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Abstract 
 
 The estimation of regression models subject to linear restrictions, is a widely applied 
technique, however, aside from simple examples, the equivalence between the linear restricted 
case to the reparameterization or substitution case is rarely employed.  We believe this is due to 
the lack of a general transformation method for changing from the definition of restrictions in 
terms of the unrestricted parameters to the equivalent reparameterized model and conversely, 
from the reparameterized model to the equivalent linear restrictions for the unrestricted model.  
In many cases the reparameterization method is computationally more efficient especially when 
estimation involves an iterative method.  But the linear restriction case allows a simple method 
for adding and removal of restrictions. 
 In this paper we derive a general relationship that allows the conversion between the two 
forms of the restricted models.  Examples involving systems of demand equations, polynomial 
lagged equations, and splines are given in which the transformation from one form to the other 
are demonstrated as well as the combination of both forms of restrictions.  In addition, we 
demonstrate how an alternative Wald test of the restrictions can be constructed using an 
augmented version of the reparameterized model.   

                                                 
1  We wish to acknowledge  Thomas B. Fomby for helpful suggestions and comments on this paper, the usual 
caveat holds.  
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1.  Introduction 

 Regression models that are the subject of exact linear restrictions is a well defined topic in 

most econometrics textbooks (such as Griffiths et al 1993, Greene 2003, Johnston and DiNardo 

1997, and Ruud 2000).  With the notable exception of Ruud, the exposition in these texts has 

changed little since Tintner's (1952) text.  However, in many of these treatments the restricted 

and unrestricted parameter vectors are given the same names (i.e. β), although the estimates are 

defined differently (i.e. β̂ for the unrestricted and *β̂ or ˆ
rβ for the restricted estimates) thus 

confusing both the implications of the restrictions on the model and on estimation.   

 In this paper we present a formulation to this problem that emphasizes an aspect of 

restricted regressions that is often less obvious, namely that the model specified has been 

changed by the restriction.  We focus on the implications for the model specification of the 

linear restrictions and sets of linear restrictions and derive an automatic procedure for translating 

a problem from the linear restrictions of the unrestricted parameter vector form to the 

reparameterization of the unrestricted parameter form and back.  Finally, we provide examples 

of how this transformation can be applied to single and multiple restrictions and show how the 

reparameterized or substitution form can be used to test restrictions. 

 The correspondence between the linear restrictions form and a reparameterized (also 

referred to as substitution) form has been noted in numerous contributions to the literature.  

Mantell (1973) showed that it is always possible to reconfigure a set of linear restrictions on the 

vector of regression coefficients in such a way as to form an equivalent regression defined in 

terms of a new vector of unrestricted parameters and more recent econometrics texts report this 

result.  Fomby et. al.  (1984), Greene (2003), Davidson and MacKinnon (1993) and Griffiths et 

al (1993) all present the case of linear restrictions applied to the unrestricted parameters.  In a 

more recent text Ruud (2000) devotes an entire chapter (chapter 4) to the case of restricted least 

squares by proposing that the restrictions are in the form of a reparameterization while only 
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noting in passing equivalence to the traditional linear function of the unrestricted parameters.  

However, none of these treatments present a general  method for the derivation of the alternative 

reparameterized model from the linear restrictions and back again.  The only proposal for the 

conversion involves an unspecified method to decompose the restrictions matrix.  The 

applications in which this interrelationship between the two forms have been used employ ad 

hoc methods for conversion which apply only to the particular cases at hand (i.e. Huang and 

Haidacher 1983 and Fomby et al 1984 pp 377-378).  Given the lack of a general method that 

uses standard software to make this translation, it is not surprising that the reparameterization 

method is rarely used unless it is required for estimation. Additionally, it is rare to find cases 

where the reparameterized problem has been translated to the restrictions of unrestricted 

parameters form.  

 The contribution of this paper is to derive the general form of the correspondence between 

these two ways of representing a restricted regression model.  The relationship defined here 

allows the transformation of restrictions defined in either way to be defined by the alternative.  

In addition, this correspondence is one that can be easily automated because it requires only 

simple matrix manipulations and the singular value decomposition of a symmetric matrix.  

 This paper proceeds as follows.  First we define the two approaches as they have 

appeared in the literature and present the process for transformation between the forms.  Next 

we provide a series of examples to demonstrate how these transformations may be used.  In 

particular, we focus on the case where both forms of restrictions may be present at the same 

time.  The last section of this paper demonstrates how the reparameterized solution can be 

used in the construction of a test of the restrictions which is equivalent to the tests performed 

in terms of the unrestricted parameters.  The proofs of these correspondences are given in the 

appendices. 
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2. The Two Forms of Restrictions. 

 A regression model subject to a set of linear restrictions is written in the form 

where YTx1 is the vector of the observations on the dependent variable, ( )⋅X  is a vector of 

regression functions of length T and βkx1 is the set of restricted parameters, Rmxk is the matrix of 

m linear combinations of the restricted parameter set, rmx1 is the vector of constraints to which 

we equate the linear combinations, m < k and the assumptions concerning the error (ε) will 

depend on the case at hand.  This form of the problem will be referred to as the "linear function 

of unrestricted parameters" form of the restrictions or the LFUP form.  As noted above, 

numerous econometrics texts treat this as the only formulation of the restricted regression model.  

Simple econometric examples of this sort of restrictions would be the imposition of constant 

returns to scale in a Cobb-Douglas production function and the homogeneity of degree zero in 

the prices of a log log demand equation.  

 The alternative method for defining linear restrictions is the case when β can be written as 

a linear function of a set of j (j=k-m) other parameters (γ) and a k x 1 vector of constants (d) as 

This form of linear restrictions will be referred to as ROP for "reparameterized in other 

parameters" form of the restrictions and the regression can be written as 

which, by substitution, is equivalent to the reparameterized regression written as 

where γ γZ( ) = X(A + d) .  This form of a restricted regression model is also found in the 

econometrics literature though much less often (e.g. Ruud 2000 pp. 77 - 84).   

 An advantage of the reparameterization method is the ability to derive a linear equation 

such as (2) that relates the k by 1 vector β to the transformed set of j parameters (γ).  The explicit 

 ( ) +  ,  s. t .  ,β ε βY = X  R  = r    (1) 

 =  β γA + d     (2) 

 ( ) +  ,  s. t .   =  + β β γY = X  ε A d .   (3) 

 γY = Z( ) + ε .    (4) 
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definition of β as a function of γ serves to maintain the separation of the parameters subject to 

restrictions (β) from those that are "free" (γ), or more precisely those that are not subjected to 

restrictions.   

 It is the relationship between the LFUP and the ROP which we are concerned with in this 

paper.  The remainder of this section will examine the conversions from the LFUP form to the 

ROP form and from the ROP form to the LFUP form and the computational aspects of this 

conversion.   

2.1 LFUP to ROP (R  = r)  = + ) → γA dβ (β  

 A is defined as the k by j matrix of j eigenvectors corresponding to the zero valued 

eigenvalues of R′R and d is defined as +R r . When the rank of R is equal to m (thus k = m + j), 

an appropriate Moore-Penrose g-inverse (R+) is given by 

The proof of this relationship is given in Appendix A.  

 The estimated restricted parameters (β ), can be found by using (2) and the estimates for γ 

as estimated from (4) and the corresponding covariance is given as  

Note that the reparameterized regression (4) is written with the same error, ε, as the original 

problem.  Consequently, if the regression model is linear (i.e. X(β) = Xβ) then the covariance 

matrix of the error is estimated as Σ , the equivalent solution to the GLS problem is; 

where Z = XA and G = Y - Xd.  In this case, the estimates of β can then be defined via (2) with 

the GLS estimate of γ and the covariance of β can be defined in a form equivalent to (6) using 

the GLS estimated covariance for γ. 

2.2 ROP to LFUP ( ) = +  R  = r  γ →A dβ β  

 -1 )′ ′+R = R ( RR .    (5) 

 ˆcov( ) =  cov( )  ′β γA ( ) A     (6) 

 1 1 1( ' ) '− − −γ = Σ ΣZ Z Z G     (7) 
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 In Appendix B we show that β = Aγ + d is equivalent to a set of m (m = k - j) linear 

restrictions in the parameters in the form Rβ = r, where R is defined as an m by k matrix equal 

to the transpose of the eigenvectors of ′AA  that correspond to the m zero valued eigenvalues of 

′AA and r = Rd.  

2.3  Computational Aspects of the Restricted Parameter Estimates and The Conversion 

of Restricted Forms. 

 A major consideration for the use of reparameterization is in the process of estimation.  

For example, most widely used statistical software packages do not allow the imposition of 

linear restrictions in the LFUP form when using logit, probit, ARIMA or other maximum 

likelihood or robust estimation methods, the reparameterized version may be the only practical 

way to impose restrictions on these model’s estimates. Also the use of Bayesian methods for the 

construction of the posterior distribution of a parameter vector is simplified if the parameters are 

unconstrained, thus distributions of estimates of γ  are easier to construct than those for 

estimates of β . For example, Griffiths et al. (2000 p113) show how a seemingly unrelated 

regression (SUR) model with restrictions of the LFUP form can be re-formulated as an 

unrestricted SUR model which is a convenient form to use the Markov Chain Monte Carlo 

simulation for the empirical implementation of the Bayesian approach. 

 The traditional generalized least squares solution to the restricted linear equation problem 

specified in (1) when ( ) β = βX X  and Σ  is estimated by Σ  would be given as: 

 
-11 1

-1 -1 -1 -11 1 1 1

ˆ = (  + )

  (  ( ( (  - ( )) ) ) )

− −

− − − −

′ ′β Σ Σ

′ ′ ′ ′ ′Σ Σ Σ Σ

X X X Y

X X R R X X R r R X X X Y
 (8)  

which implies that Q (where -11 = ( )−′ΣQ X X ) is non-singular. When IΣ =  this simplifies to: 

-1 -1 -1 -1 -1ˆ = (   (  ( ( (  - ( )) ) ) ) )′ ′ ′ ′ ′ ′ ′β +X X X Y X X R R X X R r R X X X Y  (9) 

and implies that X is non-singular.  Unfortunately, there are a number of examples where this 

condition is not satisfied.  Most notably, the case where one includes the full set of dummy 
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variables in an equation and then the parameters are constrained to sum to zero (see Suits 

1984).   

Greene and Seaks (1991) show how the restricted least squares estimator may be computed 

even if X is singular by finding the direct solution of the first order conditions  

   
1

β̂
0 rλ

−′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦⎣ ⎦

X X R X Y
R

  (10) 

where λ is an 1m×  vector of Lagrangean multipliers. Alternatively, the restricted least 

squares estimator can be found by using the reparameterization approach.  

 The reparameterization method also has the advantage of improving efficiency in 

computation. For example, in the linear regression case the LFUP estimation equation (8) 

requires the computation of two inverses:  one of the matrix 
-11 = ( )−′ΣQ X X  as well as for 

(RQR′)-1.  However, with the reparameterization the estimates require only one inversion 

11( )−−′ ′ΣA  X X A , see (7).  Note that to compute the inverse of a matrix the number of individual 

computations is of the order of the cube of its dimension2.  

 An example of the gains from reparameterization can be found in Huang and Haidacher's 

(1983) paper in which they estimate a 13-equation demand system with 195 unrestricted 

parameters by applying a reparameterization of 92 restrictions defined on the unrestricted 

parameters. In this case the computation of the Q matrix would involve in the order of 7.4 

million operations and computing (R Q R′)-1 approximately .8 million.  Thus, these two 

inversions would require almost 8.2 million operations in total.  However, ( ) 11 −−′ ′ΣA  X X A  is a 

(103 x 103) matrix and the number of operations needed for inversion is of the order of 

approximately 1.1 million.  Thus, the reparameterized model estimate requires less than 1/8th of 

                                                 
2 At this point one might observe that the eigenvector computations needed for the conversions from LFUP to ROP 
and back do not warrant the reduction in dimensionality due to computational expense.  The computation of the 
singular value decomposition requires the same order of computations that the inverse requires.  Thus the conversion 
will be warranted on a purely computational efficiency if the method of computation requires more than one 
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the computations associated with the traditional constrained optimization formula.  In estimating 

demand systems with 30 or more commodities the differential in computations between the 

reparameterization method and the traditional technique levels off to 12%.  In addition, round 

off error may become a particularly difficult problem in the case of such large demand systems, 

due to the approximate multicollinearity in the X’s which are defined as functions of prices, to 

the degree that it may not be possible to estimate the unrestricted model.3 

3. Example Applications 

 This section illustrates the use of the conversion in restrictions from one type to the 

other.  For convenience all these examples use linear regression models.  In the first example, 

we demonstrate the use of the reparameterization method in the estimation of a system of 

demand equations subject to the exact linear restrictions defined by the symmetry and 

homogeneity of degree zero in the prices.  The other two examples demonstrate how the ability 

to go from one form to the other can be used to estimate those models where there is a 

combination of restrictions that apply simultaneously.  

3.1  The reparameterization in the case of restricted demand equations 

 Exact linear restrictions are used in the estimation of demand systems where economic 

theory implies a set of restrictions on the functional form of empirical demand equations.  

 Consider a system of two share equations as derived from a Translog cost function 

(Christensen and Greene 1976) which are subject to restrictions to insure cross price coefficient 

symmetry and where the cost function is homogeneous of degree one in prices 

Here, the y's are the vectors of length T of the cost shares and the P's are the T by 1 vectors of 

                                                                                                                                                        
iteration. 
3  In the case of the symmetry restrictions alone Byron (1982) and Hirschberg (1992) demonstrate that the 
number of computations may even fall to a far smaller proportion if the estimated covariance structure is not 
required. 

 
u

1 11 12

2 21 22

βu u

u u u

α β

α β β
1 2 11

1 2 22

 =  +   +  + εy P P
 =  +   +   + εy P P

   (11) 
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the logs of the prices, u
jiβ  and u

jα  are the unrestricted parameters.   The matrix form for the 

unrestricted model is 

 

1

11

12

2

21

22

  =     +    

u

u

u

u

u

u

⎛ ⎞α
⎜ ⎟
β⎜ ⎟
⎜ ⎟β⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟α⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠
⎜ ⎟β
⎜ ⎟⎜ ⎟β⎝ ⎠

1 2 11

1 2 22

ι P P 0 0 0 εy
0 0 0 ι P P εy

  (12) 

where ι is a column vector of length T with all elements equal to 1.  Typically the errors to this 

model would be assumed to follow Zellner’s (1962) seemingly unrelated regressions model. 

 The traditional approach to reparameterization of this model would be to apply restrictions 

of the form:  the cross price restriction implies that 12 21=β β , and the homogeneity restriction 

implies that 11 12β = −β , 21 22β = −β , and 1 2 1α +α = .  If we incorporate the restrictions into our 

specification, we can then respecify (12) as 

Obviously the parameters in (12) and (13) are not the same ones although it is common practice 

to refer to them by the same names.  Here we suggest that the more appropriate notation when 

using a reparameterization would be to use a separate set of parameter definitions.   

 In this example, the reparameterization of the original problem was done solely for this 

specific case by manipulation of the equation.  However, we can obtain an equivalent 

reparameterization using the automatic procedure discussed in Section 2.   Define the restriction 

relationship (Rβ = r ) in this case as 

 1

11

( )
=       +    + 

- ( )
α⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟β⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 21 1

1 22 2

y ει - 0P P
y ει - ιP P

  (13) 
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The eigenvectors of U = ( )R'R  are given as 

 

0 0 .71 0 .71 0

.27 .5 0 .65 0 .5

.65 .5 0 -.27 0 -.5
  

0 0 .71 0 -.71 0

-.65 .5 0 .65 0 -.5

.27 .5 0 -.27 0 0

U = 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

   (15) 

and the corresponding eigenvalues of U are given as 

 3.41  2  2  .59  0  0(  )     (16) 

Thus, the last two columns of U make up A, a matrix composed of the eigenvectors that 

correspond to the zero valued eigenvalues of U and each column can be multiplied by any 

scalar.  Thus, we can rescale this matrix to be of the form 

 

1 0

0 1

0 -1
 

-1 0

0 -1

0 0

 = 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

A     (17) 

for d = R+r we get 

 

0 0 0 .5 .5

.75 -.25 -.5 0 0 0

.25 .25 .5 0 0 0
    

0 0 0 .5 0 .5

.25 .25 -.5   0 1 0

.75 .75 .5 0 0

 =    = 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

d    (18) 

 

0 1 1 0 0 0 0

0 0 0 0 1 1 0

0 0 1 0 -1 0 0

1 0 0 1 0 0 1

1

11

12

2

21

22

      = 

⎛ ⎞α
⎜ ⎟β ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟β ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ α⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟β⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟β⎝ ⎠

 (14) 
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Z = XA results in 

and for G = Y - Xd 

 It can be shown that the resulting estimates of β will be the same from either 

reparameterization.  The only difference is in the estimation of the α's which will be set up 

differently in the second case, but which result in the same estimates of the restricted values of α.  

3.2. The combination of both linear restrictions and reparameterizations. 

 In this section we show that if combinations of linear restrictions and reparameterizations 

are imposed simultaneously then one can form a single equivalent set of linear restrictions or 

reparameterization.  As demonstrated below, some applications lend themselves better to either 

reparameterization or to a linear restriction on the parameters.  

 If one has a LFUP and an ROP restriction on the same parameters it is possible to form a 

single set of LFUP restrictions by converting the ROP to a LFUP case and then the Ri matrices 

are stacked on top of each other to form a new LFUP problem.  If desired one can then convert 

the composite LFUP restriction to an ROP form.  This is the case dealt with in 3.2.1 below.  

However, if we have an ROP case that is subject to an LFUP restriction in the reparameterized 

parameters (γ) it is easiest to translate the LFUP on the new parameters to an ROP then multiply 

the Ai matrices together to derive a single A matrix.  This approach is illustrated below in 3.2.2. 

 
- ( - )

=   
- ( - )

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 2

1 2

ι P PZ
ι P P

    (19) 

 
( .5 )

=   
( .5 )

⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2

y - ι
G

y - ι
    (20) 
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3.2.1   The case of reparameterization and linear restrictions on the original model 

 A frequently used reparameterization found in time series analysis involves the 

polynomial lag model as proposed by Almon (1965).  In addition, it is often the case that 

incidental variables in a model are assumed to sum to zero.  Here we demonstrate how these two 

types of restrictions can be included simultaneously.   

 In the case of the Almon polynomial lag model a series of lagged values of a variable are 

assumed to have parameters that are related to each other via a polynomial in the lags.  A typical 

model of this type would be  

 0 1 2
0

m

t t s t s t
s

y X Z+ −
=

= β +β + β + ε∑    (21) 

where the parameters β2 to βm are subject to a reparameterization as given below if we assume a 

second order polynomial function: 

   2
2 0 1 2s s s+β = φ + φ + φ   (22) 

Setting the length of the lag m = 5 results in the following reparameterization equation 

( 1 1 =  β γA + d ): 

 

0

1 0

2 1

3 2

4 3

5 4

6

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 1 0

0 0 1 2 4 0

0 0 1 3 9 0

0 0 1 4 16 0

β ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟β γ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟β γ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟β = +γ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟β γ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟β γ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟β ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (23) 

where the new parameters (γ) can be shown to be functions of the original parameters of the 

polynomial and the model  

 ( ) ( )0 1 2 3 4 0 1 0 1 2' 'γ γ γ γ γ = β β φ φ φ .   (24) 

We can form the equivalent linear restriction as shown in Appendix B via the eigenvectors that 

correspond to the zero valued eigenvalues of A1A1′ a version of this is given by   
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1

0    0   0.217456  -0.660484   0.676712 -0.241799   0.008114

0    0   0.258840  -0.438556  -0.237372  0.755052  -0.337964
= ⎛ ⎞
⎜ ⎟
⎝ ⎠

R , 1

0
0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

r   (25) 

This implies that 2 restrictions are applied to all the parameters on the lagged values.  An 

equivalent linear restriction matrix for the polynomial lag restriction is given in Fomby et al. 

(1984, pp. 376-377).  

 In addition let us assume that we also want to insure that the parameters for the lagged 

coefficients sum to zero.  This may be the case when the Z’s are dummy variables and we apply 

a restriction that dummy variables sum to zero  (see Suits 1984).  In this case, we would also 

want to apply the restriction that R2β = r2 or 

 ( ) ( )

0

1

2

3

4

5

6

0 0 0 1 1 1 1 0

β⎛ ⎞
⎜ ⎟β⎜ ⎟
⎜ ⎟β
⎜ ⎟
β =⎜ ⎟
⎜ ⎟β
⎜ ⎟
β⎜ ⎟
⎜ ⎟β⎝ ⎠

     (26) 

Thus, we can add these constraints together to form a new R matrix by concatenating 

1 2and R  R . 

0    0   0.2174568 -0.660484    0.6767127 -0.241799      0.0081141

0    0   0.2588402 -0.438556 -0.237372      0.7550527 -0.337964

0 0 1               1             1               1               1

= 
⎛
⎜

⎝

R
⎞
⎟

⎜ ⎟⎜ ⎟
⎠

, 
0
0
0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

r .  (27) 

Thus the parameters are restricted by both constraints. Other typical additional parameter 

restrictions of the LFUP form in this case are those that ensure the polynomial ends and/or 

begins at zero (see for example Batten and Thornton 1983).  

3.2.2   The case when the reparameterizing equation is subject to linear restrictions 

 This case concerns a proposal made by Poirier (1976, chapter 6) to use splines instead of 

simple polynomial lag functions.  Suits et al (1978) demonstrate how spline functions can be 

estimated as constrained piecewise polynomials in parameters of a regression.  Here the 
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polynomial lag is a reparameterization of the original parameters and the assumption of a spline 

function involves placing restrictions on the new parameters from the reparameterization.  Judge 

et al (1985, pp 364-365) propose that a sequence of two restricted estimations be used for this 

case.  In the first, one estimates the parameters of the polynomial via the ROP form, then in the 

second stage, these parameters are made subject to a set of restrictions via the LFUP form of the 

reparameterized estimates.  Here we demonstrate that the estimation of these models can be 

shown to be recast as a single ROP form that need only be estimated once. 

 To simplify our example we assume a bilinear spline for the lag coefficients from (21).  

The first step is to replace the polynomial lag with a set of two linear functions.  We define the 

reparameterizing function as 

2 3 1 4 1 5 2 6 2

1 1

2 2

( ) ,
where 1,  when <  and 0,  otherwise
where 1,  when  and 0,  otherwise

s D sD D s k D
D s k D
D s k D

+β = γ + γ + γ + γ −
= =
= ≥ =

   (28) 

which implies that the lag function is two linear functions where the change over from one 

function to the other occurs at the knot defined by k.  One starts at lag 0 and ends at lag k-1 and 

the other starts at lag k and ends at lag m.   This reparameterization would imply that when the 

knot was placed at k=3, 3 3β = γ +A d  is defined as 

 

0
0

1
1

2
2

3
3

4
4

5
5

6

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0

0 0 0 0 1 2 0

β⎛ ⎞ ⎛ ⎞ ⎛ ⎞γ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟β ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟γ⎜ ⎟⎜ ⎟β ⎜ ⎟ ⎜ ⎟
⎜ ⎟γ⎜ ⎟ ⎜ ⎟ ⎜ ⎟β = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟γ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟β ⎜ ⎟⎜ ⎟ γ⎜ ⎟ ⎜ ⎟
⎜ ⎟β⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟γ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟β ⎝ ⎠ ⎝ ⎠⎝ ⎠

.   (29) 

In spline functions one usually interrelates the separate functions by constraining the estimated 

functions to share common values at the knots.  In the case of higher order polynomial functions 

such as a cubic, that the 1st and 2nd derivatives are equal at the knots as well.  In this case we 

insure that the two linear functions meet at the knot by requiring that the relationship 
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2 3 4kγ + γ = γ  holds.  In this case we then have a linear restriction on the reparameterized model 

coefficients defined as R4γ = r4 or: 

 ( ) ( )

0

1

2

3

4

5

0 0 1 3 1 0 0−

γ⎛ ⎞
⎜ ⎟γ⎜ ⎟
⎜ ⎟γ

=⎜ ⎟
γ⎜ ⎟

⎜ ⎟γ
⎜ ⎟⎜ ⎟γ⎝ ⎠

    (30) 

Additional restrictions to insure that the 1st and 2nd derivatives at the knots are equal would 

involve adding more rows to the R4 matrix.   

 To accommodate this restriction on the reparameterized coefficients the linear restriction 

matrix (R4) on these variables is transformed to the ROP form as 4γ = θA  where A4 is the 

matrix made up of the eigenvectors corresponding to the zero valued eigenvalues of (R4′R4) and 

θ are the free parameters that account for the lag function and the spline restrictions.  The 

relationship between the original model parameters and these new parameters is 3 4β = θA A .  

Note that the dimension of θ is 5 by 1.  A value for this new transformation matrix in this case is 

given as: 

 3 4

0 1 0 0 0

1 0 0 0 0

0 0 0 .9533 .0164

0 0 0 .6619 .3277

0 0 0 .0790 .9502

0 0 1 .0790 .9502

0 0 2 .0790 .9502

 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

A A     (31) 

  

 The estimation of the term structure of interest rates is a particular example of where this 

approach may be useful as often various combinations of restrictions are imposed 

simultaneously (see for example Steeley 1991 and Lin 2002). In estimating the term structure of 
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interest rates the B-spline curve fitting technique is one of the most popular empirical 

methodologies and it is often the case that the spline curve is subject to additional linear 

restrictions. Another application is when the dependent variable is a limited dependent variable 

and the estimating relationship uses the method of splines (see for example Rosenberg et al. 

2003).  

4.  A test of linear restrictions using the reparameterized model 

An alternative method for testing linear hypothesis concerning regression parameters uses the 

ROP form of the model.  From equation (A6) (in Appendix A) we have that the linear restriction 

Rβ=r is equivalent to the solution of  

   = β γ+R  r + A       (32) 

where R+ is the generalized inverse of R, γ is the vector of new parameters and A is the 

matrix of the eigenvectors corresponding to the zero valued eigenvalues of R′R.  We can 

make the substitution for β in the regression equation ( )= β + εY X  to obtain 

  ( )+= γ + εY X R  r + A     (33) 

When we assume the restrictions hold we transform the independent variable from Y to G using 

( )+= −G Y X R  r and run a regression of the form 

  ( )= γ + εG X A .     (34) 

However, in order to test the hypothesis that Rβ = r we can define a stochastic parameter vector 

ρ such that Rβ = ρ.  We can then estimate ρ by using the following “augmented” 

reparameterized estimating equation which is equivalent to the unrestricted equation 

  ( )+= ρ γ + εY X R   + A     (35) 

and then form the Wald test for the null hypothesis that ρ = r .  This is equivalent to testing 

R β̂ =r when β̂  is the unrestricted estimate of β. When this hypothesis is true the 

reparameterized model is equivalent to the imposition of the linear equation, thus the assumption 



 

 16

that ρ = r .  Consequently, we can test the restrictions directly by estimating ρ̂  and test the null 

hypothesis that ρ̂ = r as a composite test or of the restrictions individually.  If the original form 

of the restrictions are in the reparameterized form then we can construct the equivalent linear 

restrictions to find an R+ matrix and vector r (where r = Rd ) and reformulate the model to test 

the restrictions.  

5.   Conclusions 

 This paper demonstrates that a reparameterized model can be found for any regression 

model subject to a set of linear restrictions and conversely that a linear restriction can be 

computed for any linear reparameterization of a regression model in a simple automatic fashion. 

Previous authors  have not explicitly demonstrated this correspondence but only gave such 

relationships on a case by case basis.   

 The linear restricted model is the usual representation of the restricted regression model 

found in econometrics.  However, reparameterization often helps in simplifying the estimation 

procedure which may be especially important when iterative methods are used for estimation as 

in the case of maximum likelihood, robust estimation and Bayesian methods.  It would appear 

that textbook authors have tended to handle the reparameterization of restricted least squares 

problem in a somewhat hazy fashion because they lack a general method for the transformation 

of one form to the other.  We hope that this is no longer the case.   

 This method of transformation may also be of use when considering non-linear 

restrictions.  Although in this paper we have dealt exclusively with linear restrictions a common 

method for imposing non-linear restrictions is the linearization of the restrictions via a first order 

Taylor series approximation.  Due to the automation of the conversion of these restrictions it 

would be a simple step to derive an equivalent new reparameterization at each iteration in the 

estimation and thus improve the computational characteristics in this case as well.  
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Appendix A. The Derivation of the ROP from the LFUP ( )R  = r  =  + .→ γA dβ β  

 We can solve the LFUP restriction equation, Rβ = r, using the general solution of a set of 

linear equations 

It can be shown that if a solution exists, this equation provides a solution (see Graybill 1983, 

Theorem 7.31), given some value for φ  where R+ is a generalized inverse of R. If R is of rank 

equal to the number of rows (m) then we can define R+ = R′(RR′)-1.  However, this solution 

does not furnish a reduction in dimensionality.  (Ik - R+R) is of dimension k x k.   

 To make this reduction we use the singular value decomposition (see chapter 4 of 

Lawson and Hanson 1974) of R whereby  

where H is an orthogonal matrix with columns consisting of the eigenvectors of RR′, C is an 

(m x k) matrix of the square root of the eigenvalues of RR′ on the first m x m diagonal, listed in 

decreasing order, U is an orthogonal k x k matrix with the columns consisting of the 

eigenvectors of R′R.  Thus, based on the information that rank of R is m we have the following 

partition of C and U′ 

 ( )
   

 =       
 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(m x k)

(m x j)(m x m)

(j x k)

1

(m x m) 1 (m x k)

2 (k x k)

U
R C 0H

U
………   (A3) 

where j = k - m, and m x k U1 is made up from the m rows of U′ associated with non-zero 

eigenvalues which are on the diagonal of m x m C1 and U2 are the j rows associated with the 

zero-valued eigenvalues. 

 Then as in Kennedy and Gentle (1980, pg 350) we rewrite our value for R+ as 

 ′*+ =  U C  H  ,R  

where C* is defined as, 

 = ) β φ+ +
kR  r + (I  - R  R     (A1) 

  = ′R H C U     (A2) 
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and  

By substitution of (A5) into (A1) a value for β is given as; 

where ' φ2U  is of dimension j x 1.  Thus, the equivalent new parameter set is 

and use the following substitutions 

   2A=U   (A8) 

This A is the submatrix of eigenvectors corresponding to zero valued eigenvalues of   

RR′ and 

Appendix B The derivation of the LFUP from the ROP ( )= + R  = rγ →A dβ β . 

 Following Fomby, Hill and Johnson (1984, pages 85 and 393) premultiply both sides of 

the equation 

by the Moore-Penrose generalized inverse of A; 

where when A is of full column rank (rank of A is j) A+ can be defined by 

 

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1
1

*

C
 = C

0
,     (A4) 

 + ′2 2( I - R R ) =  .U U      (A5) 

  =  ′β φ+
2 2R r + U U      (A6) 

 2=  ′γ φU       (A7) 

 .+d=R r       (A9) 

 

 =  + β γA d     (B1) 

  =  +β γ+ +A A d     (B2) 

 -1= (  )′ ′+A A A A     (B3) 
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Thus, we can solve for γ as a function of β 

by substitution of (B4) in (B1), we get a linear equation in only β 

However, (I - AA+) is of dimension k by k, but it is not of full row rank and it is unsatisfactory 

for use in the traditional restricted least squares solution, thus it is necessary to reduce the 

dimensionality.  To make this reduction we follow the proof in Appendix A and use the 

singular value decomposition of A whereby we can find a triplet of matrices of the form  

where in this case H is a k x k orthogonal matrix with columns consisting of the eigenvectors of 

AA′, C is an (k x j) matrix with the square root of the eigenvalues of A′A on the top j x j 

diagonal, U is an orthogonal j x j matrix with the columns consisting of the eigenvectors of 

A′A.  Thus, based on the information that rank of A is j we have the following partition of C 

and U′ 

where H1 are the j columns of H associated with non-zero eigenvalues which are on the 

diagonal of C1 and H2 are the k-j rows associated with the zero-valued eigenvalues. 

 Following Kennedy and Gentle (1980, pg 350) we rewrite for A+ as 

 ,*+  = U C  HA ′  

where C* is defined as, 

and  

 = (  - )γ β+A d     (B4) 

 (  -  )  = (  - ) β+ +I AA I AA d    (B5) 

  = ′A H C U     (B6) 

 ( ) ( )
(j x j)

(k x j) (k x m)

(m x j)

1

1 2 ( j x j)(k x k)

(k x j)

 =       
′

⎛ ⎞
⎜ ⎟
⋅⋅⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

C
A UH H

0
  (B7) 

 ( )−1*
1 = C 0C      (B8) 
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By substitution of (B9)  in (B5) the restriction in terms of β is given as; 

and by premultiplying both sides by H2′ we get 

Thus R = H2′ and r = H2′d in the equation given as Rβ = r form and we recall that H2′ is the 

transpose of the matrix of eigenvectors of AA′ that correspond to the zero valued eigenvalues 

of AA′ matrix. 

  

 ( ′+
2 2 I - AA  )  =   .H H      (B9) 

 2 2 2 2  =   dH H H H′ ′β      (B10) 

  = ′ ′β2 2  dH H      (B11) 
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