψ satisfies E| ln ε| =
∫
| ln z|ψ(dz) <∞.

Proposition 4.3. Let an economy (u, f, ψ, %) be given, and let σ be an

optimal policy. Suppose that Assumptions 2.1–4.2 hold. Define

p := lim sup
y→0

f(σ(y))

y
, q := lim inf

y→0

f(σ(y))

y
.

1. If p < exp(E ln ε), then (u, f, ψ, %) is globally collapsing to the

origin.

2. If q > exp(E ln ε), then (u, f, ψ, %) is globally stable.

Also, in the light of Lemma 3.4, one might suspect that even in the

situation where an economy is globally stable for every %, the stationary

distribution will become more and more concentrated around the origin

when the discount rate becomes very large (% ↓ 0). In this connection,
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Proposition 4.4. Let u, f and ψ be given. Suppose that (u, f, ψ, %) is

globally stable for all % ∈ (0, 1). If %n → 0, then ϕ∗n → δ0 in the weak

topology, where ϕ∗n is the stationary distribution corresponding to %n,

and δ0 is the probability measure concentrated at zero.

Remark. Norm (as opposed to weak) convergence is impossible here,

because— as is clear from the proofs—the stationary distribution must

be a density, in which case δ0 and ϕ∗n are mutually singular, and ‖δ0 −
ϕ∗n‖ = 2 for all n.

5. Proofs

In the proofs, L1(X) refers as usual to all integrable Borel functions on given

space X, and Cn(X) is the n times continuously differentiable functions.

5.1. Monotonicity. The proof of monotonicity of the optimal policy is as

follows.

Proof of Lemma 3.2. Let σ be optimal, and take any nonnegative y ≤ y′.

If y = y′ then monotonicity is trivial. Suppose the inequality is strict. By

way of contradiction, suppose that σ(y) > σ(y′). Define c := y − σ(y),

c′ := y′ − σ(y′), and ĉ := σ(y)− σ(y′) > 0. Note first that

(6) c′ − ĉ = y′ − σ(y) > y − σ(y) = c ≥ 0.

Also, since c+ ĉ+ σ(y′) = y, we have

u(c) + %

∫
V [f(σ(y))z]ψ(dz) ≥ u(c+ ĉ) + %

∫
V [f(σ(y′))z]ψ(dz),

and since c′ − ĉ+ σ(y) = y′,

u(c′) + %

∫
V [f(σ(y′))z]ψ(dz) ≥ u(c′ − ĉ) + %

∫
V [f(σ(y))z]ψ(dz).

∴ u(c′)− u(c′ − ĉ) ≥ u(c+ ĉ)− u(c).

As c′ − ĉ > c by (6), this contradicts the strict concavity of u. �
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Proof of Lemma 3.3. Pick any y ≥ 0. Let k0 := σ0(y) and k1 := σ1(y). By

definition,

u(y − k0) + %0

∫
V (f(k0)z)ψ(dz) ≥ u(y − k1) + %0

∫
V (f(k1)z)ψ(dz)

and

u(y − k1) + %1

∫
V (f(k1)z)ψ(dz) ≥ u(y − k0) + %1

∫
V (f(k0)z)ψ(dz).

Multiplying the first inequality by %1 and the second by %0 and adding gives

%1u(y − k0) + %0u(y − k1) ≥ %1u(y − k1) + %0u(y − k0).

∴ (%1 − %0)(u(y − k0)− u(y − k1)) ≥ 0.

∴ %1 ≥ %2 =⇒ u(y − k0)− u(y − k1) ≥ 0 =⇒ k1 ≥ k0.

�

Proof of Lemma 3.4. Since u is concave, for any y > 0 and any k ≤ y,

(7) u(y − k) ≤ u(y)− u′(y)k.

Also, since u(y) ≤M <∞ for all y,

(8) V (y) := sup
σ

EP

[ ∞∑
t=0

%tu(yt − σ(yt))

]
≤ 1

1− %
M.

Since σ(y) = 0 is feasible,

u(y − σ(y)) + %

∫
V (f(σ(y))z)ψ(dz) ≥ u(y) + %

∫
V (f(0)z)ψ(dz) = u(y).

∴ u(y)− u(y − σ(y)) ≤ %

∫
V (f(σ(y))z)ψ(dz) ≤ %

1− %
M.

Using the bound (7) gives us

u′(y)σ(y) ≤ %

1− %
M, ∀y > 0.

∴ σ(y) ≤ %

1− %

M

u′(y)
:= b(y; %).

The function y → b(y, %) is continuous and converges pointwise to zero as

% → 0. The statement follows (uniform convergence on compact sets is by

Dini’s Theorem). �
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5.2. The Ramsey–Euler equation. Next Propositions 3.1 and 3.2 are

established. We use the following lemma, which can by thought of as a

kind of convolution argument designed to verify precisely the conditions

necessary for the Ramsey–Euler equation to hold. The proof is rather long,

and is relegated to the appendix.

Lemma 5.1. Let g and h be nonnegative real functions on R. Define

(9) µ(r) :=
∫ ∞

−∞
h(x+ r)g(x) dx.

Consider the following conditions:

(i) g ∈ L1(R) ∩ C1(R), g′ ∈ L1(R)

(ii) h is bounded

(iii) h is nondecreasing

(iv) h is absolutely continuous on closed intervals

(v) h′ is bounded on compact subsets of R,

where h′ is defined as the derivative of h when it exists and zero elsewhere.

If (i) and (ii) hold, then µ ∈ C1(R), and

(10) µ′(r) = −
∫ ∞

−∞
h(x+ r)g′(x) dx.

If, in addition, (iii)–(v) hold, then µ′ also has the representation

(11) µ′(r) =
∫ ∞

−∞
h′(x+ r)g(x) dx.

Remark. Note that higher order derivatives are immediate if g has high

order derivatives that are all integrable. In the first part of the proof, where

differentiability and the representation µ′(r) = −
∫
h(x + r)g′(x)dx are es-

tablished we do not use nonnegativity of g—it may be any real function. So

now suppose that g is twice differentiable, and that g′′ ∈ L1(R). Then by

applying the same result, this time using g′ for g, differentiability of µ′ is

verified.

To prove Proposition 3.1, the following preliminary observation is important.

(Assume the hypotheses of that proposition.)

Lemma 5.2. If V is the value function for (u, f, ψ, %), then k 7→
∫
V [f(k)z]ψ(z)dz

is continuously differentiable on the interior of R+.
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Proof. By a simple change of variable,∫ ∞

0
V [f(k)z]ψ(z)dz =

∫ ∞

−∞
V [exp(ln f(k) + x)]ψ(ex)ex dx.

Let h(x) := V [exp(x)], g(x) := ψ(ex)ex, and let µ be defined as in (9).

Then
∫
V [f(k)z]ψ(z)dz = µ[ln f(k)]. Regarding µ, conditions (i) and (ii) of

Lemma 5.1 are satisfied by (U3) and (S2), (S4). Hence
∫
V [f(k)z]ψ(z)dz is

continuously differentiable as claimed. �

Now let us consider the interiority result.

Proof of Proposition 3.1, Part 1. Pick any y > 0. Consider first the claim

that σ(y) 6= 0. Suppose instead that 0 ∈ Σ(y), so that

(12) V (y) = u(y)− %

∫
V [f(0)z]ψ(dz) = u(y),

where we have used u(0) = 0 in (U3). Define also

(13) Vξ := u(y − ξ) + %

∫
V [f(ξ)z]ψ(dz),

where ξ is a positive number less than y. By (F3), there exists a δ > 0 such

that f(ξ) > ξ whenever ξ < δ. Therefore,

(14) Vξ ≥ u(y − ξ) + %

∫
V (ξz)ψ(dz), ∀ξ < δ.

In addition, V ≥ u everywhere on R+. Using this bound along with (12)

and (14) gives

(15) 0 ≤
V (y)− Vξ

ξ
≤ u(y)− u(y − ξ)

ξ
− %

∫
u(ξz)
ξ

ψ(dz), ∀ξ < δ.

Take a sequence ξn ↓ 0. If Hn(z) = u(ξnz)/ξn, then Hn ≥ 0 on R+ and

Hn+1(z) ≥ Hn(z) for all z and all n. Moreover limn→∞Hn = ∞ almost

everywhere. By the Monotone Convergence Theorem, then,

lim
n→∞

∫
u(ξnz)
ξn

ψ(dz) =
∫
∞ψ(dz) = ∞,

which induces a contradiction in (15).

Now consider the claim that σ(y) 6= y. Let

v(k) := u(y − k) + w(k), w(k) := %

∫
V [f(k)z]ψ(dz), k ∈ [0, y].
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If y ∈ Σ(y), then for all positive ε,

(16) 0 ≤ v(y)− v(y − ε)
ε

= −u(ε)
ε

+
w(y)− w(y − ε)

ε
.

Since w(k) is differentiable at y (Lemma 5.2), the second term on the right-

hand side converges to a finite number as ε ↓ 0. In this case clearly there

will be a contradiction of inequality (16). This completes the proof that

y /∈ Σ(y). �

Proof of Proposition 3.1, Part 2. Regarding the existence of left and right

derivatives, pick any y > 0, any ξn ↓ 0, ξn > 0, and any optimal policy σ.

By monotonicity, σ(y + ξn) converges to some limit k+, and the value k+ is

independent of the choice of sequence (ξn). Moreover, upper hemi-continuity

of Σ implies that k+ is maximal at y. It follows from this and interiority of

optimal policies that 0 < k+ < y and

V (y) = u(y − k+) + %

∫
V [f(k+)z]ψ(dz).

Also, for all n ∈ N,

V (y + ξn) = u(y + ξn − σ(y + ξn)) + %

∫
V [f(σ(y + ξn))z]ψ(dz)

≥ u(y − k+ + ξn) + %

∫
V [f(k+)z]ψ(dz).

∴ u(y − k+ + ξn)− u(y − k+) ≤ V (y + ξn)− V (y), ∀n ∈ N.

On the other hand, since σ(y + ξn) ↓ k+ < y, there exists an N ∈ N such

that

V (y) ≥ u(y − σ(y + ξn)) + %

∫
V [f(σ(y + ξn))z]ψ(dz), ∀n ≥ N.

∴ V (y+ ξn)−V (y) ≤ u(y+ ξn−σ(y+ ξn))−u(y−σ(y+ ξn)), ∀n ≥ N.

∴ V (y + ξn)− V (y) ≤ u′(y − σ(y + ξn))ξn, ∀n ≥ N,

where the last inequality is by concavity of u. In summary, then,

u(y − k+ + ξn)− u(y − k+) ≤ V (y + ξn)− V (y) ≤ u′(y − σ(y + ξn))ξn

for all n sufficiently large. Dividing through by ξn > 0 and taking limits

gives V ′
+(y) = u′(y − k+), which is of course finite by k+ < y.13

13We are using continuity of u′, which is guaranteed by twice differentiability.
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Now consider the analogous argument for V ′
−. Let y, (ξn) and σ be as above.

Again, as σ is monotone, σ(y − ξn) ↑ k−, where k− is independent of the

precise sequence (ξn), maximal at y and satisfies 0 < k− < y. Since k− > 0,

then sequence σ(y − ξn) will be positive for large enough n and we can

assume this is so for all n. By maximality,

V (y) = u(y − k−) + %

∫
V [f(k−)z]ψ(dz).

Also, since k− < y, there exists an N ∈ N with k− ≤ y − ξn for all n ≥ N .

Hence, ∀n ≥ N ,

V (y − ξn) = u(y − ξn − σ(y − ξn)) + %

∫
V [f(σ(y − ξn))z]ψ(dz)

≥ u(y − k− − ξn) + %

∫
V [f(k−)z]ψ(dz).

∴ u(y − k− − ξn)− u(y − k−) ≤ V (y − ξn)− V (y), ∀n ≥ N.

One the other hand, since 0 < σ(y − ξn) ↑ k− < y,

V (y) ≥ u(y − σ(y − ξn)) + %

∫
V [f(σ(y − ξn))z]ψ(dz), ∀n ∈ N.

∴ V (y− ξn)− V (y) ≤ u(y− ξn − σ(y− ξn))− u(y− σ(y− ξn)), ∀n ∈ N.

∴ V (y − ξn)− V (y) ≤ −u′(y − σ(y − ξn))ξn, ∀n ∈ N,

where again the last inequality is by concavity of u. Putting the inequalities

together gives

u(y − k− − ξn)− u(y − k−) ≤ V (y − ξn)− V (y) ≤ u′(y − σ(y − ξn))(−ξn)

for all n sufficiently large. Dividing through by −ξn and taking limits gives

V ′
−(y) = u′(y − k−). �

Proof of Proposition 3.1, Part 3. The proof is identical to that given in Mir-

man and Zilcha (1975, Lemma 1). �

Proof of Proposition 3.1, Part 4. The proof is essentially the same as that

Majumdar, Mitra and Nyarko (1989, Lemma 4). Briefly, it is clear from the

proof of Part 2 of Proposition 3.1 that V ′
−(y) and V ′

+(y) will agree whenever

Σ(y) is a singleton. If y1 and y2 are any two distinct points where Σ is multi-

valued, then Σ(y1) and Σ(y2) can intersect at at most one point, otherwise

we can construct a non-monotone optimal policy, contradicting Lemma 3.2.
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It follows that for each y where Σ(y) is multi-valued, Σ(y) can be allocated

a unique rational number. �

Next we come to the proof of the Ramsey–Euler equation. We need the

following lemma, which was first proved (under different assumptions) by

Majumdar, Mitra and Nyarko (1989, Lemma 2A).

Lemma 5.3. For every compact K ⊂ (0,∞), inf{y − σ(y) : y ∈ K} is

strictly positive.

Proof. Suppose to the contrary that on some compact set K ⊂ (0,∞), there

exists for each n a yn with σ(yn) > yn − 1/n. By compactness (yn) has a

convergent subsequence, and without loss of generality we assume that the

whole sequence converges to y∗ ∈ K. The bounded sequence σ(yn) itself has

a convergent subsequence σ(yn(i)) → k∗ as i → ∞. Since the subsequence

(yn(i)) converges to y∗ too, k∗ is optimal at y∗ by upper hemicontinuity. But

then y∗− 1
n(i) ≤ k∗ ≤ y∗ for all i ∈ N. This contradicts the interiority of the

optimal policy, which has already been established. �

The next lemma is fundamental to our results.

Lemma 5.4. Define V ′ to be the derivative of V when it exists and zero

elsewhere. For all k > 0,

d

dk

∫
V [f(k)z]ψ(z)dz =

∫
V ′(f(k)z)f ′(k)zψ(z)dz.

Proof. We change variables to shift the problem to the real line. Our objec-

tive is to apply Lemma 5.1. Let

w(k) :=
∫
V [f(k)z]ψ(z)dz.

As before, we can use a change of variable to obtain

w(k) =
∫ ∞

−∞
V (f(k)ex)ψ(ex)exdx =

∫ ∞

−∞
h(x+ ln f(k))g(x)dx,
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where g(x) := ψ(ex)ex and h(x) := V (ex). All of the hypotheses of Lemma

5.1 are satisfied.14 Therefore, using the representation (11),

w′(k) =
f ′(k)
f(k)

∫ ∞

−∞
h′(x+ ln f(k))g(x)dx

= f ′(k)
∫ ∞

−∞
V ′(exf(k))exg(x)dx.

Changing variables again gives the desired result:

w′(k) =
∫ ∞

0
V ′(f(k)z)f ′(k)g(ln z)dz =

∫ ∞

0
V ′(f(k)z)f ′(k)zψ(z)dz.

�

Now the proof of the Ramsey–Euler equation can be completed.

Proof of Proposition 3.2. Evidently σ(y) solves

u′(y − k)− %
d

dk

∫
V [f(k)z]ψ(z)dz = 0.

The result now follows from Lemma 5.4, given that V ′(y) = u′(y − σ(y))

Lebesgue almost everywhere. �

5.3. Dynamics. In the following discussion let an optimal policy σ be given.

We simplify notation by defining the map S by S(y) := f(σ(y)). The most

important properties of S are that—when σ is optimal—S is monotone

nondecreasing and S(y) = 0 =⇒ y = 0 (Lemma 3.2 and Proposition 3.1,

Part 1).

Let D := {g ∈ L1(R+) : g ≥ 0,
∫
g = 1} be the set of density functions

on R+. In general, D will be given the relative topology from the L1 norm

topology. In the sequel our notation does not distinguish between a dis-

tribution ϕ ∈ P and its density function in D. For example, if ϕ ∈ P,

the statement ϕ ∈ D means that ϕ is absolutely continuous with respect to

14In particular, h′ is bounded on compact sets, because h′(x) = V ′(ex)ex, and

V ′(y) = u′(y − σ(y)) when it exists (i.e., when the function V ′ is not set to zero).

The latter is bounded on compact sets by Lemma 5.3. Also, V is absolutely continu-

ous because countinuous functions of bounded variation (provided by monotonicity

here) fail to be absolutely continuous only if they have infinite derivative on an

uncountable set (Saks, 1937, p. 128). This is impossible by Proposition 3.1, Part 4.
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Lebesgue measure and can be represented by a density, which is also denoted

ϕ.

Since S is zero only at zero, we can define the so-called Markov operator

P : L1(R+) 3 g 7→ Pg ∈ L1(R+) by

(17) (Pg)(y′) =
∫
k(y, y′)g(y)dy,

where

(18) k(y, y′) := ψ

(
y′

S(y)

)
1

S(y)
.

The importance of the Markov operator is that for our model it generates

by iteration the sequence of marginal densities (ϕt) for the Markov chain

(yt), yt+1 = f(σ(yt))εt.

In the following, let P t mean t compositions of P with itself. Also note that

P maps D into itself, as is easily shown by Fubini’s theorem.

Lemma 5.5. If ϕ0 is any initial condition, then ϕ1 ∈ D and ϕt = P t−1ϕ1

for all t ≥ 2. Also, if ϕ0 ∈ D, then ϕt = P tϕ0 for all t ≥ 1.

Proof. Since by assumption ϕ0({0}) = 0, it is easy to see from (4) that

ϕ1 ∈ D. Now if ϕt ∈ D, then using (4), (17), (18) and the change of

variable y′ = S(y)z gives ϕt+1 = Pϕt, which completes the proof of the first

statement. That the second statement is true follows from the same kind of

argument15 �

Corollary 5.1. If an equilibrium ϕ∗ exists then it is in D.

Proof. Take ϕ0 = ϕ∗ and apply the lemma. �

The next lemma is just translating the definitions of stability and sweeping

given above—which have been formulated to fit in with the stochastic growth

literature—to the language of Markov operators, where standard results are

available.

15For more details on Markov operators see for example the monograph of Lasota

and Mackey (1994). For a previous application in economics see Stachurski (2002).
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Lemma 5.6. Let σ be a fixed optimal policy, and let P be the corresponding

Markov operator.

1. The economy is globally stable in the sense of Definition 4.1 if and

only if there is a unique ϕ∗ ∈ D with Pϕ∗ = ϕ∗ and P tϕ → ϕ∗ in

L1 as t→∞ for every ϕ ∈ D.

2. The economy is globally collapsing to the origin in the sense of Def-

inition 4.2 if and only if
∫∞
a P tϕ(y)dy → 0 for every ϕ ∈ D and

every a > 0.

Proof. (Part 1, ⇒) If ϕ ∈ D then by hypothesis the trajectory (ϕt) starting

at ϕ0 = ϕ converges to an equilibrium ϕ∗ ∈ P, and since ϕt = P tϕ we have

P tϕ→ ϕ∗. As D is complete we must have ϕ∗ ∈ D, and in fact Pϕ∗ = ϕ∗ by

L1-continuity of P (Lasota and Mackey 1994, Prop 3.1.1). If P has another

fixed point in D, then it is easy to check that this fixed point satisfies (5),

which contradicts uniqueness of equilibrium.

(Part 1, ⇐) If P has a fixed point in ϕ∗ ∈ D, then ϕ∗ satisfies (5) as

above, and hence is an equilibrium for the economy in P. If ϕ∗∗ is another

equilibrium in P, then ϕ∗∗ ∈ D by Corollary 5.1, and hence Pϕ∗∗ = ϕ∗∗ as

is easily verified from (5), contradicting uniqueness. If ϕ0 ∈ P is any initial

condition, then since ϕ1 ∈ D and ϕt = P t−1ϕ1 → ϕ∗, we have convergence

to the equilibrium from every initial condition.

The proof of Part 2 is a similar definition chasing exercise. �

Proof of Proposition 4.1. Let P be the Markov operator corresponding to

σ, and let k be as in (18). Consider the following two conditions:

(i) Pϕ > 0 a.e., ∀ϕ ∈ D.

(ii) ∀ŷ > 0, ∃ε > 0 and η ≥ 0 with
∫
η(x)dx > 0 and

k(y, y′) ≥ η(y′)1(ŷ−ε,ŷ+ε)(y), ∀ y, y′.

By Rudnicki (1995, Theorem 2 and Corollary 3), (i) and (ii) imply the the

Foguel Alternative; in particular that either P has a unique fixed point

ϕ∗ ∈ D and P tϕ → ϕ∗ in L1 for all ϕ ∈ D, or alternatively P is sweeping

with respect to the compact sets, so that limt→∞
∫ b
a P

tϕ(y)dy = 0 for any
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ϕ ∈ D and any 0 < a < b < ∞. In the light of Lemma 5.6, then, to prove

Proposition 4.1 it is sufficient to check (i), (ii) and, in addition,

(19) lim
b→∞

lim sup
t→∞

∫ ∞

b
P tϕ(y)dy = 0, ∀ϕ ∈ D,

where (19) demonstrates that sweeping occurs not just with respect to any

interval [a, b], a > 0, but in fact to any interval [a,∞).

Condition (i) is immediate from the assumption that ψ is everywhere posi-

tive, in light of (17) and (18). Regarding condition (ii), pick any ŷ > 0 and

any ε such that ŷ − ε > 0. Also let 0 < γ0 < γ1 <∞. Define

δ0 :=
γ0

S(ŷ + ε)
, δ1 :=

γ1

S(ŷ − ε)
.

Note that infz∈[δ0,δ1] ψ(z) > 0 by (S3) and strict positivity. Set

r :=
infz∈[δ0,δ1] ψ(z)

S(ŷ + ε)
, η := r1[γ0,γ1].

Then η has the required properties.

Regarding (19), from (F2) there exists a α ∈ (0, 1) and m <∞ be such that

S(y) ≤ αy +m for all y ∈ R+. Then

(20) yt+1 ≤ (αyt +m)εt.

Since yt and εt are independent and EPε = 1 we have

(21) EPyt+1 ≤ αEPyt +m.

Using an induction argument gives

(22) EPyt ≤ αtEPy0 + (1 + α+ · · ·+ αt−1)m ≤ αtEPy0 +
m

1− α
.

Suppose that EPy0 <∞. Then from (22) it follows that

(23) lim sup
t→∞

EPyt ≤
m

1− α
.

By the Chebychev inequality,
∫∞
b P tϕ(y)dy ≤ EPytb

−1. From (23) it then

follows that (19) holds for all ϕ with EPy0 :=
∫
yϕ(y) dy < ∞. This set

(all densities with finite first moments) is norm-dense in D, and P is an L1

contraction. Together, these facts imply that condition (19) in fact holds

for every ϕ ∈ D (Lasota and Mackey 1994, p. 126). �
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Proof of Lemma 4.1. By Corollary 3.1, any pair of optimal policies is equal

almost everywhere. Inspection of (18) and (17) indicates that they will have

identical Markov operators. Part 1 now follows from Lemma 5.6. The proof

of Part 2 is similar. �

Proof of Lemma 4.2. Regarding Part 1, let σ0 (resp. σ1) be an optimal pol-

icy for E0 (resp. E1), let P0 and P1 be the corresponding Markov operators—

defined by (17) and (18)—and let (y0
t )t≥0 and (y1

t )t≥0 be the respective in-

come processes. By Lemmas 4.1 and 5.6 it is sufficient to show that for any

ϕ ∈ D and any a > 0 we have

(24) lim
t→∞

∫ ∞

a
P t

0ϕ(y)dy = 0.

From Lemma 3.3 we have σ1 ≥ σ0 pointwise on R+, so it is clear (by

induction) that

y1
t ≥ y0

t pointwise on Ω for any t.

∴ {y0
t ≥ a} ⊂ {y1

t ≥ a}.

∴
∫ ∞

a
P t

0ϕ(y)dy = P{y0
t ≥ a} ≤ P{y1

t ≥ a} =
∫ ∞

a
P t

1ϕ(y)dy.

By Lemma 5.6 and the hypothesis, the right hand side converges to zero as

t→∞, which proves (24). �

Proof of Proposition 4.3. For this proof we set xt := ln yt, and define η :=

ln ε− α and T : R 3 x → ln f(σ(ex)) + α, so that xt+1 = T (xt) + ηt, where

EPηt = 0.

(Part 1) By the condition, lim supx→−∞(T (x) − x) < 0, implying the exis-

tence of an m ∈ R and a > 0 such that T (x) ≤ x− 2a, for all x ≤ m.

∴ xt+1 ≤ xt + ηt − 2a, ∀xt ≤ m.

Let x̂t := xt −m and η̂t := ηt − a. Then

(25) x̂t+1 ≤ x̂t + η̂t − a, ∀x̂t ≤ 0.

Define Ω0 := {ω ∈ Ω : supT≥0

∑T
t=0 η̂t(ω) ≤ 0}. Since EPη̂t = −a < 0, it

follows that P(Ω0) > 0 (Borovkov, 1999—see the discussion of factorization

identities). From (25) we have

x̂t ≤ x̂0 + η̂0 + · · ·+ η̂t−1 − ta for ω ∈ Ω0,
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so if P{x̂0 ≤ 0} = 1, then P{xt ≤ −at} ≥ P(Ω0) > 0 for all t. Since

{x̂t ≤ −at} = {yt ≤ em−at}, we have shown the existence of an initial

condition y0 (P{x̂0 ≤ 0} = 1 if y0 is chosen s.t. P{y0 ≤ em} = 1) with the

property

lim inf
t→∞

P{yt ≤ c} = lim inf
t→∞

ϕt([0, c]) ≥ P(Ω0) > 0.

But then ϕt cannot converge in L1 to any ϕ∗ ∈ D. (Elements of D are

the only candidates for equilibria by Corollary 5.1. If ϕt → ϕ∗ ∈ D then

ϕt([0, c]) → ϕ∗([0, c]), so choosing c > 0 such that ϕ∗([0, c]) < P(Ω0) leads

to a contradiction.) Therefore the economy is not globally stable, and it

follows from Proposition 4.1 that it must be collapsing to the origin.

(Part 2) By the condition, lim infx→−∞(T (x)−x) > 0, so there is an m ∈ R

and a > 0 such that T (x) ≥ x+a whenever x ≤ m. Let x̂ := x−m and η̂ :=

η+a. Then x̂t+1 ≥ x̂t + η̂t whenever x̂t ≤ 0. Also, since T is nondecreasing,

x̂ ≥ 0 implies T (x) ≥ m+ a. Therefore x̂t ≥ 0 =⇒ x̂t+1 ≥ η̂t.

(26) ∴ x̂t+1 ≥ x̂−t + η̂t ≥ (x̂−t + η̂t)−,

where we have introduced the notation x− = min(0, x), and also x+ =

max(0, x).

Assume to the contrary that the economy is not globally stable, in which

case it must be sweeping from the sets [c,∞), c > 0, so that for each c ∈ R

we have

(27) lim
t→∞

P{x̂t ≤ c} = 1.

Let us introduce now the process (zt) defined by z0 := x̂−0 , zt+1 := (zt+ η̂t)−.

By (26) we have zt ≤ x̂t for all t. Since η̂0 is integrable, there is an L ∈ R

such that EP(η̂0−L)+ < a/3. Let y0 be chosen so that x̂0 is also integrable.

Then EP|z0| < ∞, and in fact EP|zt| < ∞ for all t. From (27) and zt ≤ x̂t

we have

lim
t→∞

P{zt ≤ −L} = 1.



NONCONVEX OPTIMAL GROWTH 31

Choose t0 so that P{zt > −L} < a/(3L) when t ≥ t0. Since zt ≤ 0, then,

t ≥ t0 implies EP(zt + L)+ < a/3. Therefore,

EPzt+1 = EP(zt + η̂t)− = EP(zt + η̂t) + EP(zt + η̂t)+

≥ EPzt − EPη̂t − EP(zt + L)+ − EP(η̂t − L)+

> EPzt +
a

3
,

which contradicts zt ≤ 0 for all t. �

Proof of Proposition 4.4. By the Portmanteau Theorem (Shiryaev, 1996,

Theorem III.1.1), ϕ∗n → δ0 weakly if and only if

lim inf
n→∞

ϕ∗n(G) ≥ δ0(G) for every open set G ⊂ R+.

Here by “open” we refer of course to the relative topology on R+. Evidently

the above condition is equivalent to limn ϕ
∗
n(G) = 1 for all open G containing

0, which in turn is equivalent to

lim
n→∞

ϕ∗n([a,∞)) = 0, ∀a > 0.

Take (σn) to be any sequence of optimal policies corresponding to %n → 0.

Let (yn
t ) be the Markov chain generated by σn and fixed initial distribution

y0 ∼ ϕ0 (i.e., yn
t+1 = f(σn(yn

t ))εt). Here y0 = yn
0 is chosen so that EPy0 <∞.

Consider the probability that yn
t exceeds a. For each real R we have

(28) P{yn
t ≥ a} = P({yn

t ≥ a} ∩ {yn
t−1 ≤ R})

+ P({yn
t ≥ a} ∩ {yn

t−1 > R}).

Consider the second term. We claim that

(29) ∀r > 0, ∃R ∈ R s.t. sup
n∈N

sup
t≥0

P{yn
t > R} < r.

To see this, fix r > 0, and pick any n ∈ N. Define a sequence (ξt) of random

variables on (Ω,F ,P) by ξ0 = y0, ξt+1 = (αξt+β)εt, where y 7→ αy+β is an

affine function dominating f on R+ and satisfying α < 1 (see the comment

after Assumption 2.2). From the definition of yn
t , the fact that σn(y) ≤ y

and f(y) ≤ αy + β, it is clear that yn
t ≤ ξt pointwise on Ω for all t, and

hence

∀R ∈ R, {yn
t > R} ⊂ {ξt > R}.
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(30) ∴ P{yn
t > R} ≤ P{ξt > R}, ∀t ≥ 0.

Since ξt and εt are independent, EPξt+1 = αEPξt + β. It follows that

EPξt ≤ αtEPξ0 +
β

1− α
≤ EPξ0 +

β

1− α

for all t. Since EPξ0 = EPy0 < ∞ we see that EPξt ≤ C for all t, where C

is a finite constant. By the Chebychev inequality, then,

(31) P{ξt > R} ≤ EPξt
R

≤ C

R
, ∀t ≥ 0.

Combining (30) and (31) gives P{yn
t > R} < C/R for all t and n. Since R

is arbitrary the claim (29) is established.

Our objective was to bound the second term in (28). So fix r > 0. By (29)

we can choose R so large that

(32) P{yn
t ≥ a} = P({yn

t ≥ a} ∩ {yn
t−1 ≤ R}) +

r

2

for all t and all n. It remains to bound the first term. Let (ϕn
t ) ⊂ P be

the sequence of marginal distributions associated with (yn
t ). From the well-

known expression for the finite dimensional distribution of Markov chains

on measurable rectangles (e.g., Shiryaev, 1996, Theorem II.9.2) we have

P({yn
t ≥ a} ∩ {yn

t−1 ≤ R})

=
∫ R

0

∫ ∞

a
ψ

(
y′

f(σn(y))

)
1

f(σn(y))
dy′ϕt−1(y)dy.

A change of variable gives∫ ∞

a
ψ

(
y′

f(σn(y))

)
1

f(σn(y))
dy′ = ψ([a/f(σn(y)),∞)),

where, as always, we are using ψ to denote both the density and the mea-

sure ϕ(dz) = ψ(z)dz. From the proof of Lemma 3.4, we know that σn is

dominated by an increasing function bn which converges pointwise to zero.

Therefore f ◦σn is dominated by f ◦ bn, again an increasing function, which

must by continuity of f converge pointwise and hence uniformly to zero on

[0, R]. Combining this with the fact that a > 0 and ψ is a finite measure,

there is an N ∈ N such that n ≥ N implies

ψ([a/f(σn(y)),∞)) <
r

2
, ∀y ∈ [0, R].
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But then

P({yn
t ≥ a} ∩ {yn

t−1 ≤ R}) ≤
∫ R

0

r

2
ϕt−1(y)dy ≤

r

2
.

Using this inequality together with (28) and (32), we conclude that for all

r > 0 there is an N ∈ N such that n ≥ N and t ≥ 0 implies P{yn
t ≥ a} =

ϕn
t ([a,∞)) < r. Since ϕn

t → ϕ∗n in L1 as t → ∞ and hence weakly in the

sense of the topology induced on L1 by L∞, it follows that ϕn
t ([a,∞)) →

ϕ∗n([a,∞)) in R as t → ∞, so that ϕ∗n([a,∞)) ≤ r is also true. That is,

limn→∞ ϕ∗n([a,∞)) = 0, as was to be proved. �

Appendix A

First we need the following lemma regarding continuity of translations in

L1, which is well-known.

Lemma A.1. Let g be in L1(R). If τ(t) := ‖g(x − t) − g(x)‖, then τ is

bounded on R, and τ(t) → 0 as t→ 0.

Now define the real number µ′(r) to be −
∫
h(x+r)g′(x) dx, which is clearly

finite. By the Fundamental Theorem of Calculus,

µ(r + t)− µ(r)− µ′(r)t =
∫
h(x+ r)(g(x− t)− g(x) + g′(x)t) dx

= −t
∫
h(x+ r)

∫ 1

0
(g′(x− ut)− g′(x)) du dx.

Taking absolute values, using (ii) and Fubini’s theorem,

(33)
∣∣∣∣µ(r + t)− µ(r)

t
− µ′(r)

∣∣∣∣ ≤M

∫ 1

0

∫
|g′(x− ut)− g′(x)| dx du

for some M . By Lemma A.1,
∫
|g′(x− ut)− g′(x)| dx is uniformly bounded

in u and converges to zero as t → 0 for each u ∈ [0, 1]. By Lebesgue’s

Dominated Convergence Theorem the term on the right hand side of (33)

then goes to zero and

µ′(r) = −
∫
h(x+ r)g′(x) dx

as claimed.
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Regarding continuity of the derivative, we have

|µ′(r + t)− µ′(r)| ≤
∫
h(x)|g′(x− r − t)− g′(x− r)| dx

≤M

∫
|g′(x− t)− g′(x)| dx.

Continuity now follows from Lemma A.1.

Next we argue that under (iii)–(v),

(34) µ′(r) =
∫
h′(x+ r)g(x) dx

is also valid. To begin, define µ′h(r) to be the right hand side of (34). This

number exists in R, because

h′(x+ r) = lim inf
t↓0

h(x+ r + t)− h(x+ r)
t

almost everywhere by either (iii) or (iv), and hence

µ′h(r) =
∫

lim inf
t↓0

h(x+ r + t)− h(x+ r)
t

g(x)dx

≤ lim inf
t↓0

∫
h(x+ r + t)− h(x+ r)

t
g(x)dx = µ′(r).

Here the inequality follows from the assumption that h is increasing, which

gives nonnegativity of the difference quotient, and Fatou’s Lemma.

By (iv) the Fundamental Theorem of Calculus applies to h, and

µ(r + t)− µ(r)− µ′h(r)t =
∫

(h(x+ t)− h(x)− h′(x)t)g(x− r) dx

= t

∫ ∫ 1

0
(h′(x+ ut)− h′(x))g(x− r) dx du.

Some simple manipulation gives

µ′h(r) = µ′(r)− lim
t→0

∫ ∫ 1

0
(h′(x+ ut)− h′(x))g(x− r) dx du.

Thus it is sufficient to now show that

lim
t→0

∫ 1

0

∫
|h′(x+ ut)− h′(x)|g(x− r) dx du = 0.

The inner integral is bounded independent of u, because it is less than∫
h′(x+ ut)g(x− r) dx+

∫
h′(x)g(x− r) dx ≤ µ′(r + ut) + µ′(r),
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which is bounded for u ∈ [0, 1] by continuity of µ′. Thus by Lebesgue’s

Dominated Convergence Theorem we need only prove that

lim
t→0

∫
|h′(x+ ut)− h′(x)|g(x− r) dx = 0.

Adding and subtracting appropriately, this integral is seen to be less than

(35)
∫
|h′(x+ ut)g(x− r + ut)− h′(x)g(x− r)|dx

+
∫
|h′(x+ ut)g(x− r)− h′(x+ ut)g(x− r + ut)| dx.

Consider the first integral in the sum. By Lemma A.1, we can choose a

δ0 > 0 such that |t| ≤ δ0 implies∫
|h′(x+ ut)g(x− r + ut)− h′(x)g(x− r)|dx < ε

3
.

The second integral in the sum can be written as∫
|x|≤R

|h′(x+ ut)g(x− r)− h′(x+ ut)g(x− r + ut)| dx

+
∫
|x|≥R

|h′(x+ ut)g(x− r)− h′(x+ ut)g(x− r + ut)| dx.

By the usual property of L1 functions, we can choose R such that the integral

over |x| ≥ R is less than ε/3 for all t with |t| ≤ δ0.

To summarize the results so far, we have |t| ≤ δ0 implies∫
|h′(x+ ut)− h′(x)|g(x− r) dx

<
2ε
3

+
∫
|x|≤R

|h′(x+ ut)g(x− r)− h′(x+ ut)g(x− r + ut)| dx.

Finally, since h′ is bounded on compact sets,

h′(x+ ut) ≤M, ∀x, t with |x| ≤ R, |t| ≤ δ0.

Therefore |t| ≤ δ0 implies∫
|h′(x+ ut)− h′(x)|g(x− r) dx

<
2ε
3

+M

∫
|g(x− r)− g(x− r + ut)| dx.

By Lemma A.1 there is a δ1 > 0 such that

M

∫
|g(x− r)− g(x− r + ut)| dx < ε

3
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whenever |t| < δ1. Now setting δ := δ0 ∧ δ1 gives

|t| ≤ δ =⇒
∫
|h′(x+ ut)− h′(x)|g(x− r) dx < ε

as required.
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