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Abstract 

 

Chambers and Quiggin (2000) advocate the use of state-contingent production 

technologies to represent risky production and establish important theoretical results 

concerning producer behaviour under uncertainty.  Unfortunately, perceived problems 

in the estimation of state-contingent models have limited the usefulness of the approach 

in policy formulation.  We show that fixed and random effects state-contingent 

production frontiers can be conveniently estimated in a finite mixtures framework.  An 

empirical example is provided.  Compared to standard estimation approaches, we find 

that estimating production frontiers in a state-contingent framework produces 

significantly different estimates of elasticities, firm technical efficiencies and other 

quantities of economic interest. 

                                                 
1 Paper presented at the 2004 Asia-Pacific Productivity Conference, Brisbane, 14-16 July.  The authors thank 
the International Rice Research Institute (IRRI) for providing access to the data.    
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1.  INTRODUCTION 

 

One of the defining features of agricultural industries is the presence of production risk.  

Production risk refers to the unpredictable and uncontrollable characteristics of the physical 

environment (eg. lack of rainfall, pest infestations, natural disasters) that typically give rise to 

output shortfalls.  A model that allows for this type of uncertainty is 

 

(1) ln Y = f(X1, ..., XK, ε) − u  

 

where Y is output, ε is a random variable representing production risk, X1, ..., XK are inputs 

that must be chosen before ε is revealed, and u is a non-negative variable representing 

technical inefficiency.  By technical inefficiency we mean the inability of the firm to manage 

a chosen bundle of inputs to maximize output.  Common causes of technical inefficiency 

include failure to perform production operations at exactly the right time (eg. planting or 

application of herbicides) and the sub-optimal assignment of personnel to specialised tasks.  

Special cases of model (1) can be found in both the uncertainty literature (eg Just and Pope, 

1978; Newbery and Stiglitz, 1981) and the efficiency literature (eg Pitt and Lee, 1981; 

Kumbhakar, 1990; Battese and Coelli, 1992).      

In a series of recent contributions, Chambers and Quiggin (1996, 1997, 2000, 2002, 

2004) have investigated the ability of this model to explain important aspects of producer 

behaviour under uncertainty.  For the purposes of their analyses they found it convenient to 

treat ε as a discrete random variable that assumes values in the set Ω = {1, 2, ..., J}.  The 

elements of this set correspond to different states of nature – combinations of rainfall, 

temperature, humidity and other factors that produce environments ranging from "very poor 

seasonal conditions" (state 1) to "excellent seasonal conditions" (state J).  Chambers and 

Quiggin (2000) show that for each state of nature there exists a so-called state-contingent 

production function that , in the context of the production frontier in equation (1), can be 

written as 

 

(2) ln Y = fj(X1, ..., XK) − u   

 

This function specifies the output level realised when state ε = j occurs.  They have used this 

type of representation of the production technology to establish important theoretical results 
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concerning input and output choices in the presence of risk.  Unfortunately, perceived 

difficulties in estimating state-contingent frontiers have limited the usefulness of the 

approach in applied economic analysis and policy formulation.    

Estimation of state-contingent frontiers is complicated by the fact that states of nature 

are usually unobserved.  Although it is possible to collect data on rainfall, temperature, 

humidity and other determinants of states of nature, this data is usually highly aggregated 

across space and time and cannot be used to reliably discriminate between different states of 

nature at the farm level.  In this paper we overcome the problem by treating ε as a latent 

variable and estimating the model using Bayesian methods.  

The plan of the paper is as follows.  In Section 2 we make the common simplifying 

assumption that fj(.) can be approximated by a function that is linear in the parameters.  We 

then write a simple panel data version of (2) as a finite mixture model.  In Section 3 we 

consider Bayesian estimation of this model under the assumption that the inefficiency term u 

is a fixed parameter.  In Section 4 we reconsider the estimation problem under the alternative 

assumption that u is a random variable.  In Section 5 we consider a more general state-

contingent model that permits certain functions of the parameters to vary in economically-

plausible ways.  An empirical illustration is presented in Section 6 where we use Philippines 

rice data to estimate several state-contingent frontiers.  Compared to more traditional 

methods, we find that estimating production technologies in a state-contingent framework 

produces significantly different estimates of expected output elasticities and measures of 

technical efficiency.  The paper is concluded in Section 7 where we comment on the way 

state-contingent frontiers can be used to disentangle the effects of inefficiency and risk. 

 

2.  A FINITE MIXTURE REPRESENTATION 

  

Let Yit denote realised output and Xkit the amount of the k-th input used by firm i in period t (k 

= 1, ..., K; i = 1, ..., N; t = 1, ..., T).  If fj(.) can be approximated by a function that is linear in 

the parameters we can specify a relationship between observed outputs and inputs of the 

form: 

 

(3) ln Yit = φj + xit'α + vitj − ui  if  εit = j  
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where φj is a state-varying intercept parameter, xit is an M × 1 vector of (transformations of) 

inputs, α is a state-invariant M × 1 vector of slope parameters, and  is a normal 

random variable representing statistical noise (ie. the combined effects of measurement errors 

and errors arising from the use of approximating functional forms).  The precision (inverse 

variance) of this random error 

1(0, )itj jv N h−∼

jh  is assumed to be state dependent, and hence carries the 

subscript j. By using the subscript j on the intercept φj we are allowing expected log-output to 

vary across states of nature.  However, by not using this subscript on the slope coefficients 

we are, among other things, keeping the elasticities of expected output with respect to inputs 

constant across states – this is a convenient but implausible assumption that will be relaxed 

later in the paper.  By using the subscripts i and t on εit we are allowing states of nature to 

vary across both firms and time, thus allowing for localised weather conditions (eg. 

hailstorms) and contained outbreaks of disease (ie. outbreaks that may cause farms to be 

placed in quarantine).  Finally, by using the single subscript i on ui we are assuming the 

inefficiency effects are time-invariant – if this assumption is found to be too restrictive then 

generalising the model to account for time-varying inefficiency effects is straightforward 

using, for example, the framework developed by Kumbhakar (1990) and Battese and Coelli 

(1992, 1995).   

After the introduction of probabilities for the realization of each state, πj = Pr(εit = j), 

equation (3) becomes an example of a finite mixture model.  Such models usually arise 

whenever a variable is observed under a finite number of different conditions (eg. the 

distribution of the height of adults reflects the mixture of males and females in the 

population; the distribution of agricultural output reflects the mixture of relatively poor, 

average and good seasons across firms and time).  For an in-depth treatment of mixture 

models see McLachlan and Peel (2000).  For a more concise Bayesian treatment see Koop 

(2003). 

When estimating mixture models it is convenient to introduce dummy variables that 

indicate the mixture component from which each observation is drawn.  In this paper we 

define the vector of dummy variables dit = (dit1, ..., ditJ)' where ditj = 1 if εit = j and ditj = 0 

otherwise.   Then (3) can be written as 

 

(4) ln Yit = dit'φ + xit'α + vit – ui   
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where φ = (φ1, ..., φJ)'.  The disturbance term is now vit ~ N(0, (dit'h)-1) where h = (h1, ..., hJ)' 

is the vector of state-varying precision parameters.   

Conditional on u = (u1, ..., uN)', the likelihood function for this model can be written  

 

(5) p(y | α, h, φ, u, π) = (2π)–NT/2 
i=1

N

Π 
t=1

T

Π 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

j=1

J

Σ πj hj exp[ ]–0.5hj(ln Yit  – φj – xit'α + ui)2  

 

where π = (π1, ..., πJ)' and y is an NT-dimensional vector with elements l .  There are two 

problems with this likelihood function that make estimation difficult.  First, it is unbounded, 

implying the standard theory underpinning maximum likelihood estimation breaks down (see 

Koop, 2003, p.255).  Second, more than one set of parameter values will yield the same 

likelihood, implying the parameters are unidentified.  A solution to the first problem, and the 

one we adopt in this paper, is to estimate the model in a Bayesian framework using an 

informative prior.  One of several solutions to the second problem is to impose identifying 

restrictions of the form 

n itY

 

(6) E[ln Yit | εit = 1] ≤  E[ln Yit | εit = 2] ≤  ...  ≤  E[ln Yit | εit = J] 

 

or, equivalently, 

 

(7) φ1  ≤  φ2  ≤  ...  ≤  φJ. 

 

These restrictions are known in the mixtures literature as labelling restrictions.  In the current 

context they ensure that expected log-output increases as seasonal conditions improve.  It is 

also possible to identify the parameters of the model using labelling restrictions on expected 

output (rather than log-output), the state probabilities or the state-dependent variances of the 

noise components.  However, the rationale for imposing such restrictions may not be as 

appealing as the rationale underpinning (6) and/or, when expressed in terms of the 

parameters, they may not be as simple as the inequality constraints (7). 

In the following sections we consider Bayesian estimation of the model under the 

assumptions that the inefficiency effects are either fixed or random.  Following the work of 

Schmidt and Sickles (1984), these two competing assumptions have become commonplace in 

the efficiency literature. 
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3.  FIXED EFFECTS 

 

For the case where the ui are treated as fixed effects it is convenient to parameterise the 

model in terms of δj = φj – u1 and ψi = u1 – ui.  Defining the dummy variable mitk = 1 if i = k 

and mitk = 0 otherwise, equation (4) can then be written: 

 

(8) ln Yit  = dit'δ + mit'ψ + xit'α + vit  

 

where δ = (δ1, ..., δJ)', mit = (mit2, ..., mitN)' and ψ = (ψ2, ..., ψN)'.  Including only N – 1 

individual dummy variables in (8) allows us to avoid a dummy variable trap (the N individual 

dummy variables and J state dummy variables are perfectly collinear).    

For Bayesian analysis we define β = (δ', ψ', α')' and adopt the independent but proper 

prior p(β, h, π) = p(β) × p(h) × p(π) where 

 

(9) p(β) ∝  fN(β | _β, _V) × I(δ1  ≤  δ2  ≤  ...  ≤ δJ) 

(10) p(h) = 
j=1

J

Π f (h  | G j s–2
j , υj) 

and 

 
(11) p(π) = fD(π | _π). 

 

The notation fN(.), fG(.) and fD(.) for the normal, gamma and dirichlet probability density 

functions (pdfs) is adopted from Koop (2003), and I(.) is an indicator function that takes the 

value one if the argument is true and zero otherwise.  The inequality constraints in (9) are 

simply a reparameterization of the inequality constraints in (7).  We underscore some of the 

parameters in equations (9) to (11) to indicate they are parameters of the prior distribution to 

be chosen by the researcher – we will discuss the elicitation of prior parameters in the context 

of our empirical example in Section 6. 

Bayes's Theorem is used to combine the priors (9) to (11) with the likelihood function 

(5).  Because we use Gibbs sampling to estimate posterior quantities of interest, the 

mathematical form of the resulting posterior pdf is of less interest than the conditional 

posterior pdfs that can be derived from it.  If we define d = (d11', ..., dNT')' we can write these 

conditional posteriors as: 
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(12) p(β | y, h, π, d)  f∝ N(β | 
–
β, 

–
V) × I(δ1  ≤  δ2  ≤  ...  ≤ δJ) 

(13) p(h | y, β, π, d) = 
j=1

J

Π f (h  | G j
–s–2

j , –υj)  

(14) p(π | y, β, h, d) = fD(π | –π) 

(15) p(d | y, β, h, π) = 
i=1

N

Π 
t=1

T

Π fM(dit | 1, 
–
dit) 

 

where fM(.) is the notation used by Koop (2003) for the multinomial pdf.  We use overbars on 

some of the parameters to indicate they are parameters of posterior pdfs.  Expressions for 

these parameters are provided in Appendix A.   

The conditional posterior pdfs given by (12) to (15) can be used within a Gibbs sampler 

to obtain samples of observations on the unknown parameters.  The Gibbs sampler is now 

routinely used for Bayesian analysis in problems involving latent variables – for details see 

Koop (2003).  Simulating from the gamma, dirichlet and multinomial pdfs is reasonably 

straightforward using most software packages.  Efficient sampling from the truncated normal 

pdf in (12) can be done using a mixture of normal rejection sampling and exponential 

rejection sampling (see Geweke, 1991).  These samples can then be used to draw inferences 

concerning any quantities of interest.  For example, observations on ψ can be used to draw 

inferences concerning the measure of relative technical efficiency  

 

(16) RTEi = exp(ψi – maxk(ψk)).  

 

 

4.  RANDOM EFFECTS 

 

As an alternative to the fixed effects model we now assume ui in equation (4) is an 

exponential random variable (gamma with 2 degrees of freedom) with pdf 

 

(17) p(ui | λ–1) = fG(ui | λ, 2) = λ–1exp(–λ–1ui). 

 

This assumption is a common one in the literature – see for example Koop and Steel (2001) – 

although other distributions such as the half normal or truncated normal have been used. For 

Bayesian analysis we redefine β = (φ', α')' and adopt the prior p(β, h, u, π, λ–1)  =  p(β) × p(h) 
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× p(π) × p(u |λ–1) × p(λ–1) where p(β), p(h) and p(π) are given by (9) to (11). In the case of 

p(β), the dimensions of the prior parameters are suitably redefined and the inequality 

restrictions are expressed in terms of the jφ . The other prior pdfs are given by 

 

(18) p(u | λ–1) = 
i=1

N

Π f (u  | λ, 2) G i

and 

 
(19) p(λ–1) = fG(λ–1 | –1/(ln τ*), 2) ∝ exp{(ln τ*)/λ}. 

 

The hyperparameter τ* in (19) is the researcher's prior estimate of median technical efficiency 

(Koop, Steel and Osiewalski 1995).  Again, the posterior pdf is of less interest than the 

following conditional posterior pdfs: 

 

(20) p(β | y, h, π, d, u, λ)  f∝ N(β | 
–
β, 

–
V) × I(φ1  ≤  φ2  ≤  ...  ≤  φJ) 

(21) p(h | y, β, π, d, u, λ) = 
j=1

J

Π f (h  | G j
–s–2

j , –υj)  

(22) p(π | y, β, h, d, u, λ) = fD(π | –π) 

(23) p(d | y, β, h, π, u, λ) = 
i=1

N

Π 
t=1

T

Π fM(dit | 1, 
–
dit) 

(24) p(λ–1 | y, β, h, π, d, u) = fG(λ–1 | (N + 1)/(u'jN – ln τ*), 2(N + 1)) 

(25) p(ui | y, β, h, π, d, λ) ∝  fN(ui | µui, σ2
ui) × I(ui ≥ 0) 

 

where jN is a vector of ones of length N.  Expressions for the parameters of these conditional 

posterior pdfs are provided in Appendix B.  Again, they can be used within a Gibbs sampler 

to obtain samples of observations on all unknown parameters, including the elements of u.  

These elements are of particular interest because they can be used to calculate the measure of 

technical efficiency 

 

(26) TEi = exp(–ui).  

 

 



 9

5.  STATE-VARYING SLOPE COEFFICIENTS 

  

The state-contingent production frontier given by (3) has the desirable property that expected 

output is permitted to vary across states of nature.  Specifically, if ui is fixed then 

 

(27) E(Yit | εit = j) =  exp{δj + mit'ψ + xit'α + 0.5h
–1
j }  

 

while if ui is random  

 

(28) E(Yit | εit = j) = 
⎝⎜
⎛

⎠⎟
⎞1

1 + λ  exp{φj + xit'α + 0.5h
–1
j } 

  

However, in both cases the elasticity of expected output in state j with respect to the k-th 

input, 

 

(29) ηjkit =  
∂ln E(Yit | εit = j)

∂ln Xkit
  =  

∂(xit'α)
∂ln Xkit

 

 

is state-invariant.  This property may be implausible in some production contexts.  For 

example, it rules out the possibility that marginal increases in irrigation water will increase 

expected crop output in a dry season but decrease expected crop output in a wet season.  To 

allow for such possibilities, the slope coefficients in equations (3) and (4) must be permitted 

to vary with j.  Allowing the slope coefficients to vary across states of nature also gives rise 

to more plausible properties concerning the variances of state-contingent outputs – inputs 

may become 'risk-increasing' in some states of nature and 'risk-decreasing' in others. 

A model allowing both slope and intercept coefficients to vary across states of nature 

can be written in the form: 

 

(30) ln Yit = dit'φ + (xit⊗dit)'α + vit – ui   

 

where α is now a vector of length MJ × 1.   To solve the mixtures identification problem we 

encountered in Sections 4 and 5 it is convenient to scale the inputs so that xit = 0 at the 

variable means.  Then the constraint: 
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(31) E[ln Yit | xit = 0, εit = 1] ≤ E[ln Yit | xit = 0, εit = 2] ≤  ...  ≤ E[ln Yit | xit = 0, εit = J] 

 

is equivalent to the labelling restriction (7).  Suitable priors for this model are straightforward 

generalisations of the priors discussed in Sections 4 and 5, and the conditional posterior pdfs 

are then generalisations of equations (12) to (15) and (20) to (25).  The parameters of the 

conditional posterior pdfs for the random effects model are presented in Appendix C (for 

reasons that will become apparent in the following section, we are mainly interested in state-

contingent random effects frontiers). 

 For input allocation under uncertainty and for assessing the optimality of a particular 

input bundle, the marginal expected product and marginal risk (defined as the derivative of 

the variance of output with respect to an input) of each input are of interest. In our case, 

where we have a state-contingent function with a firm-specific inefficiency term, there are 

four different marginal expected products and marginal risks that are potentially useful: there 

are those that are conditional on a specific inefficiency term  and a specific state j; those 

that are conditional on , but not j; those that are conditional on j, but not ; and those that 

are conditional on neither  nor j. Expressions for the conditional and unconditional means 

and variances and their derivatives for both the state-varying intercept model and the state-

varying slopes model are given in Appendix D. The values of these expressions depend on all 

the parameters and the levels of inputs. An example of the posterior pdf for one of them is 

given in the next section. 

iu

iu iu

iu

 

6.  EMPIRICAL EXAMPLE 

  

Villano et al (2004) investigate input-output relationships for a sample of rice farmers in the 

Tarlac region of the Philippines.   These farmers have no access to irrigation and so output 

shortfalls are due to variations in both technical efficiency and seasonal conditions.  In this 

paper we analyse a subset of the Villano et al data.  Our sample comprises 352 observations 

on N = 44 rice farmers covering the T = 8 years from 1990/91 to 1997/98.  The output 

variable is tonnes of freshly-threshed rice.  Input variables are hectares planted (X1it), person-

days of hired and family labor (X2it) and kilograms of fertilizer (X3it).  Descriptive statistics 

for the raw data are reported in Table 1.  

We begin by assuming a translog functional form where 
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(32) xit = [TRit, ln X1it, ln X2it, ln X3it, 0.5(ln X1it)2, (ln X1it)(ln X2it), (ln X1it)(ln X3it),  

         0.5(ln X2it)2, (ln X2it)(ln X3it), 0.5(ln X3it)2]' 

 

and TRit is a time trend included to account for technical change.  Prior to estimation the 

input variables were scaled to have unit means.  Thus, when TRit = 0 and all inputs are set to 

their mean values we have xit = 0.  Among other things, this means the first-order coefficients 

in the model can be interpreted as elasticities of expected output evaluated at the input means, 

and the constraint (31) collapses to the labelling restriction (7).   

For Bayesian analysis we must specify the parameters of the prior densities.  It is 

convenient to start with the parameters of (11) and (19), namely _π and τ*.   Since we have no 

prior information on the relative likelihoods of different states of nature we set _π = jJ, 

implying each state is equally likely.  Since we have no prior information concerning farm 

efficiency we follow Koop, Steel and Osiewalski (1995) and set the median of the prior 

efficiency distribution to τ* = 0.875.    

To elicit the parameters of the prior density (10) we note from Table 1 that the range of 

ln Yit is 5.85.  Thus, we could expect any reasonable regression model to have errors that are 

less than 5.85/2 = 2.925 in absolute value.  If a normally distributed random variable has 

precision 0.44 then 95% of values will lie in the interval ±2.94.  This leads us to set s–2
j  = 

0.44.  To ensure this prior information is given small weight relative to the data we set υj = 

0.01NT  ≈  4. 

For the prior density (9) we consider E(ln Yit | ui = – ln 0.875, εit = j, xit = 0) = φj – 

0.134.  This leads us to centre the prior distribution for φj at qj + 0.134 where qj denotes the 

(2j – 1)/2J-th percentile of the sample observations on ln Yit.  To ensure this prior information 

is given small weight relative to the data we use a prior variance of 100s2
j  = 225.  We use 

similar reasoning and our knowledge of economic theory and the Philippines rice industry to 

specify prior means and variances for the remaining elements of β: the coefficient of TRit 

measures the annual rate of growth in output and our prior pdf for this coefficient is centred 

at 0.02 with a variance of 0.15; the first-order slope coefficients are elasticities evaluated at 

the input means and their pdfs are centred at 0.5 with prior variances of 6.5; and the second-

order slope coefficients must be close to zero if the translog function is to satisfy curvature 

properties implied by economic theory, so we centre their pdfs at zero with variances of 26.  

All these variances are large enough to ensure the joint prior density is very diffuse.  Among 
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other things, this means our empirical estimates are robust to large changes in the mean of the 

joint prior density. 

In the remainder of this section we report and discuss estimates of parameters and other 

interesting characteristics of several stochastic frontiers.  For purposes of comparison, we 

estimated a standard (ie. not state-contingent) fixed effects frontier (labelled FE) and a 

standard random effects frontier with exponentially distributed inefficiency effects (RE).  The 

Gibbs samplers used for these models are special cases of those discussed in Sections 3 and 4 

– details can be found in Koop and Steel (2001).  We then specified J = 3 states 

corresponding to relatively "poor", "average" and "good" seasonal conditions and proceeded 

to estimate several state-contingent frontiers.  The simplest of these are the fixed effects 

frontier discussed in Section 3 (SC-FE) and the random effects frontier discussed in Section 4 

(SC-RE).  A more general model is the state-contingent random effects frontier discussed in 

Section 5, where all the parameters are permitted to vary across states.  We estimated this 

more general model twice, each time with different prior information. In the first case (SC-

RE-all) we used the prior information already described.  In the second (SC-RE-η>0), partly 

to illustrate the flexibility of the Bayesian approach, and partly to include genuine prior 

information, we estimated the frontier with additional prior information in the form of non-

negativity constraints on land and labor elasticities..  We chose not to impose non-negativity 

constraints on the fertilizer elasticity because it is possible that higher rates of fertilizer 

application in dry seasons may burn the rice crop and lead to lower outputs.   Estimation of 

the SC-RE-η>0 model required a trivial modification to the program used to estimate the SC-

RE-all model.   

The Gibbs sampling algorithms used to estimate the various models were programmed 

in GAUSS and used to generate stationary Markov chains of length 20,000.  The results 

reported below are summary statistics for these chains, and include estimates of unknown 

parameters, state-probabilities and measures of technical efficiency.   

 

Parameters 

 

Parameter estimates for our six models are reported in Table 2.  Estimated posterior means 

are reported in one block of six columns and estimated posterior standard deviations are 

reported in a second block.  
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The FE and RE parameter estimates suggest that rice output in the study region has 

been increasing at a rate of 1.4% to 1.7% per annum, and that the elasticity of expected 

output with respect to area (evaluated at the input means) is approximately 0.6.  However, the 

SC-FE and SC-RE estimates suggest that productivity growth has been as low as 0.8% per 

annum and the area elasticity is less than 0.3.  We conclude that estimating production 

technologies in the simplest of state-contingent frameworks can have a significant impact on 

estimates of (functions of) parameters of interest to economists.   

Not surprisingly, we find that estimating more flexible state-contingent models can 

provide additional insights into the rate and nature of technical change.  For example, the SC-

RE-all and SC-RE-η>0 results provide evidence that technological developments have led to 

higher expected outputs in poor seasons and lower expected outputs in average seasons.  

Specifically, we estimate that poor-season expected outputs have been increasing at a rate of 

more than 2.5% per annum while average-season expected outputs have been decreasing at a 

rate of 1.3% to 1.4% per annum.  These results may be partly due to the development of rice 

varieties that are lower-yielding but better able to tolerate extremes of temperature, humidity 

and rainfall.   

Our SC-RE-all and SC-RE-η>0 results also point to relatively high elasticities in 

extreme seasonal conditions.  For example, we estimate that a one percent increase in area 

planted will increase expected output by as much as 0.6% in either a poor or a good season, 

but will increase expected output by only 0.1% in an average season.  Furthermore, the SC-

RE-all results suggest that labor and fertilizer elasticities are negative in poor seasons.  

Negative elasticities are generally regarded as implausible, so the SC-RE-η>0 model 

constrains the labor and area elasticities to be nonnegative.  We did not sign-constrain the 

fertilizer elasticity because we are aware that high rates of fertilizer application in very dry 

(ie. poor) seasons may decrease output.  The SC-RE-η>0 results suggest that the fertilizer 

elasticity is only negative in poor seasons, and that it increases as seasonal conditions 

improve.  The estimates of the sign-constrained labor elasticities also increase as seasonal 

conditions improve. 

It is clear that the state-contingent models are flexible enough to produce qualitatively 

different estimates of technical change and output response across different states of nature – 

these models contain enough parameters to capture state-varying characteristics of the 

production technology.  However, this flexibility comes at a cost – greater uncertainty 

associated with estimating larger numbers of parameters is reflected in higher estimated 
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posterior standard deviations.  In the most extreme case, estimated standard deviations for the 

SC-RE-all model are approximately five times larger than those for the RE model.  

Inequality constraints on the area and labor elasticities have the effect of lowering these 

estimated posterior standard deviations, highlighting one of the advantages of incorporating 

non-sample information into the estimation process. 

Estimated posterior means and standard deviations give an incomplete picture of likely 

and unlikely values of the unknown parameters.  A more complete picture is given by 

estimated marginal posterior pdfs such as those depicted in Figures 1 and 2.  Both of these 

figures illustrate the effects of imposing inequality constraints.  The effect of the labelling 

restriction (7) is illustrated in Figure 1 where we present SC-RE estimates of the marginal 

posterior pdfs of the intercept coefficients in each state of nature.  The effect of imposing 

non-negativity constraints is illustrated in Figure 2 where we present the SC-RE-all and SC-

RE-η>0 estimates of the marginal posterior pdf of the good-season labor elasticity (evaluated 

at the input means), and contrast them with the SC-RE posterior pdf of the labor elasticity. 

 

State Probabilities 

 

Estimates of unconditional state probabilities are reported at the bottom of Table 2.  Results 

from the simpler state-contingent models (SC-FE and SC-RE) suggest that a randomly-

selected farmer is roughly twice as likely to experience average seasonal conditions than 

good seasonal conditions.  These estimates are reasonably precise – see Figure 3 where we 

present SC-RE estimates of the marginal posteriors.  The more flexible state-contingent 

models (SC-RE-all and SC-RE-η>0) suggest that the probabilities of experiencing poor, 

average and good seasonal conditions are fairly similar, ranging from 0.31 to 0.36. 

Table 3 reports estimates of state probabilities for three representative farmers in all 

eight time periods.  The results from different models are similar, and provide evidence that 

different farmers may experience different seasonal conditions in the same time period.  

Using the SC-RE-η>0 results, for example, we see that farmer 2 almost certainly had a good 

season in period 4, while farmers 1 and 3 are more likely to have experienced average 

seasons. 
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Technical Efficiency 

 

Table 4 reports estimated means and standard deviations of posterior pdfs for measures of 

technical efficiency.  In the case of the fixed effects models we measure relative technical 

efficiency using (16); in the case of the random effects models we measure technical 

efficiency using (26).   

Whether or not standard (ie. non-state-contingent) stochastic frontier models are 

estimated in a frequentist or Bayesian framework, efficiency estimates obtained from fixed 

effects models are often found to be significantly lower than estimates obtained from random 

effects models.  This stylised fact is evident in Table 4 where the FE technical efficiency 

estimates are on average only half the size of the RE estimates.  As noted in Koop and Steel 

(2001), the reason, in Bayesian terms, is that the fixed effects prior pdf for relative technical 

efficiency has probability mass concentrated towards zero (the use of a noninformative prior 

pdf for the ψi implies an informative prior pdf for RTEi of the form p(RTEi) ∝ 1/RTEi).  In 

contrast, the random effects prior pdf for TEi has probability mass concentrated closer to one.   

It is apparent from Table 4 that estimating a fixed effects frontier in a state-contingent 

framework has very little impact on measures of relative technical efficiency.  The SC-FE 

estimates of RTEi are still implausibly low, suggesting the information contained in the 

(implausible) fixed effects prior pdf is still dominating the information contained in the data.  

Like many other frequentist and Bayesian researchers, our inability to obtain sensible results 

from a fixed effects model has caused us to focus our attention on models in which the 

inefficiency effects are treated as random. 

In contrast with our experience with the fixed effects model, we find that estimating a 

random effects frontier in a simple state-contingent framework has a significant impact on 

measures of technical efficiency – the RE estimates reported in Table 4 average 0.86 while 

the SC-RE estimates average 0.93.  Thus, our use of a simple state-contingent random effects 

model means that on average half of the output shortfall previously attributed to inefficiency 

can now be attributed to unfavourable states of nature, ie., risk.  Estimating more flexible 

state-contingent models yields even higher estimates of technical efficiency – whether or not 

we impose sign constraints on the area and labor elasticities, the state-contingent models with 

state-varying slope coefficients yield technical efficiency estimates that range from 0.88 to 

0.97, with an average of 0.95.   
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The results for individual firms provide stronger evidence of the importance of 

accounting for risk.  In the case of farmer 34, for example, if we estimate the production 

technology in a non-state-contingent framework we obtain a technical efficiency estimate of 

only 0.55 (RE model); after accounting for risk we obtain a technical efficiency estimate of 

0.91 (SC-RE-η>0 model).  Thus, for this farmer the estimated output shortfall due to 

inefficiency (9%) is minor compared to the estimated output shortfall due to risk (34%).   

The consequences of estimating random effects frontiers in different empirical 

frameworks are summarised in Figures 4 to 6 where we present estimated marginal posterior 

pdfs for the technical efficiencies of three representative firms.  Firm 12 can be regarded as 

an above-average firm in terms of technical efficiency; the efficiency of firms 5 and 34 can 

be regarded as average and below-average respectively. 

 

Other Quantities 

 

One of the important advantages of the Bayesian estimation approach is that we can easily 

obtain finite sample results concerning any (possibly nonlinear) functions of the parameters.  

For example, using results in Appendix D, for the case of a random effects model with state-

dependent slope coefficients, the marginal risk of input kX , evaluated at the input means 

(where ), is it =x 0

 

(33) 1 1 2
0 0

1

var( ) 2 (1 2 ) exp{ } (1 )
it

J
it

j kj j j j
jkit

Y h
X

− − −

==

∂ ⎡ ⎤= π α κ + λ κ − + λ θ⎣ ⎦∂ ∑
x 0

 

 

where ,   and α1exp{ 0.5 }j j jh−κ = φ + 0
1

J

j j
j=

θ = π κ∑ 0kj is the coefficient of ln Xkit.   

For illustrative purposes, Figure 7 presents the SC-RE-η>0 estimated posterior pdf for 

the marginal effect given by (33), evaluated for k = 2 (labor).  It is evident from this figure 

that there is high probability that labor is a 'risk-increasing' input. 
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6.  CONCLUSION 

   

For many years the standard tool for analysing relationships between agricultural inputs and 

outputs has been the simple production function.  In the late 1970s, consideration of output 

shortfalls led some researchers to specify econometric models with heteroskedastic error 

terms representing risk (eg. Just and Pope 1978).  At the same time, productivity researchers 

began specifying frontier models containing one-sided error terms representing technical 

inefficiency (eg. Pitt and Lee 1981).  Only recently have economists attempted to construct 

econometric models that explicitly account for both inefficiency and risk (eg. Kumbhakar 

2002).  

One of the simplest and arguably most powerful theoretical frameworks for jointly 

analysing inefficiency and risk is the state-contingent framework recently popularised by 

Chambers and Quiggin (2000).  However, there have been few if any attempts to empirically 

estimate state-contingent models in the economics literature, possibly because underlying 

'states of nature' are unobserved and regarded as too difficult to quantify (eg. Rasmussen, 

2004).  In this paper we have shown how to overcome the problem by representing state-

contingent models in a finite mixture framework.   

We have used Bayesian methods to estimate several state-contingent production 

frontiers for Philippines rice farmers.  Our results suggest that elasticities of expected output 

with respect to inputs vary significantly across states of nature.  Moreover, estimating 

production frontiers in a state-contingent framework yields significantly higher estimates of 

technical efficiency.  This is not surprising – standard (ie. non-state-contingent) stochastic 

frontier models decompose deviations from the frontier into inefficiency and noise, while 

state-contingent frontier models decompose these deviations into inefficiency, noise and risk.  

In the case of one farmer in our sample, we found that three-quarters of average estimated 

output shortfalls were due to unfavourable seasonal conditions (ie. risk) and only one quarter 

to inefficiency. 

Our ability to decompose output shortfalls into inefficiency and risk components 

represents a step forward in the econometric analysis of agricultural production technologies.  

However, our methods also have application in areas outside agriculture.  Indeed, our 

methods are likely to have application in every area of business and commerce – whether 

they are efficient or not, most firms carry some form of liability insurance, implying they 

operate in environments characterised by risk. 
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APPENDIX A 

Posterior Parameters for Fixed Effects Model 

 

Define zit = (dit', mit', xit')' and yit = ln Yit.   Then, the parameters for the conditional posterior 

pdfs given in equations (12) – (15) are given by 
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APPENDIX B 

Posterior Parameters for Random Effects Model  

with State-Invariant Slope Coefficients 

 

Define zit = (dit', xit')' and yit = ln Yit.  Then, the parameters for the conditional posterior pdfs 

in equations (20) – (25) are  
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APPENDIX C 

Posterior Parameters for Random Effects Model with State-Varying Slope Coefficients 

 

Define zit = (dit', (xit⊗dit)')' and yit = ln Yit.  Then, expressions for the conditional posterior pdf 

parameters jυ , 2
js , π  and  are the same as those given in Appendix B, with the 

dimension of  suitably modified.  The remaining conditional posterior parameters are 

2
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The above expressions for V  and β  assume a prior covariance matrix for β  that can be 

written as J⊗V I . That is, the prior covariance matrices for the coefficient vectors for each 

state are identical. Our empirical work did employ such a prior covariance matrix, but a more 

general one can be used by simply replacing J⊗V I  by a newly-defined V . 
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where ij is the j-th column of IJ. 
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APPENDIX D 

Conditional and Unconditional Means and Variances of Output and Their Derivatives 

Random effects model with state-invariant slope coefficients

Letting , expressions for the different mean outputs can be written as 1exp{ 0.5 }j j h−κ = φ + j
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For consideration of the derivatives it is convenient to let ( ) /kit it kitX′ω = ∂ ∂x α .  For example, in 

the case of our three-input translog model we define α = (αTR, α01, α02, α03, α11, α12, α13, α22, 
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The marginal expected outputs can now be written as 
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The conditional and unconditional variances are given by 
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The corresponding expressions for marginal risk are 
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Random effects model with state-dependent slope coefficients

When α is state-dependent we replace α (and its components) by αj in any expressions that are 

conditional on εit = j.  Correspondingly, we define ( ) /kitj it j kitX′ω = ∂ ∂x α . For the three-input 

translog model we have α j = (αTRj, α01j, α02j, α03j, α11j, α12j, α13j, α22j, α23j, α33j)' so that 
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Table 1.  Descriptive Statistics 

Variable Mean St. Deviation Minimum Maximum 
Y 
X1
X2
X3

Rice Output 
Area 
Labor 

Fertilizer 

6.4664 
2.1175 
107.20 
187.05 

5.0767 
1.4514 
76.646 
168.59 

0.09 
0.20 
8.00 
3.40 

31.10 
7.00 

436.00 
1030.9 
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Table 2.  Parameters 
Estimated Posterior Means Estimated Posterior Standard Deviations Variable  

  
State

FE RE  SC-FE SC-RE SC-RE-all SC-RE-η>0 FE RE  SC-FE SC-RE SC-RE-all SC-RE-η>0 

1      Intercept
1 
2 
3 

1.694 1.938
1.245 
1.639 
2.098 

1.392 
1.804 
2.214 

1.118 
1.814 
2.082 

1.112 
1.803 
2.079 

0.125 0.055
0.154 
0.139 
0.150 

0.086 
0.063 
0.076 

0.200 
0.087 
0.108 

0.196 
0.087 
0.103 

TR          Trend
1 
2 
3 

0.017 0.014 0.013 0.008
0.028 
-0.014 
0.009 

0.029 
-0.013 
0.010 

0.008 0.008 0.009 0.009
0.018 
0.016 
0.014 

0.018 
0.016 
0.014 

ln X1 Area 
1 
2 
3 

0.590        0.665 0.270 0.273
0.615 
0.133 
0.561 

0.434 
0.143 
0.369 

0.138 0.103 0.161 0.116
0.296 
0.195 
0.471 

0.239 
0.103 
0.241 

ln X2 Labor 
1 
2 
3 

0.047        0.125 0.037 0.169
-0.333 
0.024 
-0.106 

0.107 
0.119 
0.184 

0.101 0.092 0.114 0.101
0.242 
0.184 
0.347 

0.094 
0.090 
0.144 

ln X3 Fertilizer 
1 
2 
3 

0.124        0.192 0.013 0.113
-0.199 
0.112 
0.313 

-0.368 
0.049 
0.231 

0.071 0.061 0.082 0.064
0.239 
0.124 
0.201 

0.227 
0.110 
0.190 

0.5(ln X1)2 Area × Area 
1 
2 
3 

-0.810        -0.254 -0.558 -0.157
0.011 
-0.408 
-0.690 

0.006 
-0.395 
-0.158 

0.342 0.272 0.386 0.309
0.339 
0.933 
1.795 

0.344 
0.927 
1.416 

(ln X1)(ln X2) Area × Labor 
1 
2 
3 

0.608        0.561 0.295 0.280
0.176 
0.336 
0.700 

0.213 
0.391 
0.379 

0.249 0.241 0.285 0.269
0.341 
0.647 
1.237 

0.334 
0.641 
1.154 

(ln X1)(ln X3) Area × Fertilizer 
1 
2 
3 

0.057        -0.013 0.023 -0.014
0.171 
-0.005 
-0.529 

0.048 
-0.048 
-0.492 

0.168 0.161 0.190 0.177
0.241 
0.456 
0.581 

0.229 
0.415 
0.578 

0.5(ln X2)2 Labor × Labor 
1 
2 
3 

-0.531        -0.529 -0.299 -0.242
-0.580 
-0.145 
-0.221 

-0.366 
-0.066 
-0.408 

0.341 0.336 0.391 0.371
0.510 
0.733 
1.332 

0.489 
0.729 
1.296 

(ln X2)(ln X3) 
Labor × 
Fertilizer 

1 
2 
3 

-0.335        -0.282 -0.253 -0.207
-0.288 
-0.181 
0.555 

-0.223 
-0.204 
0.637 

0.141 0.140 0.162 0.158
0.223 
0.459 
0.495 

0.218 
0.437 
0.484 

0.5(ln X3)2 Fertilizer × 
Fertilizer 

1 
2 
3 

0.196        0.222 0.113 0.141
-0.172 
0.152 
-0.395 

-0.228 
0.145 
-0.385 

0.073 0.069 0.083 0.077
0.189 
0.109 
0.358 

0.186 
0.106 
0.357 

Precision 
1 
2 
3 

9.379    9.022
6.015 
9.707 
6.060 

5.545 
9.927 
5.439 

5.810 
8.513 
8.303 

5.648 
8.528 
8.346 

0.771 0.745
1.016 
1.358 
1.227 

0.940 
1.330 
1.210 

1.082 
1.298 
1.466 

1.084 
1.286 
1.513 

State Probabilities 
1 
2 
3 

    
0.317 
0.451 
0.232 

0.334 
0.457 
0.208 

0.312 
0.363 
0.325 

0.306 
0.364 
0.330 

0.049 
0.055 
0.045 

0.049 
0.053 
0.047 

0.060 
0.050 
0.058 

0.063 
0.051 
0.062 

 



 28

Table 3.  State Probabilities For Firms 1 to 3 
SC-FE  SC-RE SC-RE-all SC-RE-η>0 Firm  Period

π1 π2 π3 π1 π2 π3 π1 π2 π3 π1 π2 π3

1 

1 
2 
3 
4 
5 
6 
7 
8 

0.116 
0.147 
0.094 
0.151 
0.141 
0.445 
0.464 
0.159 

0.488 
0.549 
0.406 
0.564 
0.537 
0.506 
0.493 
0.560 

0.396 
0.304 
0.501 
0.285 
0.322 
0.049 
0.043 
0.281 

0.173 
0.206 
0.146 
0.214 
0.205 
0.506 
0.576 
0.171 

0.571 
0.609 
0.545 
0.608 
0.605 
0.453 
0.394 
0.585 

0.257 
0.186 
0.309 
0.179 
0.190 
0.041 
0.030 
0.244 

0.037 
0.064 
0.030 
0.081 
0.062 
0.397 
0.371 
0.159 

0.457 
0.561 
0.404 
0.545 
0.542 
0.549 
0.579 
0.445 

0.506 
0.376 
0.565 
0.374 
0.396 
0.054 
0.050 
0.396 

0.069 
0.066 
0.028 
0.066 
0.070 
0.407 
0.335 
0.111 

0.480 
0.566 
0.392 
0.529 
0.539 
0.540 
0.612 
0.421 

0.451 
0.368 
0.581 
0.406 
0.391 
0.053 
0.052 
0.469 

2 

1 
2 
3 
4 
5 
6 
7 
8 

0.161 
0.182 
0.093 
0.032 
0.054 
0.060 
0.138 
0.099 

0.561 
0.574 
0.410 
0.129 
0.246 
0.288 
0.507 
0.424 

0.278 
0.244 
0.497 
0.839 
0.701 
0.651 
0.355 
0.477 

0.151 
0.145 
0.097 
0.045 
0.067 
0.074 
0.134 
0.072 

0.556 
0.537 
0.412 
0.163 
0.265 
0.287 
0.522 
0.287 

0.293 
0.318 
0.491 
0.792 
0.668 
0.640 
0.344 
0.641 

0.045 
0.085 
0.023 
0.002 
0.019 
0.020 
0.075 
0.114 

0.362 
0.321 
0.155 
0.032 
0.120 
0.065 
0.231 
0.132 

0.594 
0.594 
0.821 
0.966 
0.861 
0.915 
0.694 
0.754 

0.051 
0.094 
0.023 
0.005 
0.013 
0.045 
0.047 
0.113 

0.384 
0.345 
0.165 
0.045 
0.092 
0.116 
0.200 
0.150 

0.566 
0.561 
0.812 
0.950 
0.895 
0.839 
0.754 
0.737 

3 

1 
2 
3 
4 
5 
6 
7 
8 

0.084 
0.083 
0.081 
0.125 
0.194 
0.094 
0.403 
0.086 

0.384 
0.372 
0.376 
0.506 
0.593 
0.412 
0.535 
0.381 

0.532 
0.545 
0.543 
0.370 
0.213 
0.494 
0.062 
0.533 

0.134 
0.151 
0.152 
0.204 
0.309 
0.121 
0.528 
0.117 

0.498 
0.541 
0.539 
0.596 
0.591 
0.485 
0.433 
0.467 

0.368 
0.307 
0.309 
0.201 
0.100 
0.394 
0.039 
0.416 

0.040 
0.079 
0.071 
0.125 
0.165 
0.060 
0.361 
0.100 

0.335 
0.335 
0.345 
0.483 
0.692 
0.292 
0.602 
0.217 

0.625 
0.586 
0.584 
0.392 
0.142 
0.648 
0.037 
0.683 

0.051 
0.045 
0.086 
0.135 
0.203 
0.036 
0.370 
0.098 

0.357 
0.317 
0.384 
0.511 
0.678 
0.257 
0.595 
0.232 

0.592 
0.638 
0.530 
0.354 
0.119 
0.707 
0.034 
0.670 
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Table 4.  Technical Efficiencies 
Estimated Posterior Means Estimated Posterior Standard Deviations Firm 

FE  RE  SC-FE SC-RE SC-RE-all SC-RE-η>0 FE RE  SC-FE SC-RE SC-RE-all SC-RE-η>0
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
: 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

0.343 
0.552 
0.362 
0.388 
0.412 
0.439 
0.464 
0.377 
0.422 
0.445 
0.251 
0.954 
0.329 
0.376 
0.485 
0.468 
0.538 
0.799 
0.493 
0.545 

: 
0.199 
0.455 
0.295 
0.314 
0.446 
0.543 
0.360 
0.290 
0.390 
0.404 
0.299 

0.813 
0.942 
0.762 
0.926 
0.876 
0.899 
0.937 
0.893 
0.905 
0.910 
0.650 
0.949 
0.849 
0.897 
0.802 
0.937 
0.929 
0.953 
0.906 
0.942 

: 
0.552 
0.939 
0.765 
0.812 
0.941 
0.941 
0.837 
0.753 
0.932 
0.924 
0.797 

0.350 
0.497 
0.366 
0.365 
0.339 
0.431 
0.384 
0.386 
0.328 
0.383 
0.277 
0.813 
0.351 
0.367 
0.444 
0.488 
0.530 
0.932 
0.515 
0.490 

: 
0.227 
0.382 
0.315 
0.350 
0.440 
0.511 
0.377 
0.320 
0.371 
0.339 
0.311 

0.906 
0.952 
0.892 
0.945 
0.895 
0.937 
0.935 
0.939 
0.893 
0.921 
0.865 
0.952 
0.933 
0.938 
0.865 
0.963 
0.949 
0.971 
0.949 
0.949 

: 
0.789 
0.938 
0.903 
0.929 
0.958 
0.957 
0.926 
0.901 
0.951 
0.930 
0.917 

0.947 
0.965 
0.942 
0.952 
0.940 
0.954 
0.956 
0.958 
0.941 
0.944 
0.882 
0.965 
0.950 
0.960 
0.928 
0.969 
0.963 
0.954 
0.965 
0.953 

: 
0.895 
0.960 
0.945 
0.938 
0.956 
0.959 
0.946 
0.940 
0.951 
0.952 
0.943 

0.950 
0.965 
0.943 
0.952 
0.939 
0.957 
0.962 
0.960 
0.942 
0.945 
0.889 
0.966 
0.946 
0.960 
0.930 
0.970 
0.963 
0.957 
0.965 
0.953 

: 
0.906 
0.958 
0.943 
0.945 
0.959 
0.961 
0.949 
0.942 
0.951 
0.958 
0.943 

0.097 
0.140 
0.092 
0.115 
0.108 
0.104 
0.131 
0.111 
0.114 
0.120 
0.069 
0.098 
0.096 
0.106 
0.092 
0.120 
0.142 
0.180 
0.125 
0.143 

: 
0.058 
0.130 
0.084 
0.091 
0.128 
0.128 
0.092 
0.085 
0.116 
0.114 
0.086 

0.093 
0.049 
0.099 
0.059 
0.081 
0.073 
0.052 
0.073 
0.069 
0.066 
0.091 
0.047 
0.088 
0.072 
0.101 
0.052 
0.057 
0.042 
0.068 
0.049 

: 
0.087 
0.050 
0.096 
0.095 
0.049 
0.050 
0.094 
0.095 
0.056 
0.060 
0.095 

0.096 
0.119 
0.087 
0.112 
0.088 
0.119 
0.110 
0.115 
0.088 
0.100 
0.083 
0.189 
0.107 
0.106 
0.112 
0.141 
0.128 
0.126 
0.120 
0.121 

: 
0.072 
0.109 
0.092 
0.110 
0.135 
0.120 
0.110 
0.095 
0.117 
0.099 
0.094 

0.075 
0.044 
0.082 
0.049 
0.082 
0.057 
0.057 
0.054 
0.083 
0.066 
0.099 
0.047 
0.058 
0.055 
0.101 
0.036 
0.047 
0.029 
0.047 
0.047 

: 
0.129 
0.055 
0.077 
0.063 
0.039 
0.040 
0.066 
0.077 
0.045 
0.061 
0.070 

0.050 
0.034 
0.054 
0.045 
0.055 
0.044 
0.043 
0.040 
0.055 
0.051 
0.094 
0.036 
0.047 
0.038 
0.067 
0.031 
0.036 
0.046 
0.034 
0.045 

: 
0.095 
0.038 
0.051 
0.058 
0.043 
0.040 
0.052 
0.055 
0.046 
0.046 
0.054 

0.047 
0.034 
0.053 
0.046 
0.056 
0.041 
0.037 
0.039 
0.054 
0.052 
0.091 
0.035 
0.051 
0.038 
0.066 
0.029 
0.036 
0.043 
0.034 
0.045 

: 
0.088 
0.040 
0.053 
0.053 
0.040 
0.038 
0.049 
0.055 
0.047 
0.041 
0.054 

Mean 
Minimum 
Maximum 

0.422 
0.199 
0.954 

0.863 
0.552 
0.954 

0.414 
0.227 
0.932 

0.926 
0.789 
0.971 

0.948 
0.882 
0.969 

0.950 
0.889 
0.970 

0.109 
0.058 
0.180 

0.074 
0.040 
0.106 

0.111 
0.072 
0.189 

0.062 
0.029 
0.129 

0.049 
0.031 
0.095 

0.047 
0.029 
0.091 
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Figure 1.  SC-RE Estimated Posteriors for φj 

 

 

 

 
 

 Figure 2.  Estimated Posteriors for the Labor Elasticity 

 in a Good Season (at Mean Inputs)

 
 

 

 
 

Figure 3.  SC-RE Posteriors for πj 
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Figure 4.  Estimated Posteriors for the Technical Efficiency of Firm 12 

 

 
 
 

 
 

Figure 5.  Estimated Posteriors for the Technical Efficiency of Firm 5

 
 
 
 
 

 
 

Figure 6.  Estimated Posteriors for the Technical Efficiency of Firm 34
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Figure 7.  SC-RE-η>0 Posterior for ∂var(Yit )/∂X2it evaluated at xit = 0.

 

 
 


