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Abstract. The paper considers random economic systems gen-

erating nonlinear time series on the positive half-ray R+. Using
Liapunov techniques, new conditions for existence, uniqueness and

stability of stationary equilibria are obtained. The conditions gen-

eralize earlier results from the mathematical literature, and extend

to models outside the scope of existing economic methodology. An

application to the stochastic growth problem with increasing re-

turns is given.

1. Introduction

Increasingly, modern economics is implemented within the frame-

work of stochastic dynamic systems. Physical laws, equilibrium con-

straints and restrictions on the behavior of agents jointly determine

evolution of endogenous state variable x ∈ X according to some tran-

sition rule

(1) xt+1 = h(xt, zt, εt), t = 0, 1, . . . ,

where h is an arbitrary function, (zt) is a sequence of exogenous forcing

variables and (εt) is uncorrelated noise.

For some models, either zt is constant or the the endogenous variables

can be redefined such that the system is autonomous:

(2) xt+1 = h(xt, εt), t = 0, 1, . . .
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Assume that this is the case. Of primary concern is whether the au-

tonomous system (2) is in some sense stationary, in which case one can

anticipate convergence of the sequence of distributions (ϕt) associated

with the sequence of random variables (xt) to some unique limiting dis-

tribution ϕ∗. The latter is then interpreted as the long-run equilibrium
of the economy (2). Typically, comparative statics or policy simulation

will be performed by analyzing the relationship between its moments

and the underlying structural parameters contained in the function h

and the distribution of the shock ε.

When h is linear on real vector space, (2) is the standard autore-

gression (AR) model. Conditions for stationarity are familiar from

elementary time series analysis (Hamilton, 1994). When the map is

nonlinear, dynamic behavior is potentially more complicated. General

conditions for existence of unique and stable equilibria are not known.

In this case, a common approach is to linearize (2) using a first order

Taylor expansion or similar technique, and then examine the stability

properties of the resulting AR model. However, it is by no means

clear that stability properties obtained for the AR model have any

homeomorphic implications for the behavior of the true model (2). In

other words, it is not in general legitimate to infer stability of (2) from

stability of the corresponding linear form. Moreover, linearization may

eliminate important features of the model.1

A more correct method is to examine the Markov chain generated by

(2), and determine whether appropriate conditions for stability of Mar-

kovian systems are satisfied. A well-known survey of these conditions

is provided by Futia (1982). Stokey, Lucas and Prescott (1989, Chap-

ter 13) outline ways to verify these and related conditions for common

economic models. Prescott and Hopenhayn (1992) study weak-star sta-

bility using a monotonicity requirement. Bhattacharya and Majumdar

(2001) obtain exponential convergence in the Kolmogorov metric for

systems that satisfy a “splitting” condition.

In general, a Markov process is characterized by its transition kernel,

which generalizes the notion of Markov transition matrix to the case

1For example, Durlauf and Quah (1999) find evidence to the effect that the

standard linearization procedure applied to Solow-Ramsey growth models (e.g.,

Mankiw, Romer and Weil, 1992) fails to extract nonlinear local increasing returns

dynamics that are crucial to understanding the evolution of the cross-country in-

come distribution.
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where the state space is arbitrary. In the papers listed above, stability

conditions for Markov processes are stated in terms of properties of

the kernel. For the system (2), the kernel is defined implicitly, and the

conditions must be verified on the basis of restrictions on the function

h and the distribution of the shock ε.

Kernel-based methods are important for their generality. At the

same time, when the original model is stated as a stochastic difference

equation such as (2), translating it into the Markov kernel formula

involves some loss of information. Conversely, working directly with

the formulation (2) provides structure not available for generic Markov

processes. This structure can be exploited when deriving equilibrium

existence results and stability conditions. Moreover, such an approach

leads naturally to conditions stated directly in terms of the primitives

h and ε rather than the implied transition kernel, making them easy

to verify in applications.

Adopting this approach, the paper provides new conditions for ex-

istence, uniqueness and stability of equilibrium in a class of models

defined by (2). In particular, we consider the special case where the

shock ε is multiplicative and the state space for the endogenous variable

xt is the positive half-ray R+ = [0,∞). That is,

(3) xt+1 = g(xt)εt, t = 0, 1, . . . ,

where g : R+ → R+, and εt ∈ R+. Our motivation for treating this
case is that models evolving in R+ are common in economics, where
state variables typically denote physical quantities or prices. Stochastic

one-sector accumulation models are an important example.

The above problem has also been studied in the mathematical liter-

ature. In particular, there exists for (3) a well-known set of stability

conditions due to K. Horbacz (1989, Theorem 1). The results obtained

here provide a general principle which yields the conditions of Horbacz

as a special case.

Our arguments are based on the framework for studying integral

Markov semigroups in the function space L1 proposed by Lasota (1994).

Previously, Stachurski (2002) has applied Lasota’s method to the sto-

chastic neoclassical growth problem.

The paper proceeds as follows. Section 2 defines random systems

and equilibria in the space R+. Section 3 states our results. Section
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4 discusses applications. The proofs of the main results are given in

Section 5.

2. Formulation of the problem

A perturbed dynamical system on the positive reals can be defined

as follows. Let R be the real numbers, let B be the Borel sets of R, let
R+ = [0,∞), and let B+ = B∩R+. Lebesgue measure is denoted by µ,
and L1(µ) is the space of µ-integrable real functions on R+. Integration
where the measure is not made explicit refers to integration with respect

to µ. The symbol
R
without subscript refers to integration over the

whole space R+.
As usual, L1(µ) is interpreted as a Banach lattice of equivalence

classes; functions equal off a µ-null set are identified. A density function

on R+ is an element ϕ ∈ L1(µ) such that ϕ ≥ 0 and
R
ϕ = kϕk = 1.

The set of all density functions is denoted D(µ).

Let (Ω,F) be a measurable space, where F is a σ-algebra on the set

Ω, and let P be a probability measure on (Ω,F). Random outcomes are

implemented as follows. A state of nature is selected from Ω according

to P, and mapped into the real line by random variable ε : Ω→ R. As
usual, the random variable defines a probability distribution associating

event B ∈ B with the real number P[ε−1(B)] ∈ [0, 1]. We assume
throughout that ε is nonnegative and represented by a density function:

Assumption 2.1. The distribution B 3 B 7→ P[ε−1(B)] ∈ [0, 1] satis-
fies P[ε−1(R+)] = 1 and P[ε−1(B)] = 0 whenever µ(B) = 0.

Given Assumption 2.1, there exists a unique representative density

ψ ∈ D(µ) satisfying R
B
ψ = P[ε−1(B)] for all B ∈ B+; ψ is called the

Radon-Nikodým (RN) derivative of B 7→ P[ε−1(B)] with respect to µ.

Definition 2.1. Let g : R+ → R+ be a measurable function. In this
paper, a perturbed dynamical system on R+ refers to the pair (g,ψ),
where, given current state value xt ∈ R+, a shock εt ∈ R+ is selected
independently from density ψ, and the next period state is realized as

in (3).

Let 1B : R+ → {0, 1} be the characteristic function for B ∈ B+. The
pair (g,ψ) determines a Markov process on R+ with transition kernel

(4) N : R+ ×B+ 3 (x,B) 7→
Z
1B[g(x)z]ψ(z)dz ∈ [0, 1].
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(See, e.g., Futia, 1982, Definition 1.1.) The value N(x,B) should be

interpreted as the conditional probability that the next period state is

in Borel set B, given that the current state is equal to x. A Markov

process is fully characterized by its transition kernel.

Let M be the vector space of finite signed measures on (R+,B+).
Let M1 be the elements ν ∈ M such that ν ≥ 0 and ν(R+) = 1. The
subset M1 will be called the distributions on R+. Finally, let B be any
Borel set, and let νt ∈M1 be the marginal distribution for the random

variable xt.
2 By the law of total probability, if νt+1 is the distribution

for xt+1, then

(5) νt+1(B) =

Z
N(x,B)νt(dx).

Intuitively, the probability that the state variable is in B next period

is the sum of the probabilities that it travels to B from x across all

x ∈ R+, weighted by the probability νt(dx) that x occurs as the current
state.

Suppose we now define an operator P : M 3 ν 7→ Pν ∈M by

(6) Pν(B) =

Z
N(x,B)ν(dx).

Evidently PM1 ⊂ M1. A linear self-mapping on M satisfying PM1 ⊂
M1 is called a Markov operator.

3 It follows from (5) and (6) that if

νt is the distribution for the current state xt, then νt+1 = Pνt is the

distribution for the next period state xt+1.

Repeated iteration of P on a fixed distribution ν is equivalent to

moving forward in time. If P t is defined by P t = P ◦P t−1 and P 1 = P ,
and if ν is the current marginal distribution for the state variable, then

P tν is the distribution t periods hence.

2.1. The L1 method. In this paper we study the Markov process

generated by (g,ψ) using L1 techniques (Hopf, 1954). Embedding the

Markov problem in the function space L1(µ) requires that the transition

2The distribution for the entire stochastic process (xt)t≥0 can be constructed
uniquely from the transition kernel and an initial value x0 (see, e.g., Shiryaev, 1996,

Theorem II.9.2). The real number νt(B) is the probability that this distribution

assigns to the event xt ∈ B and xs ∈ R+ for all other s 6= t.
3The operator P closely corresponds to T ∗ in Futia (1982, p. 380). Markov

operators are called stochastic operators by some authors. Our terminology follows

the literature on Markov processes in L1.
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probabilities can be represented by density functions. We suppose in

particular that

Assumption 2.2. The map g is strictly positive almost everywhere

on R+.

It can be verified under Assumption 2.2 that for almost all x, the

distribution B 7→ N(x,B) is absolutely continuous with respect to µ,

and can therefore be represented by density y 7→ p(x, y). For such x,

(7) p(x, y) = ψ

µ
y

g(x)

¶
1

g(x)
,

because thenZ
B

p(x, y)dy =

Z
1B[g(x)z]ψ(z)dz = N(x,B).

For other x set p(x, ·) equal to any density.
Heuristically, the number p(x, y)dy is the probability of traveling

from state x to state y in one step. In this paper, p is called the

stochastic kernel corresponding to (g,ψ).4

The Markov operator P corresponding to (g,ψ) can now be reinter-

preted as a linear self-mapping on the function space L1(µ), where if

h ∈ L1(µ), then
(8) Ph(y) =

Z
p(x, y)h(x)dx.

It can be verified that the two definitions of P are equivalent for the

absolutely continuous measures in M when these measures and their

RN derivatives in L1(µ) are identified. That is, if h ∈ L1(µ) is the RN
derivative of λ ∈M, then Ph defined by (8) is the RN derivative of Pλ
defined by (6).5

Note that PD(µ) ⊂ D(µ), as can be shown using Fubini’s theorem.
As before, if ϕ is the current marginal density for the state variable,

then P tϕ is that of the state t periods hence.

4It will become clear below that stochastic kernels need be defined only up to

the complement of a null set–systems with kernels equal µ× µ-a.e. have identical
dynamics and we do not distinguish between them in what follows.
5Formally, the semidynamical systems defined by (Mµ, P ), where Mµ is the

absolutely continuous measures and P is the Markov operator on measures; and

(L1(µ), P ), where P is the Markov operator on functions; are topologically conju-

gate, in that they commute with the homeomorphism defined by Radon-Nikodým

differentiation–an isometric isomorphism from Mµ to L1(µ). Topologically conju-

gate dynamical systems have identical dynamic properties.
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Definition 2.2. Let (g,ψ) be a perturbed dynamical system satisfying

Assumptions 2.1—2.2. Let P be the corresponding Markov operator. An

equilibrium or steady state for (g,ψ) is a density ϕ∗ on R+ such that
Pϕ∗ = ϕ∗. An equilibrium ϕ∗ is called unique if there exists no other
fixed point of P in the space D(µ), and globally stable if P tϕ→ ϕ∗ in
the L1(µ) metric as t→∞ for every ϕ ∈ D(µ).

These definitions are consistent with standard definitions used in

Markovian economic models (c.f., e.g., Stokey, Lucas and Prescott,

1989, pp. 317—8).

One advantage of the techniques used here is that stability is defined

in the strong topology on L1(µ). The distributions corresponding to

the density functions in Definition 2.2 converge in the strong (total

variation) topology on M. Existing techniques typically obtain only

weak or weak-star stability.6

3. Results

In this section we give two stability results for the perturbed dynam-

ical system (g,ψ) on R+ defined by (3), with ψ the density of the shock

ε. Central to our conditions is the notion of a Liapunov function on

R+, which we define to be a continuous, nonnegative function V from
R+ into R+ ∪ {∞} such that V (0) = ∞, V (x) < ∞ for x 6= 0 and

limx→∞ V (x) =∞.

Condition 3.1. Corresponding to (g,ψ), there exists a Liapunov func-

tion V on R+ and constants α, C ≥ 0, α < 1, such thatZ
V [g(x)z]ψ(z)dz ≤ αV (x) + C, ∀x ∈ R+.

The function V in Condition 3.1 is large at 0 and +∞. The condition
restricts the probability that the state variable moves toward these

limits without bound.

Condition 3.2. The density ψ is strictly positive on R+.7

6Horbacz (1992, Example 1) exhibits a simple perturbed dynamical system with

multiplicative shock which is weakly globally stable but not strongly globally stable.
7More precisely, there exists a strictly positive function in the equivalence class

ψ ∈ L1(µ). When ψ is treated as a function it is to this element of the equivalence

class that we refer.
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Most “named” densities on R+ have this property, such as the log-
normal, exponential, chi-squared, gamma, and Weibull densities.

Condition 3.3. The density ψ satisfies ψ(z)z ≤M on R+.

Condition 3.3 also holds for the lognormal, exponential, chi-squared,

gamma and Weibull distributions. The condition is used here to bound

the probability that ψ assigns to closed intervals in R+ \ {0}.
The first theorem can now be stated.

Theorem 3.1. Let (g,ψ) be a perturbed dynamical system on R+ sat-
isfying Assumptions 2.1 and 2.2. If g and ψ also satisfy Conditions

3.1, 3.2 and 3.3, then (g,ψ) has a unique, globally stable equilibrium.

Alternatively, suppose that

Condition 3.4. The map g is weakly monotone increasing on the

nonempty interval [0, r), and g(x) ≥ b > 0 on [r,∞).

Theorem 3.2. Let (g,ψ) be a perturbed dynamical system on R+ sat-
isfying Assumptions 2.1 and 2.2. If g and ψ also satisfy Conditions

3.1, 3.2 and 3.4, then (g,ψ) has a unique, globally stable equilibrium.

Corollary 3.1. Let (g,ψ) be a perturbed dynamical system on R+ sat-
isfying Assumptions 2.1 and 2.2. If g is weakly monotone increasing

and, in addition, g and ψ together satisfy Conditions 3.1 and 3.2, then

(g,ψ) has a unique, globally stable equilibrium.

Proof. Evidently Condition 3.4 is also satisfied if Assumption 2.2 holds

and g is weakly monotone increasing on R+. ¤

4. Applications

Applications of the results are presented in this section.

4.1. Stability in a model with externalities. Consider the follow-

ing growth model with increasing returns. The framework is overlap-

ping generations. Agents live for two periods, working in the first and

living off savings in the second. Savings in the first period forms capital

stock, which in the following period will be combined with the labor of

a new generation of young agents for production under the technology

yt+1 = A(kt)k
α
t `
1−α
t εt.
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where y is output, k is capital and ` is labor input. The function

k 7→ A(k) signifies the existence of increasing social returns resulting

from sensitivity of “technology” to economy-wide capital aggregates.

This dependence is external to individual agents, and A is treated

as constant with respect to private investment. The capital share α

satisfies 0 < α < 1.

Regarding the nature of the function k 7→ A(k), we assume only that

increasing returns are bounded:

Assumption 4.1. The function A : R+ 7→ R+ is measurable and takes
values in a closed and bounded subset of R+ \ {0}.

Well-known macroeconomic models with external effects satisfying

Assumption 4.1 include Azariadis and Drazen (1990), Galor and Zeira

(1993), and Quah (1996).

For convenience, labor supply is normalized to unity. The productiv-

ity shocks εt are uncorrelated and identically distributed by the lognor-

mal density, denoted here by ψ. In other words, ln ε has the (standard)

normal distribution.

Let c (respectively, c0) denote consumption while young (respectively,
old). Agents maximize utility

U(ct, c
0
t+1) = ln ct + βE(ln c0t+1)

subject to the budget constraint c0t+1 = (wt − ct)(1 + rt+1), where wt
and rt are the wage and interest rates at t respectively. In this case

optimization implies a savings rate from wage income of β/(1+β), and

hence kt+1 = (β/(1 + β))wt.

Assuming that labor is paid its marginal factor product yields the

law of motion

(9) kt+1 = DA(kt)k
α
t εt = g(k)εt,

where D = β
1+β
(1− α).

Considerable technical difficulties are presented by the increasing

returns model (9), which is potentially highly nonlinear. In the absence

of further assumptions, the transition kernel generated by this model

is in general neither Feller stable (Stokey, Lucas and Prescott, 1989,

p. 220) nor increasing (Hopenhayn and Prescott, 1992, p. 1392). The

state space cannot be taken to be compact. The splitting condition of

Bhattacharya and Majumdar (2001, p. 212) is not satisfied. Finally,
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we note that in the deterministic case (when εt is held constant), the

model (9) may have a countable infinity of local attractors. Never the

less,

Proposition 4.1. The economy (9) has a unique, globally stable sto-

chastic equilibrium.

Proof. We verify the conditions of Theorem 3.1. Set V (0) = ∞ and

V (k) = | ln k| for k > 0. The function V so constructed is a Liapunov
function on R+. Moreover,Z

V [g(k)z]ψ(z)dz =

Z
| lnD + lnA(k) + α ln k + ln z|ψ(z)dz

≤ α| ln k|+ C
= αV (k) + C,

where C = | lnD|+ supk | lnA(k)|+ E| ln ε|. Since α < 1 and C <∞,
Condition 3.1 holds. Since Conditions 3.2 and 3.3 are also satisfied,

existence, uniqueness and global stability now follow from Theorem

3.1. ¤

4.2. Existing conditions. Previously a set of conditions for obtaining

stability of the model (3) was obtained by K. Horbacz (1989, Theorem

1). We now derive her results as a special case of Theorem 3.2.

Let (g,ψ) be a perturbed dynamical system on R+ satisfying As-
sumptions 2.1 and 2.2. Horbacz (1989, Theorem 1) proves that (g,ψ)

has a unique and globally stable equilibrium whenever

(i) The map g is weakly monotone increasing and continuously

differentiable on [0, r) 6= ∅, and g(x) ≥ b > 0 on [r,∞);
(ii) the map g satisfies g(0) = 0 and g0(0) > 0;
(iii) there exist a, B ≥ 0 such that g(x) ≤ ax+B for all x ∈ R+;
(iv) the mean E(ε) =

R
zψ(z)dz is finite and, moreover, E(ε)a < 1;

(v) there exists a λ > 0 such that E[(g0(0)ε)−λ] < 1; and
(vi) the density ψ is everywhere positive on R+.
We show that (i)—(vi) imply the conditions of Theorem 3.2. Evi-

dently Conditions 3.2 and 3.4 of the theorem are satisfied. It remains

to verify Condition 3.1. To this end, let λ be as in (v). If we set

V (0) = ∞ and V (x) = x−λ + x for x > 0, then V is a Liapunov

function on R+, and

(10)

Z
V [g(x)z]ψ(z)dz =

Z
[g(x)z]−λψ(z)dz +

Z
g(x)zψ(z)dz.
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Consider the first term in the sum (10). By (v), there exists a positive

number σ so small that

(11)

Z
[(g0(0)− σ)z]−λψ(z)dz < 1.

By (i) and (ii), there exists a δ > 0 such that

(12) g(x) ≥ (g0(0)− σ)x whenever x ∈ [0, δ).
Combining (11) and (12) yields a γ < 1 such thatZ

[g(x)z]−λψ(z)dz ≤ γx−λ, ∀x ∈ [0, δ).

Moreover, (i) implies the existence of a c > 0 such that

g(x) ≥ c whenever x ∈ [δ,∞).
Thus, for all x ∈ R+, we have the bound
(13)

Z
[g(x)z]−λψ(z)dz ≤ γx−λ + C0,

where γ < 1 and C0 is a finite constant.

Regarding the second term in the sum (10), (iii) implies that

(14)

Z
g(x)zψ(z)dz ≤ E(ε)ax+ C1, x ∈ R+,

where C1 is a finite constant.

Combining (13) and (14) gives

(15)

Z
V [g(x)z]ψ(z)dz ≤ αV (x) + C,

where α = max[E(ε)a, γ] < 1 and C = C0 + C1 < ∞. This confirms
Condition 3.1. Hence all of the conditions of Theorem 3.2 are satisfied.

5. Proofs

Verification of Theorems 3.1 and 3.2 proceeds by outlining a frame-

work for obtaining existence, uniqueness and stability of equilibria,

and then establishing the required lemmas. The framework for study-

ing integral Markov operators used here is due to Lasota (1994). Our

exposition of Lasota’s method is based on Stachurski (2002).

By the definition of equilibrium, the proof requires a fixed point

argument for a mapping T : U → U on a metric space (U, %), where in

the present case T corresponds to the Markov operator P defined in

(6), U is the space of density functions D(µ), and % is the distance in

D(µ) induced by the L1 norm.
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A standard result which gives existence, uniqueness and stability of

equilibrium in the form desired here is the Banach contraction theorem.

(Note that the underlying space is indeed complete.) However, the con-

traction condition of Banach is not always satisfied under Conditions

3.1—3.4. Here we pursue an alternative contraction-based argument,

using a slightly weaker condition.

Definition 5.1. Let U be a metric space, and let T : U → U . The

map T is called contracting on U if

(16) %(Tx, Tx0) < %(x, x0), ∀x, x0 ∈ U, x 6= x0.
The contraction condition (16) immediately implies uniqueness of

fixed points for T in U , because if x and x0 are any two fixed points in
U , then %(Tx, Tx0) = %(x, x0), from which it follows that x = x0.

Lemma 5.1. Let (g,ψ) be a perturbed dynamical system satisfying As-

sumptions 2.1 and 2.2. If Condition 3.2 holds, then the associated

Markov operator P is contracting on D(µ) with respect to the metric

induced by the L1(µ) norm.

Proof. Note that under Condition 3.2, the stochastic kernel y 7→ p(x, y)

is strictly positive for almost all x, as can be verified from the represen-

tation (7). Pick any two densities ϕ 6= ϕ0. Evidently the function ϕ−ϕ0
is both strictly positive on a set of positive measure and strictly nega-

tive on a set of positive measure. Pick any y ∈ R+. Since p(x, y) > 0
for almost all x, it follows that x 7→ p(x, y)[ϕ(x)−ϕ0(x)] is also strictly
positive on a set of positive measure and strictly negative on a set of

positive measure. Therefore, by the strict triangle inequality,

kPϕ− Pϕ0k = kP (ϕ− ϕ0)k

=

Z ¯̄̄̄Z
p(x, y)[ϕ(x)− ϕ0(x)]dx

¯̄̄̄
dy

<

Z Z ¯̄
p(x, y)[ϕ(x)− ϕ0(x)]

¯̄
dx dy

=

Z Z
p(x, y)|ϕ(x)− ϕ0(x)|dx dy

=

Z Z
p(x, y)dy|ϕ(x)− ϕ0(x)|dx

= kϕ− ϕ0k,
as was to be proved. ¤
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By the comment preceding the lemma, this result establishes unique-

ness of equilibrium in the sense of Definition 2.2.

Consider now the problem of existence and stability. It is known

that when T : U → U is contracting on a compact metric space (U, %),

then T has a unique fixed point x∗ ∈ U . Uniqueness holds for all
contractions, as discussed above. To obtain existence, define r : U → R
by r(x) = %(Tx, x). Evidently r is continuous. Since U is compact,

r has a minimizer x∗. But then Tx∗ = x∗, because otherwise Tx∗

minimizes r on U .8

It is less well-known but also true that under these conditions all

points in the space are convergent to x∗ under iteration of T . To

prove this, pick any x ∈ U , and define αn = %(Tnx, x∗). Since (αn)
is monotone decreasing and nonnegative it has a limit α. If α = 0

then we are done. Suppose otherwise. By compactness, (Tnx) has a

convergent subsequence T nkx → x̄ ∈ U . Evidently %(x̄, x∗) = α > 0,

so x̄ and x∗ are distinct. But then

%(Tx̄, Tx∗) = %(T lim
k
T nkx, x∗)

= lim
k
%(TT nkx, x∗)

= lim
k

αnk+1 = α,

which contradicts (16). This argument proves convergence to the fixed

point.

We have proved that contractiveness of the operator and compact-

ness of the space together imply existence, uniqueness and global sta-

bility of equilibrium. In the case of the perturbed dynamical system

(g,ψ), while P is strongly contracting the metric space on D(µ) with

L1 distance by Lemma 5.1, D(µ) is not compact in the same topology.

Some weakening of the compactness condition is required. Consider

the following approach. Suppose that, in addition to strong contrac-

tiveness of P on D(µ), the set of iterates {P tϕ : t ≥ 0} is precompact
for any initial distribution ϕ ∈ D(µ).9 Such a property is called La-
grange stability. Let Γ(ϕ) denote the closure of this collection, that

is, Γ(ϕ) = cl{P tϕ : t ≥ 0}. It is straightforward to check that

8Strictness of the inequality in (16) is necessary for both uniqueness and exis-

tence. For example, existence fails if U is the boundary of the unit sphere in R2,
and Tx = −x.
9A subset of a topological space is precompact if it has compact closure.
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PΓ(ϕ) ⊂ Γ(ϕ).10 In this case, P is a contracting self-mapping on the

compact set Γ(ϕ). Therefore P has a fixed point ϕ∗ in Γ(ϕ) ⊂ D(µ).
Moreover, the stability result discussed above implies that P tϕ → ϕ∗

in L1 norm. Finally, since P is a contraction on the whole space, the

fixed point ϕ∗ is unique and does not depend on ϕ.

Thus it remains only to establish Lagrange stability of the Markov

operator P associated with (g,ψ) on the density space D(µ). Lasota

(1994, Theorem 4.1) has made the important insight that in the case

of integral Markov operators such as (8), it is sufficient to prove that

{P tϕ : t ≥ 0} is weakly precompact for every ϕ ∈ D(µ). The reason
is that integral Markov operators map weakly precompact subsets of

L1(µ) into strongly precompact subsets. Therefore, if {P tϕ : t ≥ 0} is
weakly precompact, then {P tϕ : t ≥ 1} is strongly precompact. But
then {P tϕ : t ≥ 0} is also strongly precompact.
In fact Lasota (1994, Proposition 3.4) has used a Cantor diagonal

argument to show that weak precompactness of {P tϕ : t ≥ 0} need
only be established for a collection of ϕ such that the closure of the

collection contains D(µ). In summary, then, both Theorem 3.1 and

Theorem 3.2 will be verified if we are able to show that under Condition

3.1 and either one of Condition 3.3 or 3.4, there exists a set D such

that D is dense in D(µ) and {P tϕ : t ≥ 0} is weakly precompact for
each ϕ ∈ D.
Lemma 5.2. Let (g,ψ) be a perturbed dynamical system on R+ satisfy-
ing Assumptions 2.1 and 2.2, and let P be the associated Markov opera-

tor. If Condition 3.1 and either one of Condition 3.3 or 3.4 holds, then

there exists a set D such that D is dense in D(µ) and {P tϕ : t ≥ 0}
is weakly precompact for each ϕ ∈ D.
Proof of Lemma 5.2. Let V be the Liapunov function in Condition 3.1.

Let D be the set of all density functions ϕ in L1(µ) such that

(17)

Z
V (x)ϕ(x)dx <∞.

We claim that D has the desired properties.

Pick any density ϕ. To see that there exists a (ϕk) ⊂ D with ϕk → ϕ,

define first ϕ0k = 1[1/k,k]ϕ. By the monotone convergence theorem,

kϕ0kk → 1. Hence kϕ0kk > 0 for all k greater than some constant K.

10We are using the fact that P is continuous, which is true of any positive linear

self-mapping on the Banach lattice L1(µ).
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For all such k define ϕk = kϕ0kk−1ϕ0k. Then ϕk ∈ D(µ) for all k ≥ K
by construction. Moreover, ϕk → ϕ pointwise, and hence in L1 norm

by Scheffé’s lemma. Finally, ϕk ∈ D for all k ≥ K, becauseZ
V (x)ϕk(x)dx =

1

kϕ0kk
Z
1[1/k,k](x)V (x)ϕ(x)dx,

and V is bounded on compact subsets of R+ \ {0} by continuity.
It remains to show that if ϕ ∈ D, then {P tϕ : t ≥ 0} is weakly

precompact. Note first that {P tϕ} is nonnegative and norm-bounded,
because PD(µ) ⊂ D(µ). By the Dunford-Pettis theorem (1940, Theo-

rem 3.2.1), a norm-bounded collection of nonnegative functions {P tϕ}
in L1(µ) is weakly precompact whenever

(i) ∀ε > 0, ∃ δ > 0 such that if A ∈ B and µ(A) < δ, thenZ
A

P tϕ < ε, ∀t ≥ 0; and

(ii) ∀ε > 0, ∃G ∈ B+ such that µ(G) <∞ andZ
R+\G

P tϕ < ε, ∀t ≥ 0.

Evidently it is sufficient to verify that these conditions are satisfied for

all but a finite (i.e., all but t < N) number of the collection {P tϕ :

t ≥ 0}.
Regarding (i), pick any ε > 0. We exhibit a δ > 0 and an N ∈ N

such that

µ(A) < δ =⇒
Z
A

P tf(x)dx < ε, ∀ t ≥ N.

Define E(V |g) = R V g. By Fubini’s theorem,
E(V |P tϕ) =

Z
V (y)P tϕ(y)dy

=

Z
V (y)

·Z
p(x, y)P t−1ϕ(x)dx

¸
dy

=

Z ·Z
V (y)p(x, y)dy

¸
P t−1ϕ(x)dx.

But Z
V (y)p(x, y)dy =

Z
V [g(x)z]ψ(z)dz ≤ αV (x) + C
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for all x by Condition 3.1. Therefore,

E(V |P tϕ) ≤
Z
[αV (x) + C]P t−1ϕ(x)dx = αE(V |P t−1ϕ) + C.

Repeating this argument obtains

E(V |P tϕ) ≤ αnE(V |ϕ) + C

1− α
.

Since E(V |ϕ) is finite by (17), it follows that

E(V |P tϕ) ≤ 1 + C

1− α
, t ≥ N,

for some N ∈ N.
On the other hand, it can be verified that for arbitrary positive a,

a

Z
R+\Ga

P tϕ ≤ E(V |P tϕ)

when Ga is defined as the set of x ∈ R+ with V (x) ≤ a.

(18) ∴
Z
R+\Ga

P tϕ ≤ 1
a

µ
1 +

C

1− α

¶
, ∀ t ≥ N, ∀ a > 0.

Choose a so large that

(19)
1

a

µ
1 +

C

1− α

¶
≤ ε

2
.

Consider now the decompositionZ
A

P tϕ =

Z
A∩Ga

P tϕ+

Z
A∩[R+\Ga]

P tϕ.

Using (18) and (19) gives

(20)

Z
A

P tϕ ≤
Z
A∩Ga

P tϕ+
ε

2
,

whenever t ≥ N . Here a is the constant determined in (19).
The next step is to bound the first term in the sum on the right hand

side of (20), taking the constant a as given, and assuming that at least

one of Condition 3.3 or Condition 3.4 holds.
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Assume first that Condition 3.3 holds. Using the expression for the

stochastic kernel given in (7), we have

P tϕ(y) =

Z
p(x, y)P t−1ϕ(x)dx

=

Z
ψ

µ
y

g(x)

¶
1

g(x)
P t−1ϕ(x)dx

=

Z
ψ

µ
y

g(x)

¶
y

g(x)

1

y
P t−1ϕ(x)dx

≤ M
y
.

∴
Z
A∩Ga

P tϕ(y)dy ≤
Z
A∩Ga

M

y
dy ≤

Z
A

J(a)dy = J(a)µ(A),

where the finite number J(a) is the maximum of M/y over the closed

and bounded interval Ga ⊂ R+ \ {0}.
Now pick any positive δ satisfying δ ≤ ε/(J(a)2). For such a δ we

have

µ(A) < δ =⇒
Z
A∩Ga

P tf(x)dx <
ε

2
.

Combining this with (20) proves (i) of the Dunford-Pettis characteri-

zation for the collection {P tϕ : t ≥ N} when Condition 3.3 holds.
We now establish the same when Condition 3.4 holds, again by

bounding the first term in the sum (20). Suppose first that there exists

a c with g(x) ≥ c > 0 for all x in R+. In this case, becauseZ
A∩Ga

P tϕ(y)dy =

Z
A∩Ga

Z
p(x, y)P t−1ϕ(x)dxdy

=

Z ·Z
A∩Ga

p(x, y)dy

¸
P t−1ϕ(x)dx,

and because Z
A∩Ga

p(x, y)dy =

Z
A∩Ga

ψ

µ
y

g(x)

¶
1

g(x)
dy

=

Z
A∩Ga
g(x)

ψ(z)dz

≤
Z
A∩Ga
c

ψ(z)dz

≤
Z
A
c

ψ(z)dz
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for all x ∈ R+, it follows that if δ0 > 0 is chosen such that

µ(A) < δ0 =⇒
Z
A

ψ(z)dz <
ε

2

(existence of such a δ0 is by absolute continuity of A 7→ R
A
ψ with

respect to µ), thenZ
A∩Ga

p(x, y)dy ≤
Z
A
c

ψ(z)dz <
ε

2

whenever µ(A) < δ, δ = δ0c, and, therefore,

µ(A) < δ =⇒
Z
A∩Ga

P tϕ <
ε

2
.

Again, combining this with (20) yields (i) of the Dunford-Pettis char-

acterization.

Finally, suppose to the contrary that while Condition 3.4 is satisfied,

there exists no c with g(x) ≥ c > 0 for all x ∈ R+. In this case
Condition 3.4 implies that g(x) ↓ 0 as x ↓ 0, and hence there exists a
d > 0 such that

(21)

Z
A∩Ga

p(x, y)dy =

Z
A∩Ga
g(x)

ψ(z)dz ≤ ε

2
for almost all x ∈ [0, d),

owing to the fact that A ∩ Ga is bounded away from 0. For x ≥
d, g(x) ≥ c0 = min[g(d), b] > 0, where b is the positive constant in

Condition 3.4.11 In this case, an argument similar to that given above

for the case g(x) ≥ c > 0 implies that

(22)

Z
A∩Ga

p(x, y)dy ≤
Z
A
c0
ψ(z)dz <

ε

2

whenever x ∈ [d,∞) and µ(A) < δ, δ = δ0c0. Combining (21) and (22)
yields

µ(A) < δ =⇒
Z
A∩Ga

P tϕ <
ε

2
.

Once again, (i) of the Dunford-Pettis characterization holds.

It remains to establish that the Dunford-Pettis condition (ii) also

holds for the same collection. We have already shown thatZ
R+\Ga

P tϕ ≤ 1
a

µ
1 +

C

1− α

¶
11Here g(d) > 0 by the almost everywhere positivity of g.
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for all positive a, all t ≥ N . But this inequality is sufficient, because
Ga is always bounded. Hence condition (ii) is also satisfied for {P tϕ :

t ≥ N}. This completes the proof of the lemma. ¤
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