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Abstract

Empirical evidence documents a level effect in the volatility of
short term rates of interest. That is, volatility is positively correlated
with the level of the short term interest rate. Using Monte-Carlo
simulations this paper examines the performance of the commonly
used Engle-Ng (1993) tests which differentiate the effect of good and
bad news on the predictability of future short rate volatility. Our
results show that the tests exhibit serious size distortions and loss of
power in the face of a neglected level effect.

Keywords: Level Effects; Asymmetry; Engle-Ng Tests
J.E.L. Reference Numbers: C12; G12; E44

∗Discussions with Nilss Olekalns and Simon Burke greatly assisted the development of
this paper. Any remaining errors or omissions are the responsibility of the authors.

†Corresponding author: Department of Economics, The University of Melbourne, Vic-
toria 3010, Australia. E-Mail: oth@unimelb.edu.au. Tel: + 61 3 9344 5312. Fax: + 61 3
9344 6899

1



1 Testing for Asymmetry in Volatility

Asymmetry in volatility may be detected using the Engle and Ng (1993) sign
and size bias tests. These tests are commonly used to differentiate the effect
of good and bad news on the predictability of stock returns volatility (see
Engle and Ng, 1993, Henry, 1998, Kroner and Ng, 1998, Brooks and Henry,
2002, inter alia). Brenner, Harjes and Kroner (1996), Bali (2000 a,b), inter
alia, report evidence of asymmetry in US short-term interest rates. It is
not clear whether the Engle-Ng tests may be used as a diagnostic tool for
interest rates which display a level effect. The aim of this note is to determine
whether the Engle-Ng tests provide reliable inferences regarding the sign and
size bias in short rate volatility.
Engle and Ng (1993) (Engle-Ng, hereafter) develop a test for size and

sign bias in conditionally heteroscedastic models. Consider a GARCH (1,1)
model of the form

xt = µ+ εt, εt|Ωt−1 v N(0, ht) (1)

ht = α0 + α1ε
2
t−1 + βht−1.

Define I−t−1 as an indicator dummy that takes the value of 1 if εt−1 < 0 and
the value zero otherwise. The test for sign bias is based on the significance
of φ1 in

υ2t = φ0 + φ1I
−
t−1 + et (2)

where υ2t is the squared standardised residuals and et is a white noise error
term. If positive and negative innovations to εt impact on the conditional
variance of xt differently to the prediction of the model, then φ1 will be
statistically significant. It may also be the case that the source of bias is
caused not only by the sign, but also the magnitude or the size of the shock.
The negative size bias test is based on the significance of the slope coefficient
φ1 in

υ2t = φ0 + φ1εt−1I
−
t−1 + et (3)

The test statistics for the individual sign and size bias tests are distributed
asymptotically with a t-distribution. Likewise, define I+t−1 = 1− I−t−1, then
the Engle-Ng joint test for asymmetry in variance is based on the regression

υ2t = φ0 + φ1I
−
t−1 + φ2εt−1I

−
t−1 + φ3εt−1I

+
t−1 + et (4)

where et is a white noise disturbance term. Significance of parameter φ1 in-
dicates the presence of sign bias. That is positive and negative realisations
of εt−1 affect future volatility differently to the prediction of the model. Sim-
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ilarly significance of φ2 and φ3 would suggest size bias, where not only the
sign, but also the magnitude of innovation in xt is important. A joint test
for sign and size bias, based upon the Lagrange Multiplier Principle, may
be performed as T ·R2 from the estimation of (4) where T is the number of
observations in the regression and R2 is the coefficient of determination of
the regression.

2 Short Term Interest Rate Models

Chan, Karolyi, Longstaff and Sanders (1992) (CKLS, hereafter) propose the
general non-linear process for short-term interest rates, {rt, t ≥ 0}, written
as

dr = (µ+ λr) dt+ φrδdW. (5)

Here r represents the level of the short-term interest rate, W is a Brownian
motion and µ, λ and δ are parameters. The drift component of short-term
interest rates is captured by µ+λr while the variance of unexpected changes
in interest rates equals φ2r2δ. The parameter φ is a scale factor and δ controls
the degree to which the interest rate level influences the volatility of short-
term interest rates. By placing restrictions on δ, the CKLS model nests
many of the existing interest rate models. For example, when δ = 0 then (5)
reduces to the Vasicek (1977) model, while δ = 1/2 yields the Cox, Ingersoll
and Ross (1985) model, see CKLS, Bekaert et al. (2002), inter alia for further
details.
Brenner, Harjes and Kroner (1996) (BHK, hereafter) argue that by al-

lowing φ2 to be a time varying function of the information set, Ω, it gives rise
to a superior conditional characterisation of short term interest rate changes.
CKLS and BHK, inter alia, consider the Euler-Maruyama discrete time ap-
proximation to (5) written as

∆rt = µ+ λrt−1 + εt. (6)

HereΩt−1 represents the information set available at time t−1 andE (εt|Ωt−1) =
0. Letting ht represent the conditional variance of the short-term interest rate
then E (ε2t |Ωt−1) ≡ ht = φ2r2δt−1. The sole source of conditional heteroscedas-
ticity in (6) is through the level of the interest rate and thus excludes the
information arrival process.
One common approach to capturing the effect of news is the GARCH(1,1)

model
ht = α0 + βht−1 + α1ε

2
t−1. (7)
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The innovation εt represents a change in the information set from time t− 1
to t and can be treated as a collective measure of news. In (7) only the
magnitude of the innovation is important in determining ht. BHK extend
(6) to allow for volatility clustering caused by information arrival using

∆rt = µ+ λrt−1 + εt.

E (εt|Ωt−1) = 0, E
¡
ε2t |Ωt−1

¢ ≡ ht = φ2t r
2δ
t−1

φ2t = α0 + α1ε
2
t−1 + βφ2t−1 (8)

Equation (8) defines the multiplicative level effect model given that the con-
ditional volatility of the short-rate change is multiplicatively dependent on
the short rate levels. In high information periods, when the magnitude of
εt is largest then the sensitivity of volatility to the level of short term in-
terest rates is highest. Under the restriction α1 = β = 0, (8) collapses to
(6) and volatility depends on levels alone. BHK generalise both the condi-
tional variance specifications of the multiplicative and additive level models
by adopting Glosten et al. (1993) model of asymmetry. The asymmetric
multiplicative level model is

φ2t = α0 + α1ε
2
t−1 + α2η

2
t−1 + βφ2t−1 (9)

where ηt−1 = min(εt−1, 0). For α2 > 0 bad news (negative shocks) has a
larger impact on the volatility than good news (positive shocks).
An alternative approach to modelling volatility clustering and levels ef-

fects is the additive level effect model

ht = α0 + α1ε
2
t−1 + βht−1 + brδt−1. (10)

The additive level model (10) also nests both the CKLS model (α0 = α1 =
β = 0) and the GARCH(1,1) model (δ = b = 0). Likewise, the asymmetric
additive level model is

ht = α0 + α1ε
2
t−1 + α2η

2
t−1 + βht−1 + brδt−1. (11)

3 Experimental Design

Brooks and Henry (2000) present evidence that the Engle-Ng tests are un-
dersized, but that the downward bias in the empirical size diminishes as the
sample size increases. The Monte Carlo study consists of two parts. The
first part examines the simulated size of the Engle-Ng test in the presence of
level effects.
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Three different degrees of persistence in the GARCH (1,1) structure are
considered using the parameters values provided by Engle-Ng. They are as
follows:

1. model H (for high persistence), where (α0, β, α1) = (0.01, 0.9, 0.09) and
α1 + β = 0.99

2. model M (for medium persistence), where (α0, β, α1) = (0.05, 0.9, 0.05)
and α1 + β = 0.95

3. model L (for low persistence), where (α0, β, α1) = (0.2, 0.75, 0.05) and
α1 + β = 0.80

These sets of parameter values are used in both the multiplicative and
additive level models (8) and (10), their asymmetric counterparts defined by
equations (9) and (11) respectively. The parameter δ is set to (0.5, 1.0, 1.5) in
accordance with the various theoretical short rate models. For the additive
level model, b takes on the values (0.01, 0.5, 0.99) to control for the persistence
in the level effect.
The second part of the Monte Carlo experiment determines the simulated

power of the tests to detect neglected asymmetries. This is obtained by aug-
menting the conditional variance of the data generating processes (8) and
(10) with two types of asymmetric GARCH processes, namely the EGARCH
and GJR models. Specifically, the asymmetric conditional variance specifi-
cations are as follows:
EGARCH Model

log(ht) = −0.23 + 0.9 · log(ht−1) + 0.25 ·
£
v2t−1 − 0.3 · vt−1

¤
(12)

GJR Model

ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2 . (13)

Here εt =
√
ht · vt and vt v i.i.d.N(0, 1). We discard the initial 500 ob-

servations to mitigate the effect of start-up values yielding samples of 500,
1000 and 3000 observations, drawn with 10,000 replications. Once the data
has been generated, a GARCH (1,1) specification is estimated by maximiz-
ing the log-likelihood function using the Broyden, Fletcher, Goldfarb and
Shanno (BFGS) algorithm. The Engle-Ng test statistics are then calculated
on the resulting standardised residuals.
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4 Results and Implications

Table 1 summarizes the simulated size of the various Engle-Ng test statistics
in the presence of an additive level effect (Panel A) and a multiplicative level
effect (Panel B).

-Table 1 about here-

The additive level model (10) allows for different degrees of persistence in
the GARCH structure with the level effects given by δ = 1.0 and b = 0.01.
For a large sample of 3000 observations, the joint and size bias test statistics
are oversized across the different degrees of persistence in the conditional
variance. The empirical size of the test statistics, however, are relatively
robust to the level effects for a sample of 1000 observations. The empirical
size of the sign bias test is free from upward bias for all the samples and
varying degree of persistence in the conditional variance. The magnitude of
the distortion in the empirical size of the test statistics is more apparent in the
case of multiplicative level model with parameterised level effects governed
by δ = 1.0 (see Table 1 Panel B). The distortion occurs even for a smaller
sample of 1000 observations. The impact of multiplicative level effects on the
test statistic is more pervasive; with the exception of the joint test statistic,
the simulated sizes of the tests statistics exceed the true significance level.
Moreover the simulated sizes decrease with the persistence of the conditional
variance.

-Tables 2 and 3 about here-

The effect of variation in the strength of the level effects on the simulated
size of the test statistics are reported in Table 2 for an additive level effect
and in Table 3 for a multiplicative level effect. 1 In the case of an additive
level effects, the strength of the level effects is governed by the parameters b
and δ. Overall, the upward bias of the simulated sizes increases as b and/or
δ increase in value. The degree of bias, however, decreases as the persistence
in the conditional variance (measured by the sum α1 + β) falls. Similarly,
there are severe size distortions when the DGP exhibits highly persistent
conditional variance and a multiplicative level effects model.

-Table 4 about here-

Table 4 summarizes the simulated power of the various Engle-Ng test sta-
tistics in the presence of no level effect (Panel A), an additive level effect

1To conserve space, we only report the results for a sample size of 3000. The results
for sample sizes of 500 and 1000 concur with those reported herein and can be obtained
upon request from the authors.
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(Panel B) and a multiplicative level effect (Panel C). We consider GJR and
EGARCH processes in this experiment. The power of the Engle-Ng tests
appears to increase for both types of asymmetric DGP as the sample size
increases. When we introduce additive level effects the power of the Engle-
Ng tests fall, irrespective of the type of asymmetry displayed by the DGP.
However, the reduction in the power of the tests is larger in the GJR model
than the EGARCH model for all sample sizes. The negative size bias test
and the joint test do not suffer from as large a reduction in their power as
the positive size bias and the negative sign bias tests.
Contrary to the impact of the additive level effects on the power of the

tests, multiplicative level effects either slightly reduce the power as in the
GJR case, or enhance it in the case of the EGARCH model.

-Table 5 about here-

Table 5 displays simulated power for the Engle-Ng tests, with reasonable
results for the case where b = 0.01 and δ = 0.5 in a GJR model with additive
level effects. However, upon varying the strength of the additive level effect,
by holding one of b or δ constant and varying the other parameter, the power
of the test diminishes rapidly. Table 9 reports the power of the test statistics
in presence of a multiplicative level effect. There is a sharp contrast between
the results of the additive and the multiplicative level effects; unlike the
results in the additive level model, the power of the tests remains impressive
as the multiplicative level effect increases.

5 Conclusion

This paper examines the usefulness of the Engle-Ng tests as diagnostic tool
for detecting neglected asymmetries in the conditional variance models of
short rate. The results show that the presence of a neglected additive or
multiplicative level effect impacts on the reliability of inference based upon
the sign bias, size bias and joint tests. Independent of the persistence in
the conditional variance, the tests spuriously detect sign and size bias in the
conditional volatility of the short rate when the level effect is strong. The
presence of multiplicative level effects in the DGP exacerbates the degree of
distortion in the empirical size of the test statistics.
The power of the Engle-Ng test statistics is also sensitive to the type of

asymmetric structure present in the data and exhibits significant downward
bias in the presence of neglected additive or multiplicative level effects. The
power of the tests falls as the strength of the additive level effect is increased.
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Consistent with the findings of Brooks and Henry (2000), the results also
point to the importance of the sample size on the tests’ performance. In
particular, it appears that for reliable inference a minimum sample of 3000
observations is necessary. Overall, the findings of this study caution against
relying on Engle-Ng tests alone to make inference about asymmetric volatility
without first validating the presence of a level effect in short rates.
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Table 1: Impact of level effects on the Simulated Size of the Engle Ng
Tests

Rejection Frequencies When the Null is True
Panel A: Additive level effects

∆rt = εt , εt =
√
ht · vt where vt v i.i.d.N(0, 1)

ht = α0 + α1ε2t−1 + βht−1 + 0.01rt−1
Persistence H

(αo,β,α1)=(0.01,0.9,0.09)
M

(αo,β,α1)=(0.05,0.9,0.05)
L

(αo,β,α1)=(0.2,0.75,0.05)

Sample Size 500 1000 3000 500 1000 3000 500 1000 3000

N sign Test 1% 0.00 0.29 0.44 0.00 0.35 0.40 0.00 0.39 0.81
5% 0.00 3.37 3.11 0.00 3.37 2.83 0.00 3.57 4.41
10% 0.00 7.89 7.09 0.00 7.84 6.78 0.00 8.17 9.16

N size bias 1% 0.00 1.36 3.52 0.00 1.21 3.38 0.00 1.81 5.48
5% 0.47 3.80 10.13 1.62 3.33 9.05 0.00 7.28 14.81
10% 29.42 7.22 16.17 48.17 6.91 14.64 0.00 14.21 22.81

P size bias 1% 0.00 0.83 2.82 0.00 0.72 3.26 0.00 0.62 4.19
5% 0.00 3.75 8.33 0.00 3.76 8.68 0.00 2.14 12.27
10% 0.00 8.11 13.25 0.00 8.41 13.91 0.00 4.46 19.75

Joint test 1% 0.00 1.81 7.5 0.02 1.50 7.78 0.00 1.38 16.74
5% 0.00 3.49 12.36 0.55 3.17 12.47 4.87 3.77 34.5
10% 17.14 5.74 16.88 26.10 5.67 16.35 8.80 7.43 45.87

Panel B: Multiplicative level effects
∆rt = εt , εt = φt · vt · r1.0t−1 where vt v i.i.d.N(0, 1)

φ2t = α0 + α1ε2t−1 + βφ2t−1
Persistence H

(αo,β,α1)=(0.01,0.9,0.09)
M

(αo,β,α1)=(0.05,0.9,0.05)
L

(αo,β,α1)=(0.2,0.75,0.05)

Sample Size 500 1000 3000 500 1000 3000 500 1000 3000

N sign Test 1% 69.54 78.63 83.55 57.66 61.01 62.80 50.29 54.06 55.82
5% 74.79 82.12 86.12 64.43 67.03 68.25 57.06 60.85 61.69
10% 77.58 84.22 87.46 68.05 70.28 71.14 60.75 64.39 65.16

N size bias 1% 46.60 57.23 70.33 16.69 17.67 18.89 13.81 14.70 15.13
5% 55.66 64.82 75.66 23.54 23.70 25.35 19.50 20.57 20.50
10% 60.49 68.86 78.85 28.18 28.44 30.32 23.98 25.52 24.49

P size bias 1% 48.07 58.42 68.60 18.37 19.33 19.74 17.49 18.27 18.39
5% 56.14 65.70 74.01 24.24 25.65 26.07 22.93 23.85 23.79
10% 60.83 69.98 76.93 28.68 30.80 30.84 27.23 28.15 27.95

Joint test 1% 85.01 91.38 95.58 78.30 80.19 87.14 77.43 79.24 79.20
5% 88.53 93.12 96.43 80.57 85.42 89.20 78.77 83.41 86.36
10% 90.00 94.06 96.95 82.70 86.50 90.34 80.95 84.55 88.45
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Table 2: Simulated Size and Variation of Additive Level Effects (Sample
Size of 3000):

∆rt= εt , εt=
√
ht·vt where vtv i.i.d.N(0, 1)

ht= α0+α1ε
2
t−1+βht−1+br

δ
t−1

Panel A: δ=0.5
Persistence H

(αo,β,α1)=(0.01,0.9,0.09)
M

(αo,β,α1)=(0.05,0.9,0.05)
L

(αo,β,α1)=(0.2,0.75,0.05)

b 0.01 0.5 0.99 0.01 0.5 0.99 0.01 0.5 0.99
Actual Rejection Frequencies (%)

N sign Test 1% 0.52 0.46 0.48 0.55 0.41 0.50 0.47 0.42 0.38
5% 3.30 3.06 3.18 3.46 3.19 3.14 3.11 3.03 3.07
10% 7.28 6.81 6.91 7.21 6.91 6.86 7.04 7.05 6.79

N size bias 1% 1.27 1.97 2.31 1.03 1.74 2.25 1.08 2.59 2.72
5% 3.82 6.44 6.83 3.16 5.68 6.52 3.31 7.49 7.67
10% 7.58 11.31 11.75 6.55 10.52 11.31 6.42 12.74 12.95

P size bias 1% 1.26 2.36 2.52 0.88 1.99 2.57 1.09 2.29 2.59
5% 4.07 7.40 7.96 3.61 7.16 7.86 3.10 7.35 7.59
10% 7.79 13.03 13.75 7.41 12.54 13.63 6.29 12.80 13.40

Joint test 1% 1.80 5.48 5.86 1.15 4.53 5.71 1.77 5.70 6.19
5% 4.04 10.26 10.64 2.93 8.96 10.57 3.25 10.72 11.47
10% 6.95 14.48 15.15 5.46 13.09 15.11 5.22 15.45 15.97

Panel B: δ=1.0

N sign Test 1% 0.44 1.52 1.66 0.40 1.15 1.15 0.81 2.58 2.02
5% 3.11 5.71 5.91 2.83 4.33 4.42 4.41 7.78 5.38
10% 7.09 10.49 10.78 6.78 8.49 8.55 9.16 13.21 10.10

N size bias 1% 3.52 7.94 8.07 3.38 8.89 9.17 5.48 6.84 7.54
5% 10.13 16.15 16.31 9.05 16.64 16.98 14.81 15.13 14.65
10% 16.17 22.46 22.73 14.64 21.82 22.15 22.81 22.34 20.71

P size bias 1% 2.82 5.84 6.02 3.26 8.06 8.02 4.19 4.79 6.86
5% 8.33 12.09 12.00 8.68 17.74 17.37 12.27 9.98 14.75
10% 13.25 17.58 17.57 13.91 25.46 25.35 19.75 15.29 21.95

Joint test 1% 7.50 14.55 14.63 7.78 18.24 18.11 11.74 12.21 15.11
5% 12.36 20.15 20.28 12.47 24.19 24.47 14.50 18.25 21.42
10% 16.88 24.51 24.52 16.35 29.64 29.80 16.87 23.13 26.93

Panel C: δ=1.5

N sign Test 1% 4.14 15.13 15.09 3.94 12.32 15.11 1.63 21.79 21.94
5% 7.47 19.57 19.58 7.33 16.21 19.81 4.67 27.99 27.85
10% 11.38 23.86 24.10 11.05 20.38 24.14 9.04 33.24 33.05

N size bias 1% 5.33 9.31 9.57 5.23 8.39 9.73 4.17 18.06 17.70
5% 10.68 16.66 16.91 10.17 15.16 17.16 10.81 32.84 32.41
10% 15.24 23.43 23.50 14.74 21.55 23.75 16.94 44.60 44.00

P size bias 1% 8.83 17.04 17.50 8.54 14.49 17.64 3.71 21.42 21.46
5% 16.54 26.53 26.71 16.65 23.43 26.75 8.02 30.28 30.61
10% 23.83 35.03 35.31 24.40 31.81 35.32 13.15 39.03 39.06

Joint test 1% 13.75 25.62 25.84 13.14 21.39 26.17 17.10 36.22 36.18
5% 20.56 35.19 35.71 20.21 31.21 35.92 22.27 52.58 52.04
10% 26.52 43.43 43.74 26.85 39.56 43.79 27.62 63.59 63.37
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Table 3: Simulated Size and Variation of Multiplicative Level Effects
(Sample Size of 3000):

∆rt= εt , εt= φt · vt·rδt−1 where vtv i.i.d.N(0, 1)
φ2t= α0+α1ε

2
t−1+βφ

2
t−1

Panel A: δ=0.5
Persistence H

(αo,β,α1)=(0.01,0.9,0.09)
M

(αo,β,α1)=(0.05,0.9,0.05)
L

(αo,β,α1)=(0.2,0.75,0.05)

Actual Rejection Frequencies (%)

N sign Test 1% 11 10.01 8.07
5% 20.14 18.32 16.11
10% 27.21 22.18 20.31

N size bias 1% 9.72 9.33 7.21
5% 18.16 17.09 15.13
10% 25.7 20.01 19.17

P size bias 1% 12.21 11.98 10.15
5% 21.98 20.32 18.91
10% 29.87 23.14 22.65

Joint test 1% 19.53 18.02 17.14
5% 27.58 25.23 24.20
10% 33.43 30.59 27.54

Panel B: δ=1.0

N sign Test 1% 83.55 62.8 55.82
5% 86.12 68.25 61.69
10% 87.46 71.14 65.16

N size bias 1% 70.33 18.89 15.13
5% 75.66 25.35 20.5
10% 78.85 30.32 24.49

P size bias 1% 68.6 19.74 18.39
5% 74.01 26.07 23.79
10% 76.93 30.84 27.95

Joint test 1% 95.58 20.14 19.20
5% 96.43 31.20 27.79
10% 96.95 34.34 31.45

Panel C: δ=1.5

N sign Test 1% 62.73 64.25 27.24
5% 70.08 71.31 32.31
10% 74.67 73.56 35.22

N size bias 1% 48.11 18.25 8.08
5% 57.65 25.61 10.8
10% 64.71 31.97 13.29

P size bias 1% 52.13 21.13 14.54
5% 62.15 27.71 17.48
10% 67.05 31.89 19.82

Joint test 1% 76.25 24.23 20.52
5% 84.45 32.30 30.72
10% 87.17 35.42 31.86
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Table 4: Simulated Power for Asymmetric GARCH Models
Panel A: No Level Effect

∆rt = εt , εt =
√
ht · vt where vt v i.i.d.N(0, 1)

EGARCH : log(ht) = −0.23 + 0.9 · log(ht−1) + 0.25 ·
£
v2t−1 − 0.3 · vt−1

¤
GJR : ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2

EGARCH GJR
Sample Size 500 1000 3000 500 1000 3000
N sign Test 1% 2.83 5.85 23.70 0.00 35.92 81.93

5% 10.21 18.12 46.57 0.00 70.31 94.90
10% 18.19 28.04 60.11 0.00 83.48 97.73

N size bias 1% 5.71 13.35 45.39 100 80.45 95.82
5% 15.32 29.12 67.93 100 96.69 99.41
10% 23.74 39.42 77.58 100 99.1 99.92

P size bias 1% 2.26 5.74 24.96 0.00 58.18 95.45
5% 10.54 19.16 49.13 0.00 89.41 99.33
10% 19.64 30.05 61.99 100 96 99.8

Joint test 1% 3.71 8.93 35.66 100 62.49 93.86
5% 11.28 21.53 56.33 100 88.19 98.87
10% 18.18 31.1 67.41 100 94.93 99.67

Panel B: Additive Level Effect
∆rt = εt , εt =

√
ht · vt where vt v i.i.d.N(0, 1)

EGARCH : log(ht) = −0.23 + 0.9 · log(ht−1) + 0.25 ·
£
v2t−1 − 0.3 · vt−1

¤
+ 0.01rt−1

GJR : ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2 + 0.01rt−1
EGARCH GJR

Sample Size 500 1000 3000 500 1000 3000
N sign Test 1% 4.85 9.38 20.52 0.00 18.92 28.97

5% 11.61 19.31 39.85 0.00 47.88 54.46
10% 18.63 27.64 51.76 0.00 63.52 67.30

N size bias 1% 6.80 14.76 49.23 0.00 40.67 79.34
5% 15.77 29.20 67.82 73.97 69.99 91.58
10% 22.95 38.68 76.03 96.77 81.88 95.06

P size bias 1% 5.43 9.66 17.85 0.00 16.62 22.77
5% 12.46 19.88 35.35 0.00 45.88 42.23
10% 19.74 28.33 46.92 15.49 62.20 52.11

Joint test 1% 8.88 17.21 40.83 2.37 20.37 67.41
5% 16.10 27.92 59.77 49.80 46.64 84.30
10% 23.07 36.74 69.41 87.95 61.68 90.22

Panel C: Multiplicative Level Effect

∆rt = εt , εt = φt · vt · r0.5t−1 wherevt v i.i.d.N(0, 1)

EGARCH : log(φ2t ) = −0.23 + 0.9 · log(φ2t−1) + 0.25 ·
£
v2t−1 − 0.3 · vt−1

¤
GJR : φ2t = 0.005 + 0.7 · φ2t−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2

EGARCH GJR
Sample Size 500 1000 3000 500 1000 3000
N sign Test 1% 66.91 75.53 88.74 66.66 1.25 2.41

5% 73.50 80.16 91.16 72.94 8.14 11.18
10% 76.84 82.55 92.36 76.18 16.83 19.93

N size bias 1% 50.73 61.66 76.27 53.72 80.26 89.59
5% 58.82 68.71 80.95 61.65 84.05 91.61
10% 63.45 72.71 83.32 66.40 86.20 92.73

P size bias 1% 52.12 59.43 75.56 48.10 76.88 88.75
5% 60.26 66.96 80.62 56.35 82.43 91.32
10% 65.09 71.03 83.07 61.31 85.31 92.60

Joint test 1% 90.48 92.62 98.04 89.77 97.16 98.86
5% 93.33 94.22 98.59 92.55 97.89 99.16
10% 94.53 95.23 98.73 93.80 98.30 99.28
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Table 5: Simulated Power for a GJR Model:
Panel A; Additive Level Effects

∆rt = εt , εt =
√
ht · vt wherevt v i.i.d.N(0, 1)

ht = 0.005 + 0.7 · ht−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2 + brδt−1
δ = 0.5 δ = 1.0 δ = 1.5

b 0.01 0.5 0.99 0.01 0.5 0.99 0.01 0.5 0.99
Actual Rejection Frequencies (%)

N sign Test 1% 70.82 1.08 0.65 28.97 1.93 2.91 9.76 22.55 21.52
5% 89.16 5.59 3.91 54.46 5.69 8.17 24.92 28.71 27.51
10% 94.27 10.98 8.30 67.30 10.44 13.40 35.07 33.97 32.60

N size bias 1% 88.29 9.00 3.39 79.34 7.20 6.55 54.96 22.12 21.03
5% 97.56 21.21 10.63 91.58 13.85 14.65 69.08 39.00 38.44
10% 99.03 30.78 17.39 95.06 20.04 21.28 75.20 51.76 51.49

P size bias 1% 88.96 2.19 1.88 22.77 7.19 4.73 5.74 22.48 20.20
5% 97.54 7.49 7.35 42.23 15.00 10.20 15.79 33.43 30.55
10% 98.98 13.32 12.99 52.11 21.98 15.55 24.22 43.11 39.84

Joint test 1% 85.37 7.62 5.41 67.41 15.39 11.88 49.70 41.46 39.25
5% 96.01 17.45 11.25 84.30 21.20 17.91 67.13 60.67 58.25
10% 98.12 26.57 17.19 90.22 26.06 22.51 74.89 72.43 70.65

Panel B; Multiplicative Level Effects
∆rt = εt , εt = φt · vt · rδt−1 wherevt v i.i.d.N(0, 1)

φ2t = 0.005 + 0.7 · φ2t−1 + 0.28 · [|εt−1|− 0.23 · εt−1]2
δ = 0.5 δ = 1.0 δ = 1.5

Actual Rejection Frequencies (%)
N sign Test 1% 31.78 72.42 71.86

5% 49.60 81.18 76.53
10% 59.36 87.93 79.23

N size bias 1% 63.42 89.59 73.46
5% 77.30 91.61 78.98
10% 88.55 92.73 81.86

P size bias 1% 30.70 88.75 61.32
5% 52.47 91.32 68.15
10% 63.67 92.60 71.98

Joint test 1% 60.40 98.86 89.22
5% 74.32 99.16 92.19
10% 80.98 99.28 93.69
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