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ABSTRACT 

This paper investigates the properties of dynamic solutions that have 

been derived using the well-known reverse-shooting and forward-

shooting algorithms.  Given an arbitrary large-scale model about which 

we have limited information, how successful are the algorithms likely to 

be in solving this model?  We address this question using a range of 

investment models, both linear and non-linear.  By extending the 

investment models to allow for multi-dimensional specifications of the 

capital stock, we are able to examine the computational efficiency of the 

competing algorithms as the dimensionality of the capital stock is 

allowed to increase.  Our approach provides insights into how the 

complexity of the solutions to a broad range of macroeconomic models 

increases with the dimensionality of the models. 
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1.  INTRODUCTION 

Given an arbitrary large-scale model about which we have limited 

information, how successful are the well-known reverse-shooting and forward-

shooting algorithms likely to be in solving this model?  We address this question 

using a series of investment models. 

These models have specific properties that are common to a range of 

macroeconomic models.  Firstly, the chosen models are derived from an optimising 

framework. 

Secondly, the models have a number of stable and unstable trajectories so that 

it is likely to be complicated to solve each model for a stable solution. The economy 

is initially at a stable steady state equilibrium, and when shocked by, say, an 

exogenous change in interest rates, then it moves to a stable trajectory leading to a 

new steady state equilibrium.  The movement to the new equilibrium is assumed to 

come about as a consequence of optimising behavior of the agents in the model.  In 

each of the models, certain variables jump instantaneously after the shock, and force 

the model dynamics onto the trajectory leading to the stable equilibrium. 

A third property of the models is that they are nonlinear with nonlinearities 

arising as a direct consequence of optimising behavior.  The usual approach is to 

linearise each model in the neighborhood of the steady state and then to solve the 

linearised model.  Of course, it is always possible to find closed-form solutions for the 

linearised models using matrix techniques.  Such matrix solutions are likely to be 

more computationally efficient than solutions derived using a search algorithm.  

However, the solution properties derived by applying the reverse-shooting algorithm 

to the linearised models are also going to give an informative benchmark by providing 
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an indication of how successful the algorithm is likely to be in solving an arbitrary 

large-scale model that is “almost” linear.   

The basic computational problem that we investigate is how well the reverse-

shooting and forward-shooting approaches solve the example problem over a range of 

parameter spaces, dimensionalities and computational parameters. We are particularly 

interested in what is commonly referred to as Bellman’s curse of dimensionality, in 

that we wish to investigate to what extent the computational effort required for 

solving the problem increases with dimensionality.  In particular, we investigate the 

computational effort needed to solve the dynamics of both the linear and non-linear 

models as the numbers of stable and unstable eigenvalues are allowed to increase.  

We also investigate the success rates of the chosen algorithms as the dimensionality 

of the problem increases. 

 

2.  THE GENERAL PROBLEM 

Consider the investment decision of a profit maximising firm with n types of 

capital along the lines of Hayashi (1982).  The firm faces a Cobb-Douglas production 

technology.  Also, adjustment costs are associated with the installation of new capital.  

The magnitude of these adjustment costs is governed by the magnitude of parameters, 

ib .  The decision of the firm can then be summarised as follows: 

Choose the iI  to maximise: 
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(0)i ioK K= ,  for 1,2,...,i n=      (2b) 
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where 

  iK  = real stock of capital of type i; 

iI = real level of investment of type i; 

1 2( , ,..., )nF K K K  = real output; 

r = real interest rate (assumed exogenous); and 

, ,i ia b α  are exogenous parameters. 

and where n is henceforth referred to as the dimensionality of the problem. 

The dynamics of capital accumulation in the model reduce to the following set 

of equations: 

( )2[ ( , ) ]i i i i i iq r b b q q F= − Λ − , for 1,2,...,i n=   (3a) 

[ ]( , ) 1 ( , )i i i i i i iK b q b b q K= Λ − Λ ,  for 1,2,...,i n=   (3b) 

where 
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The variables iq  are the co-state variables derived from the firm’s optimisation 

problem.  These co-state variables are frequently referred to as Tobin’s q.  

The steady state solutions of the model then reduce to the following (where an 

asterisk denotes the steady state value): 

  * 1iq = ,  for 1,2,...,i n=      (4a) 
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The model defined by equations (3a-3d) is non-linear.  However, we can obtain 

a general idea about the dynamic properties of the model by linearising in the 

neighbourhood of the steady state.  The linearised model is given by: 
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where 
i jij K KF F= .  

In addition, for the linearised model, the following second-order conditions for 

profit maximisation are satisfied: 

 0iiK < , for 1, 2,...,i n=      (6a) 

 ( 1) det 0n
nH− >       (6b) 

where 
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 Whenever equations (6a-6c) are satisfied, it can be shown that the model given 

by equation (5) has precisely n stable and n unstable eigenvalues.  In particular, any 

production technology of the form given by equation (2c) satisfies equations (6a-6c). 
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3.  PROGRAMMING THE SOLUTION 

In this paper, we will compare solutions to the model produced using the 

reverse-shooting and forward-shooting algorithms (Judd, 1998, pp. 355-361) as the 

dimensionality of the model is allowed to increase.  These algorithms are compared 

because they form the components of a range of more sophisticated algorithms 

designed for specific problems and yet are sufficiently basic in their implementation 

so that they do not need any additional design features before they can be 

implemented for almost any problem. 

Components of the algorithms 

Both shooting algorithms have two essential components: a differential 

equation solver to solve for each candidate path and a search routine that chooses 

among possible candidate paths and determines when an acceptable candidate path 

has been found.  To program the exercise, software components are needed to solve 

differential equations and undertake searches for a range of parameter sets.  We used 

Matlab (Mathworks, 2003) as it is ideally suited for this type of computational 

problem.  The programming was written so as to make use of key Matlab features.  

Library routines (toolboxes) were used so that start-of-the art solvers and searches are 

included in the code.   Using the extensive matrix capabilities allowed for exactly the 

same code being executed for all dimensionalities greater than one.  All results were 

generated using the same computer1.  

There are a number of important computational issues that will affect the 

solution to this problem, which is very sensitive to a whole range of approximations 

that are made in the solution process.   

                                                 
1 Matlab 6.1 on a Dell Latitude Notebook with Pentium 3 running at 1.3 GHz and 256Mb of RAM. 
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Firstly, there is the parameter space.  The model will be reasonably well-

behaved computationally as it is an economic problem (and, thus, for example, cannot 

have negative capital stocks).  But the parameter space will affect the size (though not 

the dimensionality) of the solution space.  Secondly there is the choice of the 

differential equation solver and thus the truncation errors and ability to handle 

different speeds in the solution dynamics.  Thirdly there is the method of searching 

over the candidate solution trajectories.  Finally there are the definitions of “close 

enough” in both the solver and in the search.  All these issues combine in producing 

errors and in producing the solution.  All may increase over wider parameter spaces 

and dimensionalities. 

Parameter calibration 

To generate the results presented here, we repeatedly solved the model over a 

range of parameter sets.  A total of 100 model repetitions were used for each 

dimensionality, n.  Each model repetition differs only in the parameter calibration.  

For all models 1a = , 0 0.03r =  and 05.0=r , and the models differ because of the 

values taken by 'siα  and 'sib  which are chosen from the following distributions: 

    1
3 2

i
i

in
ξηα
η

= +
∑

, 1, 2,...,i n=   (7a) 

    iib δ43+= , 1, 2,...,i n=    (7b) 

where ii δηξ ,,  are each drawn from )1,0(U , the random uniform distribution between 

0 and 1.  Note that, for the nonlinear models, the 's and 'si ibα  determine the extent of 

model nonlinearities.  Hence, by employing a range of values as given by equations 

(7a-7b), we are able to investigate the average properties of a broad range of 

nonlinear models. 
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This choice in parameter sets produces a suite of model repetitions that have a 

sensible economic meaning and that are computationally well-behaved, yet give a 

wide-ranging parameter space.  In particular, the interaction between the parameter 

values and the definition of the steady state value of the capital stock given by 

equation (4b) means that, for low dimensions, the size of the search space within that 

dimensionality is much larger than is the case for higher dimensions.  This 

proposition is illustrated in Table 1. 

(Table 1 about here) 

  

ODE solver software 

Solving this computational exercise is all about finding the final solution 

trajectory for a given model as determined by a parameter set.  This final solution 

trajectory is a single solution to an ordinary differential equation.  It is simply the 

solution to equation (3a-3b) from the correct set of initial conditions or equation (5) in 

the case of the linearised model.  To find this solution trajectory, using the chosen 

algorithms, it is often necessary to solve thousands of ordinary differential equations.  

We refer to each solution of a differential equation as a candidate solution. 

Basically the higher-dimensional shooting problems come down to solving 

many differential equations.  The choice of the software component to solve the 

ordinary differential equations in this exercise will have considerable implications for 

the results.  Small changes to the initial conditions of the ordinary differential 

equation will lead to huge differences in the final solution.  For the differential 

equation solver we use a variable time step size Runge-Kutta method solver.  This is a 

well-known and standard ODE solver for this type of problem.  It has the key features 
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of robustness and accuracy, and it can cope with the problem “blowing-up”.  It is well 

suited to the type of dynamics generated by the examples chosen in this paper. 

We implement the solver by calling the Matlab function ode45. The time step is 

chosen so that the local truncation error is less than 0.0001.  We use a long time 

horizon (ranging from 0 to 1500) but use the “events” property of the Matlab ODE 

solver suite to stop the integration of a candidate solution so that only a small fraction 

of the time horizon is normally used.  This, of course, significantly reduces the 

computational effort needed to solve the exercise. The resulting time horizon will be 

variable with each candidate solution.  As an example of a solver stopping condition, 

a candidate reverse time trajectory is stopped as soon as any capital stock is greater 

than its corresponding initial steady state.  This candidate can then be abandoned.2   

Searcher software 

Solving each computational exercise involves searching over many candidate 

solution trajectories to find the “correct” trajectory. From this “correct” solution 

comes the initial conditions required to solve the model and thus the jumps in the 

'iq s .  The searcher software generates candidate solutions and stops when it finds the 

“correct” candidate. 

For the forward shoot, a candidate ordinary differential equation is solved in 

forward time from a set of initial conditions at the initial steady-state values for the 

(0) 'iK s , where the (0) 'iq s  are allowed to vary.  For the reverse shoot, a candidate 

ordinary differential equation is solved in reverse time from a set of terminal 

conditions close to the final steady state. Effectively the searcher software generates 

the (0) 'iq s  (in the case of the forward shoot) and the terminal conditions (in the case 
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of the reverse shoot).  The searcher’s software sits over the top of the ODE solver 

software, and generates solutions until it finds the “correct” solution.  Thus the choice 

of the searcher software component is also important for the solution of the exercise. 

For the search method we use a Nelder-Meade direct simplex search. This 

search has the advantage that it has memory and can go back to previous search 

candidates (simplex vertices) and thus is less likely to get “stuck” in a search.  Unlike 

many other search procedures it does not require the generation (by analytic or 

numeric means) of derivatives.  Like most searches, it works best at low 

dimensionalities (Lararias et al., 1998).  We have found it to be a good robust 

searcher for this type of problem compared to other searchers we have used.  

We implement the Nelder-Meade search by the Matlab function “fminsearch” 

from the Optimization Toolbox.  The software is implemented by defining an 

objective function that is to be minimised.  Like all searcher software, this function 

has a number of stopping conditions.  These include that the objective function 

reaches a minimum as defined by a tolerance and within a maximum number of 

iterations.  Alternatively, successive iterates may differ by less than a specified 

tolerance.  Note that successful searches do not mean that the global minimum has 

been found.   

Processing the results 

For each dimensionality there are essentially four shooting experiments 

comprising forward and reverse-shooting for both linear and nonlinear models.  For 

each shooting experiment and each dimensionality, the processing was completed in 

two steps.  Step 1 was the actual shooting experiment.  This comprised a long and 

                                                                                                                                            
2 The “greater than” comes from the fact that, the experiment considered involves an increase in r from 
0.03 to 0.05 with the economy initially at the steady state associated with 0.03r = , so that the initial 
value of K is greater than its final steady-state value. 
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involved timing experiment involving the evaluation of a range of candidate paths 

interacting with the chosen search algorithm until an appropriate stopping condition 

was reached.  In the case of reverse-shooting this also included a final forward shoot 

to assess the adequacy of the preferred path.  In the course of running this experiment 

a substantial amount of data was collected.  Step 2 involved the collation of these data 

and the assessment of “success” or “failure” for the relevant shooting experiment. 

Stopping rules 

In Step 1, there is a search under both reverse-shooting and forward-shooting 

approaches.  The search has a set of stopping rules.  These rules, which we will refer 

to as R1, for reverse-shooting, and F1, for forward-shooting, differ because the 

shooting algorithms are different.   

Under reverse-shooting, there is a sequence of candidate paths each derived 

from a reverse shoot starting close to the final steady-state values of K and q.  The 

purpose of the algorithm is to find appropriate initial values for K and q on a stable 

path.  The algorithm stops if the process has clearly failed and also if a candidate 

solution reaches close enough to these initial values.  Closeness is measured by an 

appropriate norm and hence the rule R1 essentially defines the radius of a ball around 

the fixed initial values for K while also ensuring that the chosen candidate path is 

close enough to the final steady-state. 

 Under forward-shooting there is a sequence of candidate paths each derived 

from a forward shoot that starts at fixed initial values of K.  The purpose of the 

algorithm is to find a path that gets close enough to the final steady-state values of K 

and q.  Under this approach, the algorithm stops if the process has clearly failed and 

also if a candidate solution reaches close enough to the final steady-state.  Closeness 



 

 

 

11

is measured by an appropriate norm and hence the rule F1 essentially defines the 

radius of a ball around the final steady-state values of K and q.  

Measures of success 

The stopping rules are very different for the two shooting algorithms.  

Accordingly, the choice of a candidate path under one shooting approach, does not 

mean that same candidate path would be accepted under the other shooting approach.  

It is necessary to find some measure of success that is comparable for both shooting 

algorithms.   

This is achieved by having one final forward shoot for both reverse-shooting 

and forward-shooting that runs from the fixed initial value of K and the chosen initial 

value of q to the final steady-state values.  The measure of success then assesses how 

close the preferred path is to the final steady-state.  Closeness is measured by an 

appropriate norm and hence the measures of success, which we call R2 and F2, 

essentially define the radius of balls around the final steady-state values of K and q. 

The values of components of the norms are stored in Step 1 and hence 

different measures of success can be evaluated in Step 2 by changing the rules R2 and 

F2.  In order that the two measures of success are comparable, it is necessary that the 

radius of each ball is the same or, in other words, that the measures of success, R2 and 

F2, are identical. 

 In this paper, we report results where the balls associated with the rules R1 

and F1 have radius 0.0001 and where 0.1 is the radius of the balls associated with R2 

and F2. 
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4.  RESULTS 

Simulations were implemented for dimensionalities of 2 to 20, where n, the 

number of capital stocks, is the dimensionality of the model.  For our investment 

model, n is also the number of stable and unstable eigenvalues for the linearised 

model.   

CPU time to solve models 

The first issue we examine is the effect of dimensionality on the time it takes 

to solve a model.  Figures 1A and 1B show the average CPU time in seconds for 

successful solutions to the linear and non-linear model.  In all cases, the time and 

variability of the model solutions generally increases monotonically with 

dimensionality.   

(Figures 1A and 1B about here) 

From Figure 1A, it can be seen that reverse-shooting and forward-shooting, 

when successful, take about the same time to solve the linear model.  Figure 1B 

shows that, for the nonlinear model, the solution time when using the forward-

shooting approach takes substantially longer than using reverse-shooting.  On the 

basis of timing experiments alone, it would seem that reverse-shooting is the preferred 

approach, at least for higher-dimensional problems. 

Success rate 

Figures 2A and 2B present the success rates (expressed as a percentage) for 

solving the model.  For both linear and non-linear model, forward-shooting works 

best at lower dimensions, while reverse-shooting works as well or better than 

forward-shooting at higher dimensions.   

(Figures 2A and 2B about here) 
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The best results are for the linear model using forward-shooting with 

dimensionality less than or equal to five showing close to a 100% success rate.  For 

the nonlinear model, forward-shooting does better than reverse-shooting for 

dimension equal to two and three and almost as well for dimension equal to four and 

five.3  Taking into account both success rates and timing experiments suggests that 

reverse-shooting should be the preferred approach when dimension is greater than 

five. 

Overall assessment 

The overall assessment is that forward-shooting works best at lower dimensions 

(dimension less than or equal to five), while reverse-shooting works better (though 

with clear imperfections) at higher dimensions (dimension greater than five).  

However, both shooting approaches struggle to successfully solve the nonlinear 

model for higher dimensions starting as low as four or five.  Hence our results provide 

mixed support for both shooting algorithms. 

 
 
5.  CONCLUDING REMARKS 

 

For a given n-dimensional problem, the reverse-shooting algorithm must search 

over an n-dimensional manifold, whereas the forward-shooting algorithm must search 

over a 2n-dimensional manifold.  As a consequence, our initial presumption was that 

the reverse-shooting algorithm would always be more efficient than forward-shooting.  

In particular, the forward-shooting approach would be expected to require more 

computational effort than reverse-shooting.  While generally supporting this 

                                                 
3 We suspect that the reverse-shooting approach has difficulties solving the linear model for two 
different reasons.  At low dimensionalities (1 to 5) we suspect that this is because of the large search 
space generated by the parameters (and described in Table 1) interacting with the search algorithm 
where successful searches terminated with close iterates rather than close to the global minimum.  At 
high dimensionalities (12 and greater) we suspect this is because of the higher dimensionality. 
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presumption, our results demonstrate that it is possible, in some cases, particularly at 

lower dimensions, for the forward-shooting algorithm to have a higher success rate.   

The likely reason for this outcome is the problem of compounding errors, which 

is likely to be greater for reverse-shooting than it is for the forward-shooting 

approach.  One of the big problems with the reverse-shooting approach is that 

possible computational errors are introduced at a variety of different stages, for 

example in the neighbourhood of the final steady-state, through the ODE solver, and 

in the neighbourhood of the initial conditions.  Under forward-shooting, possible 

computational errors are introduced at fewer stages, such as through the ODE solver 

and in the neighbourhood of the final steady-state, but not in the neighbourhood of the 

initial conditions.  These computational errors have the potential to compound 

causing the solution trajectory to “blow-up”.  Our results indicate that even the 

introduction of “well-behaved” linearities like those introduced in this paper, can 

substantially reduce the effectiveness of both shooting algorithms.   

It is important to note that our analysis has investigated the implications, for 

choice of shooting algorithms, of a particular type of complexity in macro models.  

The type of complexity we have investigated involves the number of stable and 

unstable eigenvalues.  However, this is only one type of complexity that arises in 

macroeconomic models.  Another particular type of complexity that is quite common 

involves the need to solve a large number of contemporaneous equations, often 

involving the inversion of sparse matrices.  This study provides no insight into the 

latter problem, which is solved by completely different approaches than through the 

shooting algorithms analysed here.  However, our approach has demonstrated how the 

complexity of the solutions to a broad range of macroeconomic models increases with 
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the number of unstable eigenvalues and provided useful insights into how techniques 

based on the two shooting algorithms are likely to cope as this complexity increases.   
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Search Space 

 
Maximum Initial Capital 

Stock 
Maximum Final Capital 

Stock 
Dim Mean S. Deviation Mean S. Deviation 

5 2062.9237 553.6218 160.7431 36.3833 
10 73.0469 15.9201 6.4759 0.9307 
15 7.4386 1.1524 1.2953 0.0555 
20 3.1230 0.3415 1.0000 0.0000 

 
Table 1: Effects of Dimensionality on Search Space 
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Figure 1A: Average CPU Time for Successfully Solving Linear Model 
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Figure 1B: Average CPU Time for Successfully Solving Nonlinear Model 
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Figure 2A: Success Rates for Linear Model 
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Figure 2B: Success Rates for Nonlinear Model 

 
 
 

 




