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Abstract 

This paper examines the Gini (1912) coefficient of concentration using the 
framework set out by Dalton (1920) for evaluating a measure of inequality. 
Particular attention is paid to limited distributions and the associated con- 
cept of 'perfect inequality'. It is argued that a rescaled version of the Gini 
coefficient may be desirable for distributions that are subject to limits which 
depart from the standard assumption of non-negativity. A scaling parameter 
is derived and the rescaled Gini coefficient is used to analyse the inequality 
of wealth in Australia. 



I Introduction 

This paper considers the practical implications associated with the use of 

the Gini (1912) coefficient1, G, when measuring the inequality exhibited by 

a distribution that is subject to the general limits, [xmin, x,,]. Economic 

studies of inequality commonly assume limits defined by [0, OD), which im- 

poses distributional non-negativity on a population. Under these conditions, 

G satisfies all of the principles that are currently used to characterise a suit- 

able measure of inequality.2 For any other distributional limits, however, G 

fails to satisfy the principle of normali~ation.~ In response to this inadequacy, 

an adjusted Gini coefficient is defined that satisfies all of the principles of in- 

equality measurement, including the principle of normalisation, when subject 

to general population limits. 

The practical significance of this study is directly related to the rele- 

vance of distributions that depart from the standard non-negativity con- 

straint, [O, 00). In the literature that examines inequality, this constraint 

is typically imposed with little or no comment. When comment is made it 

usually focuses on justifying the exclusion of negative observations on the 

grounds that such observations are either unrepresentative, or arise due to 

data contaminants. In contrast, this paper considers the distributional ef- 

fects of population limits explicitly, and in doing so provides a framework for 

associated analysis.4 

To examine the practical importance of distribution limits other than 

the standard non-negativity constraint, it is useful to begin by recognising 

that there are many important, and economically relevant distributions that 

 he ratio of the mean difference to two times the population mean was suggested as 
an inequality measure by Gini (1912), although it had been discussed earlier 1)y Helmert 
(1876), and von Andrae (1872), cf. David (1968). 

2There are seven principles for evaluating a measure of inequality (see, for example, 
Dagum, 1983): the Pigou (1912) - Dalton (1920) principle of transfers, the principle 
of proportionate additions to incomes, the principle of equal additions to incomes, the 
principle of proportionate additions to persons, the principle of symmetry, the principle 
of operationallity, and the principle of normalisation. 

3The principle of normalisation is defined in section 2. 
4 ~ e e ,  for example, Cowell (1995, pp. 155156) on the exogenous assumption of the 

non-negative domain and associated distributional issues. 



are subject to limits which are more restricting than LO, oo). Consider, for 

exarriple, the distribution of wage and salary incomes, for which a statutory 

minimum is imposed. In this case no observation can take a value that is 

less than the statutory minimum, and hence the lower limit is greater than 

zero. Maintaining a focus on income5, it is often useful to impose specific 

restrictions on the individual values of the populations used. One example is 

when different distributional analysis is adopted for different quantiles of the 

population. For instance, poor individuals may be analysed separately from 

the non-poor, where the division is made with respect to a given 'poverty 

line'. In this case the populations above and below the poverty line are 

subject, respectively, to lower and upper bounds. The issue of whether the 

population below the poverty line should also be subject to a lower bound 

(equal to zero) is case dependent. 

The choice of whether to censor negative observations from an income dis- 

tribution relates to the definition of income adopted and the associated focus 

of analysis. Dalton (1920, p. 348) states that 'the economist is primarily 

interested, not in the distribution of income as such, but in the effects of the 

distribution of income upon the distribution and total amount of economic 

welfare, which may be derived from income." Taking a broad interpretation, 

income may be defined as aggregate gains net of any losses, which permits 

the existence of negative observations. Conversely, taking a narrow interpre- 

tation of income as the inflow of wealth rules out the possibility of negative 

observations. If the welfare framework advocated by Dalton is adopted, then 

it can be argued that the broad interpretation is preferable to the narrow on 

the basis that the associated distribution is likely to reflect more closely the 

distribution of economic welfare, a view that is supported by the emphasis on 

'net income7 in the literature-"he issue of whether negative values should 

be censored from income distributions that are defined using the broad in- 

51.t is evident that there are many distributions of economic interest for which negative 
observations are likely to be of greater importance compared with income. See, for exarn- 
ple, [Cowell (1995, p. 155 et seq.). The focus on income adopted in this paper reflects its 
predominant use in the literature. 

6!3ee, for example, the 1955 Minority Report of the b y a l  Commission of the Taxation 
of Pi.ofits and Income (p. 355). 



terpretation must be determined based upon the specific focus of analysis. 

Where the analysis examines the distribution of income for the entire popu- 

lation, negative values may be seen as unrepresentative. This view is likely 

to be less justified, however, for an analysis that focuses expressly on the 

Alternatively, Clark and Oswald (1996) find results that offer statistical 

support for the hypothesis that utility depends on income relative to an in- 

dividual specific reference level. The reference level of income used by Clark 

and Oswald (1996) is obtained using a conventional earnings equation. If 

this hypothesis is accepted, then Dalton's (1920) welfare framework implies 

that income should be measured relative to the reference level when exarn- 

ining inequality. One method by which this can be achieved is to subtract 

reference level from observed income prior to the measurement of inequality. 

In this case, negative observations will form an important part of the total 

population, and their omission will consequently have a significant effect on 

the measure of inequality obtained. 

Section 2 examines the effects of distributional limits on perfect inequality 

and the associated Gini coefficient. Section 3 describes an adjusted Gini 

coefficient that satisfies all of the principles of inequality measurement for 

general distributional limits, and discusses associated issues of interpretation. 

A practical application is provided in section 4. Section 5 concludes. 

2 The Gini Coefficient, Limited Distributions, 
and the Principle of Normalisat ion 

The principle of normalisation specifies that the range of an inequality mea- 

sure should be in the interval [0,1], with zero (one) for perfect equality (in- 

equality). Perfect equality arises when all of the individual incomes in a 

distribution take the same value. For non-negative income, perfect inequal- 

ity is defined as the distribution in which an infinitely small proportion of 

7This issue is returned to in section 4 



the population earn the entire population's income.' To determine the value 

of the Gini coefficient under perfect equality and inequality when subject to 

distributional limits [O, m), consider a population that is divided into two 

groups, one of which is comprised of individuals earning zero income, while 

the individuals of the other group earn x > 0. The Gini coefficient for this 

population is characterised byg: 

= 1 - f (x) (1) 

Equation (1) indicates that when perfect equality is observed, such that 

f (x) = 1, G = 0; and when perfect inequality is observed, such that f (x) --+ 

0, G --+ 1. Hence the Gini coefficient satisfies the principle of normalisation 

for a non-negative distribution. 

The singular advantage of the principle of normalisation is to describe the 

dispersion of a distribution relative to the extremes of perfect equality and 

inequality. Consider a large population with a continuous distribution for 

which individual incomes must lie between a specified minimum, xmin, and 

maximum, x,,, such that p > O.1° Furthermore, assume that 0 < f (0) < 
F (0) = a. The fact that xmi, < 0 implies that the Gini coefficient associated 

with this distribution satisfies all but the principle of normalisation. 

To see why the Gini coefficient fails to satisfy the principle of normali- 

sation, it is useful to start by considering exactly what is meant by 'perfect 

'This definition of perfect inequality may be interpreted in terms of the welfare loss 
due to inequality, following Atkinson (1970). For any welfare function that exhibits di- 
minishing marginal returns to income, the welfare loss due to inequality is maximised, 
subject to distribution non-negativity, where the entire population's income is allocated 
to an infinitely small subgroup. 

'obtained using the absolute difference relation; G = ly - x f (y)dyf (s) dz 
''Setting > 0, is an innocuous assumption made for ease of exposition. If ,u < 0, then 

the oirder of the income parade is reversed, and the value of the associated concentration 
index consequently obtains G (-p) .= -G (p). It is, however, necessary that ,u =# 0, since 
the Gini coefficient is otherwise undefined. When measuring the inequality of a distribution 
for which p < 0, it is recommended that the mean should be divided through the income 
parade and the Gini coefficient calculated for the subsequent distribution. 



equality' and 'perfect inequality'. The least contentious of the two concepts 

is that of perfect equality, defined above as the distribution in which all in- 

dividual values are equal to the population mean; that is, f (p) = 1. The 

definition of perfect inequality for a distribution that is subject to general 

limits is, however, more opaque, Specifically, it will be evident that the def- 

inition of perfect inequality provided above is particular to a distribution 

specified on the interval [O, oo). In fact, the published literature provides no 

general definition of perfect inequality due to the predominant role that the 

non-negative distribution has played with respect to  inequality analysis. 

The principal characteristic underlying the definition of perfect inequality 

is that it should describe a distribution that maximises inequality subject to 

the distribution constraints. This condition is satisfied by the distribution 

in which the maximum proportion of the population, q, earn xmi,, and the 

remainder earn x,,, subject to p. Hence, for Xminl x,, E R: 

To see that inequality is maximised by this distribution, note that the only 

inequality affecting redistribution that is possible, subject to the distribution 

limits, is a transfer from an individual earning z,, to an individual earning 

x,;,. By the Pigou-Dalton principal of transfers this redistribution will de- 

crease inequality. In the general case, the distribution of perfect inequality 

is therefore defined by: 

where x, defines the income of the pth proportional rank in the income 

distribution. 

Under the standard restriction of a distribution to the non-negative do- 

main, x,i, = 0 and x,,, tends toward (positive) infinity. Applying these 

bounds, it can be seen from equation (3), that q tends toward 1, and so, from 



Equation (5) implies that the entire population's income is earned by an in- 

finitely small subgroup, consistent with the deffnition of perfect inequality as- 

sociated with the standard restricted distribution, as discussed previously.11 

It remains to determine the values of G for the general continuous dis- 

tribution defined at the beginning of this section, and for the associated 

distribution of perfect inequality. With regard to the general continuous dis- 

tribution, it is evident that the Lorenz curve will have a negative slope for 

all F (.) < a, after which it's slope will become positive. Furthermore, by 

definition, the Lorenz curve must pass through the (0,0), and (1,l) coordi- 

nates, and exhibit non-negative curvature for its entire domain. Hence, for 

the general continuous distribution considered, the Lorenz curve will take a 

form characterised by L in figure 1. Similarly the Lorenz curve of perfect 

inequality and perfect equality are depicted respectively by Leg, and L,,,. 

The slope of L,,, is defined by the conditions described in (4). Specifically 

below q, the associated population earn the minimum income xmin, and hence 

the slope of Lueq equals y. Similarly, above q, the slope of L,, equals 

7.  These slopes fully characterise L,,, given the requirement that it pass 

through the (0,O) and (1,l) coordinates, where q is identified at the point 

where the two straight lines (denoted lmi, and I,, in figure 1) intersect. 

Examining figure 1 reveals that increasing xmin and x,, respectively rotate 

lmin up through the origin and 1,- up through the (1,l) coordinate, both of 

which increase q. It can also be seen from the figure that, as lmin is rotated 

up, ceteris pafibus, the area ( A  + B) is decreased, while the opposite is true 

for the upward rotation of l,,. 

The standard methods used for calculating the Gini coefficient obtain a 

measure equal to two times the area captured between Leg and L, whether 
- 

"Note that, for a finite population of size N ,  the maximum value that q can take is 
. In this case, equation (4) implies that the entire population's income is earned 
by a single individual and hence the maximum observable inequality is less than perfect 
inequality as it is defined here. 



PropMon of 
Income 

Figure 1: Lorenz Curves of the General Continuous Distribution, Distribu- 
tion of Perfect Equality, and Distribution of Perfect Inequality 

or not the incorne distribution includes negative incomes12. Specifically, the 

Gini coefficient associated with L in figure 1 can be calculated using any one 

of the following standard measures (specified in discrete form); 

To examine how the population limits impact upon the extreme values that 

G can take, consider a population where a proportion Ic take the value x,in, 

and a proportion (1 - Ic) take the value x,,. From the absolute difference 

12see, for example, Chen e t  at. (1982). 

7 



equation described in (6): 

Perfect equality is obtained when x,, = a,;,, such that every individual 

earns the same income. From equation (7), the Gini coefficient associated 

with this distribution is equal to 0, which is consistent with the principle 

of normalisation. Substituting k = q = amax-P 
Xmax -xmin 

from equation (3) into 

equation (7), and simplifying obtains: 

In this case the d u e  of G is dependent entirely upon the relative values 

of z,,, am;,, and p, and is potentially unconstrained, which is in direct 

violation of the principle of normalisation. 

3 Normalising the Gini Coefficient 

The discussion of the preceding section suggests that the Gini coefficient 

can be rescaled to comply with the principle of normalisation by using the 

limit described by equation (8). Specifically, define the 'adjusted Gini7, c, 
as the area, A, captured between Leq and L, divided by the area, (A + B), 
captured between Leg and LUeq in figure 1. This is equivalent to dividing 

the Gini coefficient associated with L, by the Gini coefficient associated with 

LUeq, such that: 

- P (xmm - xmin) 
G = G 

(xmax - P) (p zmin)  
(9) 

where G is the standard Gini coefficient associated with L. 

From the preceding discussion, it is evident that 0 5 G 5 ( " y ~ ~ ' ) ~ ~ ~ ~ ~ l ,  

where the equality with zero applies for a distribution that exhibits perfect 

equality, and the equality with ( x ~ ~ “ ) ~ ' - x m i n ~  max-xmin) applies for a distribution that 

exhibits perfect inequality. Hence, G satisfies the principle of normalisation 

for the general limits [xmin, x,,]. In addition, the fact that is a reparame- 

terisittion of the Gini coefficient implies that, like G, it satisfies the other six 

principles that characterise a suitable measure of inequality. 



3.1 Interpreting the Adjusted Gini Coefficient 

A common criticism of the Gini coefficient is that it suffers from '%he dis- 

advantage of being affected very much by the mean measured from some 

arbitrary origin." (Kendall et al., 1987, p. 60). The standard requirement 

of a relative measure of inequality is that it should satisfy the contemporary 

interpretation of the principle of proportionate additions to incomes.13 For a 

statistic to comply with this requirement it must rescale individual incomes 

to cancel any associated units of measure. The precise rescaling required is, 

however, not specified, and may consequently be drawn from an infinite set. 

Kendall et al.'s criticism regarding the 'arbitrary origin' used to calculate the 

Gini coefficient is an issue that relates to this indeterminacy. 

It is useful to specify intuitively desirable criteria for limiting the inde- 

terminacy to which the rescaling factor of a relative measure of inequality is 

subject . One such requirement, which complements the analysis undertaken 

in section 3, is that a measure of inequality should assess dispersion with 

respect to the associated distribution constraints; that is, with regard to both 

the limits and the  mean of the distribution. When a distribution is subject to 

the limits [0, m), it is natural that the factor used to adjust incomes should 

measure the mean relative to zero. The same is not true, however, for the 

general limits [xmin, x,,], and hence the rescaling factor used by the Gini co- 

efficient may be considered arbitrary within this framework, consistent with 

the criticism of Kendall et al.. 
The adjustment suggested in section 3 for the Gini coefficient may be 

interpreted as a method of tailoring the inequality measure to the limits of 

the distribution of interest. Consider the following characterisation of i?, 

derived by dividing the discrete absolute difference form for A from equation 

(6) by (A + B) as described by equation (8): 

Equation (10) indicates that individual incomes are rescaled by the factor, 

1 3 ~ h i s  principal is the subject of some contention. See, for example, Kolrn (1976, p. 
419). 



when generating G, as apposed to the calculation of G, which rescales by ,u. 

From equation (ll), V is a quadratic function of ,u, with a minimum when 

,u = %,in or x,,, and a maximum when p = (ZmaxPmh) 14. When ,u is close 

to either of the distribution limits the values that individual observations 

can take are highly restricted. Similarly, when the mean is close to the mid- 

point of the distribution limits, then individual observations are subject to 

the least restraint, given the distribution limits. The rescaling factor, V, can 

consequently be interpreted as a measure of the 'variability' to which indi- 

vidual values of a distribution are subject, given the distribution limits and 

associated mean. Equation (10) therefore makes the relationship between ex 

ante population variability, and inequality explicit, where 6 varies inversely 

with V. 

The adjusted Gini coefficient complies with all of the principles that are 

used to evaluate the appropriateness of an inequality measure, including the 

principle of normalisation. In addition, it can be calculated for any mean 

depending on the limits to which the distribution is subject, including the 

case whe~e  ,u = 0. This property may come as some surprise, given that G 

was derived using the Lorenz curve, which is clearly not defined when ,u == 0. 

It is evident from equation (lo), however, that G may be calculated so long 

as p # Xmin or xmax.15 The result is attributable to the shift of focus away 
from the origin of zero, and arises mathematically due to the fact that, as 

,u -+ 0, A -+ oo at the same rate as (A + B). 
There is, however, a cost associated with the suggested adjustment to the 

Gini coefficient. Specifically in return for obtaining a measure of inequality 

that is specified relative to perfect inequality for given distribution limits, 

14@ven the constraint that z,;, < p 5 x,,. 
15When p = xmi, or x,,, the individual values of the associated distribution are subject 

to no 'variability', as indicated by the fact that V = 0. In this case, it is evident that 
inequality relative to the distribution constraints is undefined. This is the same effect 
that is responsible for the fact that the standard Gini coefficient can not be calculated for 
p = 0. 



comparisons between two distributions that are subject to different limits are 

complicated by the use of different scaling factors. Hence using adjusted Gini 

coefficients means that no association is maintained with regard to Lorenz 

dominance, unless the two distributions compared happen to be subject to 

the same restrictions regarding their respective domains.16 It is pertinent to 

bear this issue in mind when determining whether, and how, a Gini coefficient 

should be rescaled. 

A Practical Application 

The distribution of wealth in Australia is analysed to examine the practical 

significance of the suggested adjustment to the Gini coefficient. Studies of 

the distribution of wealth in Australia are quite rare, owing mainly to the 

lack of suitable data. The raw data used in this paper are derived from Woon 

(2000), where measures of 'net worth7 are imputed for individuals based on 

the 1994 to 1997 Income and Housing Costs Surveys (IHCS) .I7 These surveys, 

which are the four most recent editions to be published by the Australian 

Bureau of Statistics (ABS), provide demographic and income microdata for 

a representative sample of the Australian population. Woon (2000) imputes 

the wealth of individuals by aggregating annual earnings (comprising own 

business and wage and salary post tax income), own housing wealth (net of 

mortgage liabilities), imputed interest bearing (savings deposits), dividend 

bearing (company stock holdings), and rent bearing (real estate property 

holdings) assets, and superannuation. 

For the analysis undertaken here, the wealth data derived from Woon 

(2000) were aggregated by income unit, which is defined by the ABS as 

16The same criticism is true of the adjusted Gini coefficient suggested by Chen et al. 
(1982), which is also bound within the range [0,1] for distributions that include some 
negative incomes. Unlike the present paper, however, Chen et al. (1982) explicitly avoid 
the conceptual issues associated with the definition of perfect inequality when deriving 
their suggested adjustment, which complicates any interpretation of the coefficient that 
they advocate. 

17Woon (2000) refers to the imputed measures as 'non-human wealth' or 'net worth'. 
Fos clarity, the distribution is referred to throughout the subsequent discussion as wealth. 
See Piggott (1984) with regard to the distinction between human and non-human wealth. 



either, married couples (with or without children), sole parents, or single 

individuals. This distribution was adjusted for family size and composition 

using a variant of the equivalence scale examined by Buhmann et al. (1988), 

and the measures of 'adult equivalent wealth' were allocated to all individual 

family members following Danziger and Taussig (1979) on the related issue 

of income, and Sen (1997, p.30) on the related issue of poverty measurement. 

The equivalence scale used is characterised by: 

where n, and n, refer respectively to the number of adults and children in the 

family, and 0 5 0, @ < 1. The value of @ affects the weight given to children 

relative to adults and 0, called by Buhmann et al. (1988) the 'equivalence 

elasticity', is a measure of economies of scale, which are increased as 0 is 

reduced. Buhmann et al. (1988) considered the scale where @ = 1, such 

that both the age and gender of family members are ignored, and showed 

that with suitable choice of the parameter, 0 5 0 5 1, an approximation can 

be made to a wide range of equivalence scales currently in use.18 Parameter 

values of 0 = 0.5 and @ = 0.6 are exogenously assumed for the analysis 

undertaken. 

While it is acknowledged that this distribution of wealth is subject to 

criticism, the focus here is upon the practical implications of the suggested 

adjustment of the Gini coefficient, not an analysis of the distribution of wealth 

in Australia per st?. For a detailed description of the data used and associated 

distributional analysis see Woon (2000). 

The wealth of 16,608 individuals is analysed, where the distribution is 

ranged between -$528,382.67 and $6,808,348.73, with a mean of $110,477.46.'~ 

There are 408 individuals, 2.5 per cent of the entire survey population, that 

possess negative wealth, and 1,888 individuals, 11.4 per cent of the popula- 

tion, that possess non-positive wealth. 

''The formulation used in this study has also been applied by, for example, Cutler and 
Katz (1992), Banks and Johnson (1994) and Jenkins and Cowell (1994). 

lgAll wealth figures are measured in terms of 1996 Australian adult equivalent dollars. 



oporlion of population 

Figure 2: Lorenz curves for Lower Third of the Population based upon Mea- 
sured Wealth 

Figure 2 displays the Lorenz curve associated with the distribution of 

wealth for the least-wealthy third of the total survey population. The fact 

that this Lorenz curve does not have a positive slope for more than one 

third of the population is expected, given the distribution statistics provided 

above. The steep negative slope of the Lorenz curve at the origin and rapid 

levelling out displayed in figure 2 indicates that the -$528,382.67 wealth pos- 

sessed by the least wealthy individual is 'extreme'. The proportion of the 

population that own negative wealth do, however, have an important impact 

on the inequality of the lower-third wealth distribution. This observation is 

highlighted by the fact that the Lorenz curve of figure 2 does not indicate 

positive aggregate wealth until the upper three quarters of the proportion of 

population axis. In addition, the standard Gini coefficient associated with 

the Lorenz curve of figure 2 is equal to 1.5850, which lies outside of the 

bounds required by the principle of normalisation. 

Given that the population underlying figure 2 is subject to a maximum 



and no minimum limit, L,,, = l,,. Compared with the standard population 

limits, figure 2 indicates that the limits imposed on the population allow 

greater distribution variability, as discussed in section 3.1~'. Specifically, for 

the imposed limits of $,in -+ -00, and xm, = $37,200.50, V from equation 

(11) is equal t o  (xm, - p) = $29,538.61, which is greater than the population 

mean (p  = $7,661.89) that is applicable for the standard non-negativity 
constraint. The adjusted Gini coefficient is consequently substantially less 

than the standard Gini. F!rom equation (9), G = 0.25940 = 0.4111. 

proportion of 
population 

Figure 3: Lorenz curves for Middle Third of the Population based upon 
Measured Wealth 

Figure 3 displays the Lorenz curve associated with the distribution of 

wealth for the middle third of the population. Given that this distribution 

is subject to both upper and lower limits, Zmin and Z,, are both depicted 

in this figure. The lines lmin and l,, indicate that the limits imposed on 

the t3istribution of wealth of the middle third of the population significantly 

20since the area within which the associated Lorenz curve must be defined (between L,, 
and l,,) is larger than for the standard non-negativity constraint. 



restrict the distribution of wealth compared to the limits of the standard non- 

negativity constraint. Comparing the measures of V characterised by equa- 

tion (1 l), for example, the standard limits imply a value of ( p )  = $69,565.71, 

whereas the imposed limits imply a value of ( ~105429b52-69565.71)(69565,71-37232~ 
(105429.52-37232) ) 

= $17,003.70. Consequently, the standard Gini coefficient, which equals 

0.1611 for the distribution underlying the Lorenz curve in figure 3, is less 

than the associated adjusted Gini of 0.6591. 

proportion of 

population 

Figure 4: Loreni curves for Upper Third of the Population based upon Mea- 
sured Wealth 

Figure 4 completes the span of the survey population by focusing on the 

wealth of the upper third of the distribution. This population is subject only 

to a minimum limit, and consequently, Emin = L,,,. Given that the minimum 

limit is greater than zero and there is no upper limit imposed on the popu- 

lation, the distribution underlying the Lorenz curve displayed in figure 4 is 

subject to less variability than the distribution underlying the standard non- 

negativity constraint. The adjusted Gini coefficient is consequently greater 

than the standard Gini by a factor of 1.7089, taking the value 0.6369, as 



opposed to 0.3727. 

These results highlight the importance of taking into consideration the 

actual limits to which a distribution is subject when interpreting inequality 

relative to the distributional extremes. In particular, comparing the adjusted 

with the standard Gini coefficients discussed above reveals that very little can 

be said about how close inequality is to either one of the distributional ex- 

tremes when the limits to which the distribution is subject are not explicitly 

taken into consideration. In the case of the lower third of the population 

based on wealth, a high standard Gini coefficient coincides with a distribu- 

tion that is closer to absolute equality than inequality, as it is defined by the 

adjusted Gini coefficient. Conversely, for the middle and upper third popu- 

lations, a low standard Gini coefficient coincides with distributions that are 

closer to absolute inequality. 

Figure 5, displays the Lorenz curve for the full, unrestricted distribution 

of wealth. From this figure, it can be seen that Lorenz curve of the entire 

population falls below the 'proportion of total population' axis only slightly 

due tro the 2.5 per cent of the population that possess negative wealth. The 

effect of this sub-group on the standard Gini coefficient is consequently slight, 

increasing it by 6.2 per cent from 0.5788 to 0.6147. 

The limiting lines Emin and I,, are based respectively upon the minimum 

and maximum measures of wealth existing in the unrestricted distribution 

and, as such, define the most severe distributional constraint that can be im- 

posed without requiring the omission of sample observations. The associated 

adjusted Gini coefficient based upon these limits is, however, 81.1 per cent 

less than the standard Gini coefficient, taking a value of 0.1164. This large 

change is driven by the fact that the proportion of the total survey population 

that possess negative wealth is small, and their inclusion in the distributional 

analysis requires the lower population limit to be relaxed considerably. The 

negative observations may consequently be described as 'extreme' or 'unrep 

resentative' in an analysis of the complete distribution of wealth, in which 

case it may be preferable to impose the standard non-negativity population 

limits. For the distributions underlying the Lorenz curves of figures 2 to 4, 

however, assuming the standard non-negativity limits would seem less justi- 
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Figure 5: Lorenz curve of Wealth Distribution for f i l l  Population 

5 Conclusion 

This paper has examined the implications of measuring inequality for dis- 

tributions that are subject to general limits using the evaluative framework 

advocated by Dalton (1920). It is noted that the Gini coefficient satisfies all 

of the standard principles that characterise a useful measure of inequality un- 

der the assumption of distribution non-negativity. The Gini coefficient fails 

to satisfy the principle of normalisation, however, for any population that 

is subject to other distributional limits. An adjustment to the Gini coeffi- 

cient based upon a stated definition of 'perfect inequality' is suggested, which 

produces a statistic that satisfies all of the principles to which an inequality 



measure is subject for any general distributional limits. 

The adjusted Gini coefficient requires the distribution limits to be stated 

explicitly. Although this property enhances transparency, the added flexibil- 

ity that is implied comes at a cost. Specifically, the connection between the 

measures of inequality of two distributions and Lorenz dominance is severed 

if the distributions are subject to different population limits. In addition, 

where there exists no 'natural' distribution limits, there exists a trade-off 

between inclusion of observations, and disparity between standard and ad- 

justed Gini coefficients. Choice of the limits imposed must be based on the 

distribution of interest and with reference to the associated focus of analysis. 

The degree to which this choice is arbitrary, however, may be considered to 

impinge on the ability of the adjusted Gini coefficient to satisfy the principle 

of operationallity. 
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