
ISSN 0819-2642 
ISBN 0 7340 2513 0 

THE UNIVERSITY OF 

MELBOURNE 

THE UNIVERSITY OF MELBOURNE 

DEPARTMENT OF ECONOMICS 

RESEARCH PAPER NUMBER 858 

SEPTEMBER 2002 

REVERSE SHOOTING IN A 
MTJLTI-DIMENSIONAL SETTING 

Ric D. Herbert 
& 

Peter J. Stemp 

Department of Economics 
The University of Melbourne 
Melbourne Victoria 3010 
Australia. 



REVERSE SHOOTING IN A MULTI-DIMENSIONAL SETTING' 

by 

Ric D. ~erbert* and Peter J. stemp** 

ABSTRACT 

This paper investigates the properties of dynamic solutions that have 

been derived using the well-known reverse-shooting algorithm. Given an 

arbitrary large-scale model about which we have limited information, 

how successful is the algorithm likely to be in solving this model? We 

address this question using a range of investment models, both linear and 

non-linear. By extending the investment models to allow for multi- 

dimensional specifications of the capital stock, we are able to examine 

the computational efficiency of the reverse shooting algorithm as the 

dimensionality of the capital stock is allowed to increase. Our approach 

provides insights into how the complexity of the solutions to a broad 

range of macroeconomic models increases with the dimensionality of the 

models. 
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1. INTRODUCTION 

Given an arbitrary large-scale model about which we have limited information, 

how successful is the well-known reverse shooting algorithm likely to be in solving 

this model? We address this question using a series of investment models with 

specific properties that are common to a range of macroeconomic models. Firstly, the 

chosen models are derived from an optimising framework. 

Secondly, the models have a number of stable and unstable trajectories so that 

it is likely to be complicated to solve each model for a stable solution. The economy is 

initially at a stable steady state equilibrium, and when shocked by, say, an exogenous 

change in interest rates, then it moves to a stable trajectory leading to a new steady 

state equilibrium. The movement to the new equilibrium is assumed to come about as 

a consequence of optimising behavior of the agents in the model. In each of the 

models, certain variables jump instantaneously after the shock, and force the model 

dynamics onto the trajectory leading to the stable equilibrium. 

A third property of the models is that they are nonlinear with nonlinearities 

arising as a direct consequence of optimising behavior. The usual approach is to 

linearise each model in the neighborhood of the steady state and then to solve the 

linearised model. Of course, it is always possible to find closed-form solutions for the 

linearised models using matrix techniques. Such matrix solutions are likely to be 

more computationally efficient than solutions derived using a search algorithm. 

However, the solution properties derived by applying the reverse shooting algorithm 

to the linearised models are also going to give an informative benchmark by providing 

an indication of how successful the algorithm is likely to be in solving an arbitrary 

large-scale model that is "almost" linear. 



The essential issue is that of first finding the stable manifold and then finding a 

unique stable path along this manifold that gives the dynamic solution. In the case 

where there is one stable and one unstable eigenvalue the stable manifold is a (one- 

dimensional) path in two dimensions and this path is the stable solution. In the 

higher-dimensional case (with more than one stable eigenvalue) the stable manifold 

has dimensionality greater than one and the stable path is a sub-set of the stable 
L 

manifold. Appropriate jumps in the variables ensure that the model solution is on the 

stable path. This issue has been considered, especially in the case of rational 

expectations variables, by a number of authors including Anderson and Moore (1 985), 

Blanchard and Kahn (1 980), Boucekkine (1 999, Fair and Taylor (1 9831, Judd (1 998) 

and Zadrozny (1 998). 

The basic computational problem that we investigate is how well the reverse 

shooting approach solves the example problem over a range of parameter spaces, 

dimensionalities and computational parameters. We are particularly interested in what 

is commonly referred to as Bellman's curse of dimensionality, in that we wish to 

investigate to what extent the computational effort required for solving the problem 

increases with dimensionality. 

In particular, we investigate the computational effort needed to solve the 

dynamics of the both linear and non-linear models as the numbers of stable and 

unstable eigenvalues are allowed to increase. We demonstrate that this means that the 

dimensionality of the stable manifold and the computational complexity of the 

problem will increase. 



2. SADDLE-PATH INSTABILITY: THE TWO-DIMENSIONAL PROBLEM 

Description of saddle-path 

Consider the following two-dimensional model: 

x(t) = A(x(t) - x*) (la> 

where, throughout this paper, an asterisk denotes a steady state value and 

Xl ( 0  A "11, .=[ xz (t) ] and x*=[:] 

Assume that A has one stable eigenvalue (4 < 0 )  and one unstable eigenvalue 

(4 > 0). Let v(h,) be the eigenvector of A associated with h, so that: 
2x1 

Then the solution to Equation (la) is given by: 

This solution has the property of saddle-path instability, which will be described more 

fully using the investment example below. 

Example 

As an example, consider the investment decision of a profit maximising firm 

which takes the supply of labour as given. The firm faces a Cobb-Douglas production 

technology. Also, adjustment costs are associated with the installation of new capital. 

The magnitude of these adjustment costs is governed by the magnitude of a parameter, 

b. The decision of the firm can then be summarised as follows: 

Choose I and W to maximise: 



subject to 

where 

K = real stock of capital 
L = supply of labour (assumed exogenous) 
W = real wage 
I = real level of investment 
F(K, LL) = real output 
r = real interest rate (assumed exogenous) 
a, b are exogenous parameters 

If the supply of labour L is fixed at unity and the real wage is fixed at its 

optimal level then the dynamics of capital accumulation in the model reduce to the 

following set of equations: 

where 

The variable q is the co-state variable derived from the firm's optimisation problem. 

Given the functional forms of investment and production functions encapsulated in 

equations (2b, 2c), Hayashi (1982) demonstrates that q is equal to (both average and 

marginal) Tobin's q. 



The model defined by equations (3a-3d) is non-linear. However, we can obtain 

a general idea about the stability properties of the model by linearising in the 

neighbourhood of the steady state. The linearised model is given by: 

where 

F, = nrr(rr - 1) ( K ' ) O - ~  < 0 

The eigenvalues of the linearised system are given by: 

Hence the linearised system has two real-valued eigenvalues given by 

4 < 0, rZ, > r and exhibits the property of saddle-path instability. 

Solutions to the two-dimensional model starting from a range of initial conditions 

can be used to derive a phase diagram for the dynamics of the two-dimensional model. 

Phase diagrams for the true (nonlinear) and linearised models are given in Figures 1 

and 2, respectively. The same parameter set is used in both cases, so the isoclines in 

the G o  figures are directly comparable. The figures show saddle-path dynamics of 

the two-dimensional model. They also show that there are substantial differences in 

the dynamics between the nonlinear and linearised models. 

(Figures 1 and 2 about here) 

Solving the two-dimensional model is then equivalent to solving the following 

problem. 

Find q(0) subject to: 

4 = f C4YK) 



k = g(q, K) P b )  

K(0) = K,* + p, ( 5 ~ )  

4(r) = 4' + cq (5d) 

K(z) = K* + EK (5e) 

where z is some (possibly exogenous, possibly endogenous) large number 

representing the terminal point for time and E, , EK and ,uK are small error terms that 

are "close enough" to zero. 

The computational problem 

Solving the computational problem in the two-dimensional case is relatively 

easy with reverse shooting. The aim of this approach is to find the stable trajectories 

of the model and generate the stable arms in q-K phase space. This approach makes 

use of the feature that time can be abstracted from the solution of the model. The 

stable arms forwards in time will become the unstable arms with time going 

backwards. The same will apply for the unstable arms, with reverse time making them 

the stable arms. This approach finds the forward-stable arms by finding the unstable 

arms in reverse time (backward-unstable arms). This motivates the word reverse in the 

name for the approach. 

The approach also makes use of the separatrix property of saddles (Khalil, 

1996). The stable trajectories from a saddle form a separatrix so that the phase plane 

of the model is divided into four separate regions. Solutions always remain in one and 

only one region. Choosing a solution close to the boundary of one of these regions 

will ensure that the solution will remain close to the boundary. Choosing a backward- 

unstable solution close to the boundary will provide a time-path for the forward-stable 

solution (stable arm). 



We use a differential equation solver for the model and start near enough to 

the steady state given by x* = (K*,q*),  so there is some transient dynamics. We then 

solve the model in reverse time and the solution will be forced onto the stable a m .  

We stop the solver when the solver generates a solution that is "close enough" to the 

initial conditions for the capital stock, and the resulting solution gives the initial 

conditions for the co-state. 

(Figure 3 about here) 

Figure 3 shows a stable arm for the linearised and the true (nonlinear) model. 

The figure shows the dynamics of the model in response to an interest rate shock from 

r, = 0.03 to r = 0.05 . The stable arms have been derived using the reverse shooting 

approach. Once the stable arm (or forward-stable trajectory) has been determined in 

this manner: the initial value for q can be obtained by reading the corresponding value 

of q(0) along the stable arm for the initial condition K ( 0 ) .  

Using this technique we can find a computational solution to the problem, 

The two-dimensional model can always be solved with only one pass by the solver. 

The resultant solution is not the "true" solution as the solver introduces truncation 

errors and round-off errors will be introduced through the use of floating point 

numbers. This can result in substantial errors due to the unstable nature of this 

problem, for the problem is not well posed, in the sense that a slight change to the 

initial conditions is likely to lead to substantial differences in the final solution. The 

reason for this is that there are saddle-path properties inherent in the model solution. 

One way to check the solution is to solve the model in forward time from the 

initial conditions that have been discovered using the reverse shooting approach and 

check that the resulting forward trajectory gets "close enough" to the steady state. 



This gives more confidence in the solution, but still not the "true" solution. This 

raises the issue of how good needs to be the solution and how close is "close 

enough"? We consider these computational parameter issues in out numeric results 

presented below. 

3. THE HIGHER DIMENSIONAL PROBLEM 

General problem 

Consider the following model: 

where A is a square matrix, and x(t) , x* are column matrices. 
mrm mrl 

Assume that A has s stable eigenvalues (,4,,&,...,A.v) and u unstable 

eigenvalues (AT+, , ..., where s + u = m . Let v(4) be the eigenvector of A 
mrl 

associated with A,. Then, using the Jordan decomposition, it is possible to write the 

solution to this model in the form: 

(7) 

Blanchard and Kahn (1980) have shown that a stable solution for this model 

can be found as long as there are precisely as many c~ump" variables as there are 

unstable eigenvalues. The initial values of these jump variables are determined at the 



beginning of the optimisation problem by choosing the constants associated with the 

unstable eigenvalues equal to zero so that C,,, = 0 ,  for i = 1,2, ..., u . Conversely, 

precisely s variables are predetermined by history. We refer to these latter variables 

as the "non-jump" variables. Therefore, history determines values for each C, ,  where 

i =  1,2,'.*,S. 

To find the reverse shooting solution, it is first necessary to write the model in 

reverse time, so that z(t) = x(-t)  and: 

Without loss of generality, start at z = -N where N is a large positive number 

and choose z(-z) close to z* . Then C, exp(AIN) is close to zero for i = 1,2, ..., m . If 

A, is an unstable eigenvalue, then exp(/Z,,N) is a large positive number; hence C, 

must be close to zero. On the other hand, if A, is a stable eigenvalue, then exp(/Z,N) 

is close to zero; hence C, can take any value. 

Then, equation (3) reduces to: 



A solution can then be found by searching over the values for (C, , C, , ..., C, ) until a 

solution is found that arrives within a suitably small neighbourhood of the history- 

determined values for the non-jump variables of x(t) and hence for the non-jump 

variables of z ( t ) .  In this sense, the reverse shooting solution is equivalent to 

searching over a space of dimension s . 

When the dimensionality is greater than two, the solution method for the 

problem is similar but more complicated than the two-dimensional case. In the two- 

dimensional problem, the stable manifold is a one-dimensional line, which uniquely 

defines the stable path. In the higher-dimensional problem, the stable manifold is at 

least two-dimensional so that it contains an infinite number of one-dimensional paths. 

In order to find the stable path it is necessary to search over the stable manifold for the 

"right" solution path. 

Visualising the stable manifold 

The simplest example where the stable manifold is not the same as the stable 

path occurs in the situation where there is one unstable eigenvalue and two stable 

eigenvalues. Figure 4 is drawn under the assumption that there are two variables 

which are predetermined by history, K, and K, , and one "jump" variable, q,. Then, 

reverse shooting is equivalent to searching over a two-dimensional space (the stable 

manifold) in the neighbourhoood of the steady state for the unique path that passes 

through the values, K,, and K,,. When this path has been determined, the 

intersection of K,, and K,, with the stable manifold also determines the initial value 

for the 'Ijump" variable, q, . 

(Figure 4 about here) 



The stable path is found by initiating the solver at a point that is close to the 

steady state and then solving the dynamics in reverse time. The resultant solution path 

will lie on the stable manifold but may not pass through the desired values, K,, and 

K,, . If not, it is necessary to again initialise the solver close to the steady state and to 

solve the problem again. A systematic search, with different initial values for the 

solver in the neighbourhood of the steady state, may eventually converge to a solution 

that passes "close enough" to (K,,, K,,) . 

Example of higher dimensional problem 

We next examine a special example of dimension 2n where s = u = n . This is 

the example that we will focus on during the rest of the paper. Consider the 

investment decision of a profit maximising firm with n types of capital along the lines 

of Hayashi (1982). The firm faces a Cobb-Douglas production technology. Also, 

adjustment costs are associated with the installation of new capital. The magnitude of 

these adjustment costs is governed by the magnitude of parameters, b, . The decision 

of the firm can then be surnmarised as follows: 

Choose the 1; to maximise: 

subject to 

K,(O)=K,,, for i=1,2 ,..., n 

n n 

F(Kl ,  K,, ..., Kn) = a n  (K1 )% , where a ,  < 1 
1=l r = l  



where 

K, = real stock of capital of type i; 

I = real level of investment of type i; 

F(K, , K, , ..,, K,) = real output; 

r = real interest rate (assumed exogenous); and 

a, b, ,a, are exogenous parameters. 

The dynamics of capital accumulation in the model reduce to the following set 

of equations: 

K, = A ( b , , q , ) [ l - b , ~ ( b , , ~ , ) ] K , ,  for i =  1,2 ,..., n 

where 

The variables q, are the co-state variables derived from the firm's optimisation 

problem. These co-state variables are frequently referred to as Tobin's q. 

The steady state solutions of the model then reduce to the following (where an 

asterisk denotes the steady state value): 

q: =1,  for i=1,2 ,..., n (13a) 

1 

, for i=1,2 ,..., n 
4 a  ,,, 



The model defined by equations (12a-12d) is non-linear. However, we  can 

obtain a general idea about the dynamic properties of the model by linearising in the 

neighbourhood of the steady state. The linearised model is given by: 

r r 0 ... 0 -4, -6, ... -<,I 

where E, = FK,,, 

In addition, for the linearised model, the following second-order conditions for 

profit maximisation are satisfied: 

K,, <O,for i=1,2 ,..., n 

(-1)" det Hn > 0 

where 

Whenever equation (15b) is satisfied, it can be shown that the model given by 

equation (14) has precisely n stable and n unstable eigenvalues and so fits the structure 

of the general model presented above. In particular, any production technoloa of the 

form given by equation (1 lc) satisfies equations (l5a-15c). 

The compufafimalpr~blem 

The computational problem we examine is the solution of the example model 

above from a known meaningful steady state, x i ,  to a new known meaningful steady 



state, x', after an exogenous shock in interest rates from pb to p . .  The problem is to 

find the unique trajectory (in q's and K's) from the initial steady state to the final 

steady state resulting from the shock. 

The fundamental problem is to find the stable solutions for the following 

dynamical systems: 

~ ( t )  = f ( ~ ( t ) ,  p) ( 1 6 4  

for the non-linear model, and 

%, = A(P)(xL(~) - x*) 

for the linear model, where the state vector is given by: 

X = [q,KIT = [q,,q2 , . . . r q n , ~ 1 , ~ 2 , . . . , ~ n l T  

and the parameter vector is given by: 

P = [ ~ , @ ~ , a ,  ,.-. ,@n,b,,~2,...,bnlT (1 6 4  

The dimensionality of the model is m (=2n). Notice that the model is autonomous so 

that calendar time plays no part in the solution. 

The shock in interest rates determines the boundary conditions for the model 

and gives rise to the specific exercise we solve. Before the shock the model is at 

I; =[.;,K;Y and evolves along s unique stable solution trajectory to 

xo = [ q * , ~ ' ] r .  From equations (16a-16b), both these steady state equilibria can be 

analytically determined. The problem is to find this stable trajectory. The interesting 

aspect of the problem results from the model structure in that this trajectory must lie 

on the stable manifold, so that the vector of co-states, q ,  must instantaneously jump 

onto the stable trajectory. Hence the initial conditions for the co-states are not known. 



The basic problem of this computational exercise is to find these co-state initial 

conditions. This is a similar problem to that defined by equations (Sa-5e). 

The exercise is a two-point boundary value problem where the aim is to find 

the trajectory of the model. The exercise is difficult due to the unstable nature of the 

model problem, but one thing in our favour is that the final steady state is known, as 

given by equations (13a-13b). Basically we need to search around points "near 

enough" to the final steady state so that the solution to the model has transient 

dynamics that are forced onto the stable manifold and that also satisfL the appropriate 

inital conditions. This search will determine a solution trajectory and initial 

conditions, (q(O),K(O)), as in the two-dimensional case. After a solution path has 

been derived using the reverse shooting algorithm, solving the model forwards in time 

lising these initial conditions can check the accuracy of the solution by examining how 

close the resulting trajectory is to reaching the steady state. 

4. PROGRAMMING THE SOLUTION 

There are a number of important computational issues that will affect the 

solution to this problem, which is very sensitive to a whole range of approximations 

that are made in the solution process. Firstly, there is the parameter space. The model 

will be reasonably well-behaved computationally as it is an economic problem (and, 

thus, for example, cannot have negative capital stocks). But the parameter space will 

affect the size (though not the dimensionality) of the solution space. Secondly there is 

the choice of the differential equation solver and thus the truncation errors and ability 

to handle different speeds in the solution dynamics. Thirdly there is the method of 

searching over the candidate solution trajectories. Finally there are the definitions of 

"close enough" in both the solver and in the search. All these issues combine in 



producing errors and in producing the solution. All may increase over wider 

parameter spaces and dimensionalities. 

To program the exercise, software components are needed to solve differential 

equations and undertake searches for a range of parameter sets, We used Matlab 

(Mathworks, 2002) as it is ideally suited for this type of computational problem, The 

programming was written so as to make use of key Matlab features. Library routines 

(toolboxes) were used so that start-of-the art solvers and searches are included in the 

code. Using the extensive matrix capabilities allowed for exactly the same code 

being executed for all dimensionalities greater than one. 

Parameter calibration 

To generate the results presented here, we repeatedly solved the model over a 

range of parameter sets. A total of 100 model repetitions are used for each 

dimensionality, m (=2n). Each model repetition differs only in the parameter 

calibration. For all models a = 1, r, = 0.03 and r = 0.05 , and the models differ 

because of the choice of q ' s  and b,'s which are chosen from the following 

distributions: 

b, =3+46,, i=1,2 ,..., n (1 7b) 

where {, q,, 6, are each drawn from U(0,l) , the random uniform distribution between 

0 and 1. Note that, for the nonlinear models, the q ' s  and b,'s determine the extent of 

model nonlinearities. Hence, by employing a range of values as given by equations 

(17a-17b), we are able to investigate the average properties of a broad range of 

nonlinear models. 



This choice in parameter sets produces a suite of model repetitions that have a 

sensible economic meaning and that are reasonably well behaved computationally, yet 

give a wide-ranging parameter space. In particular, the interaction between the 

parameter values and the definition of the steady state value of the capital stock given 

by equation (13b) means that, for low dimensions, the size of the search space within 

that dimensionality is much larger than is the case for higher dimensions. This 

proposition is illustrated in Table 1, 

(Table 1 about here) 

ODE solver software 

Solving this computational exercise is all about finding the final solution 

trajectory for a given model as determined by a parameter set. This final solution 

trajectory is a single solution to an ordinary differential equation. It is simply the 

solution to equation (12a-12b) from the correct set of initial conditions or equation 

(14) in the case of the linearised model. To find this solution trajectory it is often 

necessary to solve thousands of ordinary differential equations. We refer to each 

solution of a differential equation as a candidate solution. 

Basically the higher-dimensional reverse shooting problem comes down to 

solving many differential equations. The choice of the software component to solve 

the ordinary differential equations in this exercise will have considerable implications 

for the results. Small changes to the initial conditions of the ordinary differential 

equation will lead to huge differences in the final solution. For the differential 

equation solver we use a variable time step size Runge-Kutta method solver. This is a 

well-known and standard ode solver for this type of problem. It has the key features 



of robustness and accuracy, and it can cope with the problem "blowing-up". It is well 

suited to the type of dynamics generated by the examples chosen in this paper. 

We implement the solver by calling the Matlab function ode45. The time step is 

chosen so that the local truncation error is less than 1 04. We use a long time horizon 

(ranging from 0 to 1500) but use the "events" property of the Matlab ode solver suite 

to stop the integration of a candidate solution so that only a small fraction of the time 

horizon is normally used. This, of course, significantly reduces the computational 

effort needed to solve the exercise. The resulting time horizon will be variable with 

each candidate solution. As an example of a solver stopping condition, a candidate 

reverse time trajectory is stopped as soon as any capital stock is greater than its 

corresponding initial steady state. This candidate can then be abandoned. The 

"greater than" comes from the fact that, for r, = 0.03 and r = 0.05, K* < K: . 

Searcher software 

Solving this computational exercise involves searching over many candidate 

solution trajectories to find the "correct" trajectory. Recall that for a reverse-shoot 

candidate solution to be the "correct" solution all capital stocks must pass sufficiently 

closely to the initial steady state at the same time. From this cccorrect" solution comes 

the initial conditions required to solve the model and thus the jumps in q .  The 

searcher software generates candidate solutions and stops when it finds the "correct" 

candidate. 

For the reverse shoot, a candidate ordinary differential equation is solved in 

reverse time from a set of terminal conditions close to the final steady state. 

Effectively the searcher software generates these terminal conditions. The searcher's 

software sits over the top of the ode solver software, and generates solutions until it 



finds the "correct"so1ution. Thus the choice of the searcher software component is 

also important for the solution of the exercise. 

For the search method we use a Nelder-Meade direct simplex search, This 

search has the advantage that it has memory and can go back to previous search 

candidates (simplex vertices) and thus is less likely to get "stuck" in a search. Unlike 

many other search procedures it does not require the generation (by analytic or 

numeric means) of derivatives. Like most searches, it works best at low 

dimensionalities (Lararias et al., 1998). We have found it to be a good robust searcher 

for this type of problem compared to other searchers we have used. 

We implement the Nelder-Meade search by the Matlab function ')?ninsearch" 

from the Optimization Toolbox. The software is implemented by defining an 

objective function that is to be minimised. Like all searcher software, this function 

has a number of stopping conditions. These include that the objective function 

reaches a minimum as defined by a tolerance and within a maximum number of 

iterations. Alternatively, successive iterates may differ by less than a specified 

tolerance. Note that successful searches do not mean that the global minimum has 

been found. The tolerances are chosen as computational parameters. We consider 

their effects on the solving of this exercise by considering two tolerances: the lower 

tolerance is 0.0001; the higher tolerance is 0.1. 

The search combines two aspects in trying to find the candidate that is the stable 

trajectory. Firstly it needs to stay close to the final steady state so that this candidate's 

"initial'honditions for the reverse time solution has transient dynamics that are forced 

onto the stable manifold. These "initial" conditions to the candidate ode are actually 

terminal conditions for the original model. If they are too close to the steady state 

then there will be no transient dynamics as the model will simply remain at the steady 



state. Secondly the search needs to find the candidate solution trajectory that passes 

close enough to the pre-shock steady state capital stocks, K i .  All capital stocks must 

be close enough at the same time point. 

For the objective function of the search we use the 2-norm of the relative error 

of each these two components and sum the result. Hence there is a "trade-off" 

between each component. We also weight the components by dividing by & , where 

m (=2n) is the dimensionality of the problem. This is to allow for the effects of 

parameter generation rules with increase in dimensionality. That is the search is 

chosen so as to minimise: 

(18) 

SuccessfuZ solution 

If the search terminates successfully, we may or may not have the "c~rrect '~ 

candidate solution. The search may terminate successfully as this is the correct 

candidate or because it could not find a better one. From this "correct" solution 

comes the initial condition that gives the "true" solution trajectory and the jumps in 

q . For the purposes here, we can set up the ultimate test of the method by solving the 

model forwards in time from the initial conditions to check that the model solves to 

the steady state. How close forward trajectory from the initial conditions found by 



reverse shooting is to the steady state is the ultimate test of the reverse shooting 

procedure for this exercise. 

For the forward solutions we define a normalized forward trajectory error as a 

measure of "how close" the solution came to the desired steady state. The normalized 

errors are measured as relative errors using 2-norms, and are normalized to search 

space and dimensionality by dividing by the maximum capital stock and the square 

root of the dimensionality. This normalization allows for the wide difference in search 

spaces generated by the parameter generation rule (equations 17a-17b). 

Thus, successfully solving the model involves both the completion of a 

successful search using the reverse shooting algorithm and the successful verification 

of the search by checking that the corresponding forward trajectory passes "close 

enough" to the final steady state. For our purposes a successful reverse shoot search is 

defined by the tolerance parameter (in our paper, equal to 0.0001 or 0.1). A 

successful forward solution is defined as one with normalised forward trajectory error 

< 0.1. 

5. RESULTS 

Simulations were implemented for dimensionalities of 4 to 40, where m (=2n) 

is the dimensionality of the model. For our investment model, n is the dimensionality 

of the stable manifold. The two-dimensional model has not been included for 

presentation reasons. As this model does not require a search, it is significantly faster 

and has less variability in solution time. All results were generated using the same 

computer1. 

' Matlab 6.1 on a Dell Latitude Notebook with Pentium 3 mnning at 1.3 GHz and 256Mb of RAM. 



CPU time to solve models 

The first issue we examine is the effects of dimensionality on the time it takes 

to solve a model. From Figure 5 it can be seen that the linear model is significantly 

faster to solve than the non-linear model. The time and variability of the model 

solutions also increases monotonically with dimensionality. This is especially 

apparent with the non-linear model where variability and solution time increases more 

rapidly with dimensionality than for the linear model, 

(Figure 5 about here) 

Success rate 

Figure 6 presents the results for successful solving the model, that is, for 

successfully completing a search and then successfully checking the forward 

trajectory. The linear model solves best (more than 80% success rate) for 

dimensionalities ranging between 8 and 22. The non-linear model has above 80% 

success rate in only one case (dimensionality of 6) and less than 50% success rate for 

all dimensionalities greater than 12, 

(Figure 6 about here) 

Clearly the reverse shooting algorithm is struggling to solve the nonlinear 

models even for very low dimensionalities, We suspect that the algorithm has 

difficulties solving the linear model for two different reasons. At low 

dimensionalities (4 and 6) we suspect that this is because of the large search space 

generated by the parameters (and described in Table 1) interacting with the search 

algorithm where successful searches terminated with close iterates rather than close to 

the global minimum. At high dimensionalities (24 and greater) we suspect this is 

because of the higher dimensionality. 



Varying search tolerance 

W e  have also examined outcomes when the search tolerance is allowed to 

increase from 0.0001 to 0.1. The outcomes for CPU time and success rate are 

described in Figure 7. As in Figure 6, the success rate figures reported here are for 

successfully solving the model (that is, successful search plus successful forward 

trajectory), 

(Figures 7 and 8 about here) 

As  one would expect the increased tolerance means that the search can be 

completed sucessfully in lesser time. More interesting is the observation that the 

success rate for the linear model tends to improve substantially for lower dimensions 

under the higher search tolerance. This proposition is demonstrated further in Figure 

8 and is consistent with the earlier observation that the problem with lower success 

rates at low dimensionalities is because of the interaction between the stopping rule 

for the search algorithm and size of the search space. Overall, these results suggest 

that there are gains to be made in choosing a higher tolerance level for low dimensions 

of the linear model 

Overview of results 

The reverse shooting algorithm is clearly a lot faster for linear models than it is 

for nonlinear models. Other things being equal, the probability of achieving a 

successful solution with this algorithm decreases with the following factors: 

reductions in the linearity of the model; 

increases in the dimensionality of the model for given search space; and, 

increases in the search space for given dimensionality. 

Overall, our results suggest that the algorithm does best with "almost" linear 

models of dimensionality less than about 20. Our results also suggest that the success 



of the algorithm can be improved somewhat for linear models by increasing the search 

tolerance for lower dimensionalities (less than 10). For the nonlinear models 

considered here there is substantial evidence that the algorithm is prone to failure at 

dimensionality around 10 or greater with less than 50% success rate for all 

dimensionalities greater than 12, 

6. CONCLUSION 

In this paper we apply the reverse shooting algorithm to solving a range of 

investment models, both linear and non-linear. By extending the investment models 

to allow for multi-dimensional specifications of the capital stock, we are able to 

examine the computational efficiency of the reverse shooting algorithm as the 

dimensionality of the capital stock is allowed to increase. 

We investigated the success of the reverse shooting algorithm for models 

ranging in dimensionality between 4 and 40, discovering that the algorithm had 

considerable problems solving this type of exercise. Reverse shooting does not work 

well at high dimensionalities, achieving best results for linear models with 

dimensionality below 20. Over the range of dimensionalities considered, effort to 

successfully solve the model increases monotonically with dimensionality with the 

non-linear model requiring more effort and having greater variability in effort than the 

linear model. Our results indicate that even the introduction of "well-behaved" 

linearities like those introduced in this paper, can substantially reduce the 

effectiveness of the reverse shooting algorithm. 

The exercise was a complicated exercise with a potentially unstable ordinary 

differential equation to be solved over a wide parameter space and involving a 

difficult search. There are a number of places where computational errors can be 



introduced and these errors soon "blow-up". It is a good exercise on which to test the 

appropriateness of the reverse shooting method. 

Our approach has provided insights into how the complexity of the solutions to 

a broad range of macroeconomic models increases with the dimensionality of the 

models. The results raise the question as to whether the reverse shooting approach is 

the best general way to find the stable trajectory of a model with saddlepath-type 

properties. 

One of the big problems with the reverse shooting approach is that possible 

computational errors are introduced at a variety of different stages and these have the 

potential to compound causing the soIution trajectory to "blow-up". This makes it an 

attractive proposition to compare these results with those derived using forward 

shooting, an alternative approach that attempts to find the solution by minimising all 

errors, including computational errors, simultaneously. 

Our initial presumption was that the reverse shooting algorithm would always 

be more efficient than forward shooting because, for a given problem, the reverse 

shooting algorithm has to search over a smaller manifold, However, the results of this 

paper indicate that the problem of compounding errors is much more complicated than 

we had initially anticipated. We now think that it is possible that, in some cases, the 

forward shooting algorithm might be more efficient. Comparing outcomes under 

reverse shooting and forward shooting is the planned focus of our future research. In 

particular, the forward shooting approach would be expected to require more 

computational effort than reverse shooting, but may have a higher success rate. 
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State Portrait for Nonlinear Model 

Figure 1. Phase Diagram of the Two-Dimensional Model 
True (Non-Linear) Model 



Figure 2. Phase Diagram of the Two-Dimensional Model 
Linearised Model 
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Figure 3, Stable Arms of the One-Dimensional Model. 
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Figure 4. Visualising the Stable Manifold 
The Case of Two Stable Eigenvalues and One Unstable Eigenvalue. 



Table 1. Effects of Dimensionality on Search Space. 
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Figure 5. Computational Effort. 
Results are for all models. 



Success Rate 
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Figure 6: 
Success is Defined as Successfully Solving Model (Successful Search + Successful 

Forward Trajectory); Search tolerance = 0.0001 
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Figure 7: 
Varying Search Tolerance: CPU Time and Success Rate. 

Results are for Successfully Solving Model (Successful Search 4 Successful Forward 
Trajectory). 



Success Rate - Linear Model 
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Figure 8: 
Varying Search Tolerance: Success Rate for Linear Model at Lower Dimensions, 

Results are for Successfully Solving Model (Successful Search + Successful Forward 
Trajectory). 
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