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Abstract

This paper generalizes the sufficient conditions for stability of monotone

economies and time series models due to Hopenhayn and Prescott (Econo-
metrica, 60, p. 1387–1406, 1992). We introduce a new order-theoretic mix-

ing condition and characterize stability for monotone economies satisfy-

ing this condition. We also provide a range of results that can be used

to verify our mixing condition in applications, as well as the other com-

ponents of our main stability theorem. Through this approach, we ex-

tend Hopenhayn and Prescott’s method to a significantly larger class of

problems, and develop new perspectives on the causes of instability and

stability.
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1 Introduction

This paper is concerned with stochastic stability of dynamic economic systems.
Stability analysis plays a role in modeling and estimation for a great variety of
theoretical and quantitative problems. For example, in time series economet-
rics, stationarity and ergodicity are closely tied to the limit theorems required
for consistency and asymptotic normality of estimators using correlated data.
In calibration exercises, stationarity is used to draw comparisons between ob-
served and simulated moments. In models of renewable resource exploita-
tion, stability is associated with sustainable exploitation. In growth and devel-
opment theory, stability may be identified with long-run convergence, or the
absence of poverty traps.

For linear stochastic models, the stability problem is trivial. For nonlin-
ear models, the same problem is much harder. Moreover, in almost all cases,
linearization provides little insight, as stability or instability of the linearized
system is largely irrelevant in the stochastic case. On the other hand, treat-
ing stability of the original nonlinear model is technically challenging. For
example, the standard irreducibility-based approach used in Markov process
theory (see, e.g., Meyn and Tweedie, 2009) meshes well with some but not all
economic applications.

In response, economists have developed an alternative approach, initiated
by the seminal contribution of Razin and Yahav (1979). Razin and Yahav in-
troduced a new condition, now called the monotone mixing condition (MMC),
and showed that the MMC implies global stability for monotone and suitably
continuous Markov processes evolving on an interval of R. Stokey and Lucas
(1989) then generalized this result to multiple dimensions. Their result was in
turn generalized by Hopenhayn and Prescott (1992), who showed, by an appli-
cation the Knaster-Tarski fixed point theorem, that the continuity assumption
can be dropped without changing the conclusion.

Their results were significant advances both to economic theory and to
Markov process theory, and have been used to establish existence, unique-
ness and stability of stochastic equilibria in a wide range of applications. Their
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techniques were applied to the classical one-sector stochastic optimal growth
model by Hopenhayn and Prescott (1992), to a stochastic endogenous growth
model by de Hek (1999), to a stochastic small open economy by Chatterjee
and Shukayev (2010), and to a stochastic overlapping generations model with
a nonconcave production function by Morand and Reffett (2007). They have
been used to analyze wealth distributions in a variety of contexts which fea-
ture imperfection in credit, insurance, or capital markets. Huggett (1993) used
their results to analyze the wealth distribution in an incomplete-market econ-
omy with infinite-lived agents.1 The same methodology has been applied to
variants of Huggett’s model with features such as habit formation (Dı́az et
al., 2003), endogenous labor supply (Joseph and Weitzenblum, 2003; Pijoan-
Mas, 2006), endogenous labor supply and capital accumulation (Marcet et al.,
2007), and international trade (Portes, 2009). Their result has been used in
a wide range of OLG models with features such as credit rationing (Aghion
and Bolton, 1997; Piketty, 1997), human capital (Owen and Weil, 1998; Lloyd-
Ellis, 2000; Cardak, 2004; Couch and Morand, 2005; Cabrillana, 2009), inter-
national trade (Ranjan, 2001; Das, 2006), and occupational choice (Lloyed-Ellis
and Bernhardt, 2000; Antunes and Cavalcanti, 2007; Antunes et al., 2008)

Finally, other applications of the MMC in the literature include variants
of Hopenhayn and Rogerson’s (1993) model of job turnover (Cabrales and
Hopenhayn, 1997; Samaniego, 2008) as well as variants of Hopenhayn’s (1993)
model of entry and exit (Cooley and Quadrini, 2001; Samaniego, 2006)

In this paper we provide a new theorem that generalizes the global stability
result of Hopenhayn and Prescott (1992). We do this by first introducing a new
mixing condition called “order reversing,” which is considerably weaker than
the MMC. We also relax the restriction that the state space be compact and
order bounded. In this setting, our theorem provides conditions for monotone,
order reversing processes to attain global stability. These conditions are also
necessary, and hence we completely characterize global stability for monotone,
order reversing processes.

1See Kam and Lee (2011) for a recent extension of Huggett’s (1993) analysis.
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One reason that Hopenhayn and Prescott’s 1992 theorem has not been ex-
tended until now is that their proof of the existence of a stochastic steady state
uses the Knaster-Tarski fixed point theorem, and for many kinds of more gen-
eral state spaces this theorem cannot be applied, since a chain in the space of
distributions need not have a supremum (even in the one dimensional case).
Our fixed point argument is new, combining order-theoretic and topological
results to obtain existence of the stochastic steady state.2

Our results can be used to establish stability in a wider set of applications.
In addition, our results provide new perspectives on the problem of stability.
For example, one feature of the previous literature was a restriction to com-
pact state spaces, which in turn requires that shocks are bounded. This seems
to suggest that small shocks are necessary for stability, or, conversely, that large
shocks are destabilizing. Our results suggest that the opposite is true. Large
shocks tend to be stabilizing, in the sense that global stability becomes a more
likely outcome when large shocks are present. Although this appears coun-
terintuitive, the reason is that, provided that the fundamental forces acting on
the state vector are inherently stabilizing (e.g., low discount rates, diminishing
returns, etc.), large shocks generate mixing, and mixing is a key component of
stochastic stability.

Concerning related literature, other important contributions to the dynamic
properties of monotone Markov models were provided by Dubins and Freed-
man (1966), Bhattacharya and Lee (1988) and Bhattacharya and Majumdar
(2001), who studied stability in the monotone setting via a “splitting condi-
tion,” defined in terms of an ordering on the state space. As shown in sec-
tion 2.1, this condition is stricter than order reversing. At the same time, the
literature on splitting contains important results not treated in this paper.

The rest of the paper is structured as follows. Section 2 reviews basic def-
initions concerning Markov processes, and introduces the concept of order
reversing. Section 3 states the main result (theorem 3.1), and compares it to

2To verify the conditions of our fixed point argument, we draw on a theorem recorded in
the technical note of Kamihigashi and Stachurski (2011).
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earlier results based on the MMC. Section 4 provides sufficient conditions for
order reversing, and other results useful for checking the conditions of theo-
rem 3.1. Section 5 gives applications and section 6 concludes.

2 Preliminaries

At each point in time t = 0, 1, . . . , the state of the economy is described by a
vector Xt in state space S ⊂ R

n. An order interval of S is a set of the form
[a, b] := {x ∈ S : a ≤ x ≤ b}, where ≤ is the standard partial order on Rn. A
subset A of S is called order bounded if there exists points a and b in S such that
A ⊂ [a, b]. As usual, A is called precompact there exists a compact K ⊂ S such
that A ⊂ K.

In this paper, we take S to be such that the order bounded subsets of S and
the precompact subsets of S coincide. For example, this is the case if S = R

n,
because, for a subset of Rn, precompactness and order boundedness are both
equivalent to boundedness. Furthermore, the order bounded subsets of S and
the precompact subsets of S will coincide when S isRn

+,Rn
++, an order interval

of Rn, or, indeed, any convex sublattice of Rn.

Remark 2.1. The main results of this paper remain valid for more general state
spaces and partial orders. The details are left to the proofs (section 7) in order
to simplify the exposition.

Let B be the Borel subsets of S, and let P be the set of probability measures
on (S, B). Furthermore, let

• cbS be the continuous bounded functions from S to R, and
• ibS be the set of increasing3 bounded measurable functions from S to R.

We use inner product notation to represent integration, so that, for example, if
µ ∈P and h ∈ ibS ∪ cbS, then

〈µ, h〉 :=
∫

h(x)µ(dx).

3Function f : S→ R is increasing if f (x) ≤ f (y) whenever x ≤ y.

5



We use the standard definitions of convergence in distribution and stochastic
domination: For {µn}∞

n=0 ⊂ P , the statement µn → µ0 means that 〈µn, h〉 →
〈µ0, h〉 for all h ∈ cbS; while µ1 � µ2 means that 〈µ1, h〉 ≤ 〈µ2, h〉 for all h ∈ ibS.

Throughout the paper, we suppose that the model under consideration
is time-homogeneous and Markovian. The dynamics of such a model can
be summarized by a stochastic kernel (or transition probability function) Q,
where Q(x, B) represents the probability that the state moves from x ∈ S to
B ∈ B in one unit of time. As usual, we require that Q(x, ·) ∈ P for each
x ∈ S, and that Q(·, B) is measurable for each B ∈ B.

Given µ ∈P and stochastic kernel Q, an S-valued stochastic process {Xt}
is called Markov-(Q, µ) if X0 has distribution µ and Q(x, ·) is the conditional
distribution of Xt+1 given Xt = x.4 If µ is the probability measure δx ∈ P

concentrated on x ∈ S, we call {Xt} Markov-(Q, x). Finally, we call {Xt}
Markov-Q if {Xt} is Markov-(Q, µ) for some µ ∈P .

Example 2.1. Many economic models result in processes for the state variables
represented by nonlinear, vector-valued stochastic difference equations. As a
generic example, consider the S-valued process

Xt+1 = F(Xt, ξt+1), {ξt}
IID∼ φ, X0 = x ∈ S, (1)

where {ξt} takes values in Z ⊂ Rm, the function F : S×Z → S is measurable,
and φ is a probability measure on the Borel sets of Z. Let QF be the kernel

QF(x, B) := P{F(x, ξt) ∈ B} = φ{z ∈ Z : F(x, z) ∈ B}. (2)

Then {Xt} in (1) is Markov-(QF, x).5

For each t ∈ N, let Qt be the t-th order kernel, defined by

Q1 := Q, Qt(x, B) :=
∫

Qt−1(y, B)Q(x, dy) (x ∈ S, B ∈ B).

4More formally, P[Xt+1 ∈ B |Ft] = Q(Xt, B) almost surely for all B ∈ B, where Ft is
the σ-algebra generated by the history X0, . . . , Xt. Here and below, we take an underlying
probability space (Ω, F ,P) as given.

5Although the process (1) is only first order, models including higher order lags of the state
and shock process can be rewritten in the form of (1) by redefining the state variables.
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Here Qt(x, B) represents the probability of transitioning from x to B in t steps.
A sequence {µn} ⊂P is called tight if, for all ε > 0, there exists a compact

K ⊂ S such that µn(K) ≥ 1− ε for all n. A stochastic kernel Q is called bounded
in probability if {Qt(x, ·)}t∈N is tight for all x ∈ S. (Intuitively, for any initial
condition, the entire sequence of distributions is almost supported on a single
compact set, and probability mass does not diverge as n→ ∞.)

Given µ ∈P , we let µQ ∈P be the probability measure

(µQ)(B) :=
∫

Q(x, B)µ(dx) (B ∈ B). (3)

We regard (3) as defining an operator µ 7→ µQ from P to itself. The interpre-
tation of the operation µ 7→ µQ is that it shifts the distribution for the state
forward by one time period. In particular, if {Xt} is Markov-(Q, µ), then µQt

is the distribution of Xt.
For any bounded measurable function h : S→ Rwe define

Qh(x) :=
∫

h(y)Q(x, dy) (x ∈ S).

It is known that this operator h 7→ Qh and the operator µ 7→ µQ are adjoint,
in the sense that, for any such h and any µ ∈ P , we have 〈µ, Qh〉 = 〈µQ, h〉
(see, e.g., Stokey and Lucas, 1989, p. 219). Also, it can be shown that if QF is
the kernel in (2), then QFh(x) =

∫
h[F(x, z)]φ(dz).

If µ∗ ∈P and µ∗Q = µ∗, then µ∗ is called stationary for Q. If Q has a unique
stationary distribution µ∗ in P , and, moreover, µQt → µ∗ as t→ ∞ for all µ ∈
P , then Q is called globally stable. In this case, µ∗ is naturally interpreted as the
long-run equilibrium of the economic system in question. If µ∗ is stationary,
then any Markov-(Q, µ∗) process {Xt} is strict-sense stationary with Xt ∼ µ∗

for all t.6

If Q satisfies µQ � µ′Q whenever µ � µ′, then Q is called increasing.
Two equivalent conditions are that Qh ∈ ibS whenever h ∈ ibS, and that
Q(x, ·) � Q(x′, ·) whenever x ≤ x′. Typically, Q will be increasing when

6In addition, if µ∗ is also unique, then {Xt} is ergodic in the sense that 1
n ∑n

t=1 h(Xt) →∫
h dµ∗ as n→ ∞ almost surely whenever

∫
|h| dµ∗ exists.
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equilibrium actions are increasing in the state. Many examples of models with
increasing kernels were discussed in the introduction. Other examples not
discussed there include various infinite horizon optimal growth models, with
features such as irreversible investment, renewable resources, distortions, and
capital-dependent utility. Increasing kernels are also found in stochastic OLG
models besides those mentioned previously, such as models with with limited
committment, and in a variety of stochastic games.7 For a general discussion
of increasing kernels in the context of dynamic optimizing models, see Hopen-
hayn and Prescott (1992). For an empirical test of the same property, see Lee et
al. (2009).

Remark 2.2. A set A ∈ B is called increasing (resp., decreasing) if its indica-
tor function is increasing (resp., decreasing). If Q is an increasing kernel and
A is an increasing (resp., decreasing) set, then the function x 7→ Q(x, A) is
increasing (resp., decreasing).

Example 2.2. Let F and QF be as in example 2.1. If x 7→ F(x, z) is increasing,
then QF is increasing.8

If µ ∈ P and µQ � µ, then µ is called excessive. If µ � Qµ, then µ is called
deficient.

Remark 2.3. If S has a least element a, then δa is deficient for any kernel Q,
because δa � µ for every µ ∈ P , and hence δa � δaQ. Similarly, if S has a
greatest element b, then δb is excessive for Q.

7See, for example, Amir (2002, 2005), Gong et al. (2010), Balbus et al. (2010), Olson (1989),
Olson and Roy (2000), Datta et al. (2002) and Mirman et al. (2008).

8The statement that F(·, z) is increasing means that x, x′ ∈ S with x ≤ x′ and z ∈ Z implies
F(x, z) ≤ F(x′, z). Since QFh(x) =

∫
h[F(x, z)]φ(dz), to prove that QF is increasing, it suffices

to show that if x ≤ x′ and h ∈ ibS, then
∫

h[F(x, z)]φ(dz) ≤
∫

h[F(x′, z)]φ(dz). Since h ∈ ibS
and F(·, z) is increasing for each z, this follows from monotonicity of the integral.

8



2.1 Order Reversing Processes

In this paper we introduce a new order-theoretic mixing condition and illus-
trate its close relationship to stability. To state the condition, let

G := graph(≤) := {(y, y′) ∈ S× S : y ≤ y′},

so that y ≤ y′ iff (y, y′) ∈ G. Also, let Q be a stochastic kernel on S, and
consider the product kernel Q×Q on S× S defined by

(Q×Q)((x, x′), A× B) = Q(x, A)Q(x′, B) (4)

for (x, x′) ∈ S× S and A, B ∈ B.9 The product kernel represents the stochastic
kernel of the S×S-valued process {(Xt, X′t)}when {Xt} and {X′t} are indepen-
dent Markov-Q processes.

Using this notation, we say that Q is order reversing if

∀ x, x′ ∈ S with x ≥ x′, ∃ t ∈ N such that (Q×Q)t((x, x′),G) > 0.

Here the definition is presented in a way that emphasizes the fact that order
reversing is a property of the kernel Q alone (taking S as given). It can be stated
more intuitively using different notation. In particular, Q is order reversing if,
given any x and x′ in S with x ≥ x′, and given two independent Markov-Q
processes {Xt} and {X′t} starting at the higher state x and the lower state x′

respectively, the initial ordering is reversed at some point in time with positive
probability. That is, there exists a t with P{Xt ≤ X′t} > 0 for some t.

Remark 2.4. In verifying order reversing, it is clearly sufficient to check the
existence of a t with (Q×Q)t((x, x′),G) > 0 for arbitrary pair x, x′ ∈ S. Often
this is just as easy, and much of the following discussion proceeds accordingly.

Example 2.3. Suppose we are studying a dynamic model of household wealth.
Informally, the model is order reversing, if, for two households receiving id-
iosyncratic shocks from the same distribution, the wealth of the first household

9Sets of the form A× B with A, B ∈ B provide a semi-ring in the product σ-algebra B⊗B

that also generates B ⊗B. Defining the probability measure Q((x, x′), ·) on this semi-ring
uniquely defines Q((x, x′), ·) on all of B ⊗B. See, e.g., Dudley (2002, theorem 3.2.7).
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is less than that of the second at some point in time with non-zero probability,
regardless of initial wealth for each of the two households.

Example 2.4. Consider the stochastic kernel Q(x, B) = P{ρx + ξt ∈ B} on
S = R associated with the linear AR(1) model

Xt+1 = ρXt + ξt+1, {ξt}
IID∼ N(0, 1). (5)

This kernel is order reversing. To see this, fix (x, x′) ∈ R2, and take two inde-
pendent Markov-Q processes

Xt+1 = ρXt + ξt+1 with X0 = x, X′t+1 = ρX′t + ξ ′t+1 with X′0 = x′,

where {ξt} and {ξ ′t} are IID, standard normal, and independent of each other.
We can see that P{Xt ≤ X′t} > 0 is satisfied with t = 1, because

P{X1 ≤ X′1} = P{ρx + ξ1 ≤ ρx′ + ξ ′1} = P{ξ1 − ξ ′1 ≤ ρ(x′ − x)}.

Since ξ1 − ξ ′1 is Gaussian, this probability is strictly positive.

Example 2.5. Order reversing is weaker than the monotone mixing condition
(MMC) of Razin and Yahav (1979), Stokey et al. (1989) and Hopenhayn and
Prescott (1992). To see this, let S := {x ∈ Rn : a ≤ x ≤ b}, and let Q be a given
kernel on S. In this setting, Q is said to satisfy the MMC whenever

∃ x̄ ∈ S and k ∈ N such that Qk(a, [x̄, b]) > 0 and Qk(b, [a, x̄]) > 0. (6)

In view of remark 2.2, one implication of (6) is that

Qk(x, [x̄, b]) > 0 and Qk(x, [a, x̄]) > 0 for all x ∈ S. (7)

Under the MMC, Q is order reversing. To see this, let x̄ and k be as in (6), fix
x, x′ ∈ S and let {Xt} and {X′t} be independent, Markov-(Q, x) and Markov-
(Q, x′) respectively. Since Xk ≤ X′k whenever Xk ≤ x̄ ≤ X′k, we have

P{Xk ≤ X′k} ≥ P{Xk ≤ x̄ ≤ X′k} = P{Xk ≤ x̄}P{x̄ ≤ X′k}.

Both P{x̄ ≤ X′k} and P{Xk ≤ x̄} are strictly positive by (7). Hence Q is order
reversing.
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Example 2.6. Order reversing is also weaker than the “splitting condition”
used by Dubins and Freedman (1966), Bhattacharya and Lee (1988) and Bhat-
tacharya and Majumdar (2001). Their environment consists of a sequence of
IID random maps {γt} from S to itself. The maps generate {Xt} via

Xt = γt(Xt−1) = γt ◦ · · · ◦ γ1(X0).

The corresponding stochastic kernel is Q(x, B) = P{γ1(x) ∈ B}. The splitting
condition requires existence of a x̄ ∈ S and k ∈ N such that

(a) P{γk ◦ · · · ◦ γ1(y) ≤ x̄, ∀y ∈ S} > 0; and

(b) P{γk ◦ · · · ◦ γ1(y) ≥ x̄, ∀y ∈ S} > 0.

If the splitting condition holds, then Q is order reversing. To see this, let x̄
and k be the constants in the splitting condition, fix x, x′ ∈ S and let {Xt} and
{X′t} be independent, Markov-(Q, x) and Markov-(Q, x′) respectively. As in
example 2.5, we have P{Xk ≤ X′k} ≥ P{Xk ≤ x̄}P{x̄ ≤ X′k}. Moreover, both
terms in this product are positive. For example, P{Xk ≤ x̄} > 0 because

P{Xk ≤ x̄} = P{γk ◦ · · · ◦ γ1(x) ≤ x̄} ≥ P{γk ◦ · · · ◦ γ1(y) ≤ x̄, ∀y ∈ S},

and the final term is strictly positive by the splitting condition.

Remark 2.5. In a separate technical note, Kamihigashi and Stachurski (2010)
use an order mixing condition to establish a certain convergence result that
is needed for one component of the proof of our main theorem. This order
mixing condition is considerably stricter than order reversing.

3 Main Results

Our main theorem generalizes the well-known stability result of Hopenhayn
and Prescott (1992). It provides conditions both necessary and sufficient for
global stability of increasing and order reversing Markov processes:
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Theorem 3.1. Let Q be a stochastic kernel that is both increasing and order reversing.
Then Q is globally stable if and only if

1. Q is bounded in probability, and
2. Q has either a deficient distribution or an excessive distribution.

The kernel Q is called Feller if Qh ∈ cbS whenever h ∈ cbS. If Q is Feller,
then condition 2 can be omitted. Since this result is likely to be useful in many
applications, we state it as a second theorem.

Theorem 3.2. Let Q be increasing, order reversing, and Feller. Then Q is globally
stable if and only if Q is bounded in probability.

To illustrate theorem 3.1, we show how it generalizes the stability results
of Razin and Yahav (1979), Stokey et al. (1989, theorem 12.12) and Hopenhayn
and Prescott (1992, theorem 2). To begin, let a, b ∈ Rn with a ≤ b, and let
S := {x ∈ Rn : a ≤ x ≤ b}. Recall that Q satisfies the MMC whenever (6)
holds. Generalizing the earlier results of Razin and Yahav (1979) and Stokey
et al. (1989), theorem 2 of Hopenhayn and Prescott (1992, p. 1397) states that
if the state space S is of this form and Q is an increasing kernel satisfing the
MMC, then Q is globally stable.10

Theorem 3.1 further generalizes this result. To see this, suppose that S =

{x ∈ Rn : a ≤ x ≤ b}, Q is increasing and the MMC holds. We now check the
conditions of theorem 3.1. First, Q is order reversing, as shown in example 2.5.
Second, Q is bounded in probability, because {Qt(x, ·)} is always tight. In-
deed, Qt(x, ·) is supported on S by definition, and S itself is compact. Finally,
Q has a deficient measure, since S has least element a (see remark 2.3).

To see that the conditions of theorem 3.1 are strictly weaker than those of
Hopenhayn and Prescott (1992), consider the AR(1) model (5) with ρ ∈ [0, 1).

10Hopenhayn and Prescott’s result also holds when S is a compact metric space with closed
partial order ≤, provided that S contains both a lower bound a and an upper bound b. Our
results are likewise valid in this setting. In fact, theorem 3.1 continues to hold if≤ is any closed
partial order, S is separable and completely metrizable, order intervals of S are compact, and
compact subsets of S are order bounded.
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Here the Gaussian shocks force us to choose the state space S = R, rather
than an order interval of Rn, and Hopenhayn and Prescott’s theorem cannot
be applied. On the other hand, all the conditions of theorem 3.1 are satisfied.11

(Of course the AR(1) model is a trivial example. Nontrivial applications are
presented in section 5.)

It is worth noting that in many cases, Hopenhayn and Prescott’s theorem
can be used if the distribution of the shocks is truncated, or, more generally, if
the support of the shocks was chosen to be bounded. At first pass, the major
implication of our results appears to be that restricting the support of the shock
in this way is unnecessary. However, our results are, in a sense, more signif-
icant than this. For example, when we consider the nonlinear autoregression
discussed in section 5.1, we will see that globally stability cannot be proved
using earlier results unless far more structure is imposed. The reason is that,
structural aspects of the model being given, large shocks are often stabilizing
due to the mixing they imply.

4 Verifying the Conditions

Theorem 3.1 requires that Q is increasing, order reversing, bounded in proba-
bility, and possesses an excessive or deficient measure. A sufficient condition
for Q to be increasing was given in example 2.2. In this section, we present a
number of sufficient conditions for the remaining properties. The most signif-
icant of these is proposition 4.3, which provides sufficient conditions for order
reversing.

Throughout the following discussion, we use the simple AR(1) model for
illustrative purposes. Significant applications are deferred to section 5.

11That the model is order reversing was shown in example 2.5. Monotonicity follows from
example 2.2. Boundedness in probability is shown in example 4.1 below. For existence of a µ

with µ � µQ, we can take the stationary distribution µ = N(0, (1− ρ2)−1).
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4.1 Boundedness in Probability

Boundedness in probability is a standard condition in the Markov process lit-
erature. In this section, we review some well-known techniques for checking
boundedness in probability, and introduce a new one based on order-theoretic
ideas.

Let Q be a stochastic kernel on S = R, and let {Xt} be Markov-(Q, x). Then
Q is bounded in probability when suptE |Xt| < ∞ for any initial x. The same
statement is valid if we replace |Xt|with X2

t . Intuitively, boundedness of these
moments means that the process does not diverge.

To go beyond the case of S = R, recall the notion of a coercive function:
V : S → R+ is called coercive if the sublevel set La := {x ∈ S : V(x) ≤ a}
is precompact for all a > 0.12 It is known that Q is bounded in probability
whenever there exists a coercive function V with

sup
t

∫
V(y)Qt(x, dy) < ∞, ∀ x ∈ S. (8)

(See, e.g., Meyn and Tweedie, 2009. The function V may depend on x, in which
case the condition is also necessary.) Condition (8) can sometimes be verified
via a “drift” condition. For example, let QF be the kernel (2). Then (8) will be
satisfied if there exist positive constants α and β with α < 1 and

EV[F(x, ξt)] ≤ αV(x) + β, ∀ x ∈ S. (9)

Example 4.1. Consider the AR(1) process (5) with S = R. Here (9) is satisfied
for V(x) := |x| whenever |ρ| < 1. Indeed, by the triangle inequality, E |ρx +

ξt| ≤ |ρ| · |x|+E |ξt|. This corresponds to (9) with α := |ρ| and β := E |ξt|.

Examples of how to construct coercive functions satisfying (8) are given in
section 5. Further examples can be found in Stachurski (2002), Nishimura and

12For example, if V(x) = ‖x‖ and S = R
n, then V is coercive, because La is the closed ball

B̄(0, a) = {x ∈ Rn : x ≤ a}. However, if S = Rn
++, then V(x) = ‖x‖ is not coercive, because

La = R
n
++ ∩ B̄(0, a), which is not compact. In essence, V is coercive if V(xn) → ∞ whenever

xn “diverges” towards the “edges” of the state space.
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Stachurski (2005), Kamihigashi (2007), and Kristensen (2008) and Meyn and
Tweedie (2009).

We now introduce a new result that can be used to check boundedness in
probability, and also relates to our techniques for checking existence of defi-
cient and excessive measures discussed in section 4.2 below. To begin, let Q
and Q′ be any two stochastic kernels on S. If Q′ dominates Q pointwise on P ,
in the sense that µQ � µQ′ for all µ ∈P , then we write Q � Q′. Equivalently,
Q � Q′ if Qh ≤ Q′h pointwise on S whenever h ∈ ibS.13

Example 4.2. Let F and QF be as in example 2.1. Consider a second process

Xt+1 = G(Xt, ξt+1), {ξt}
IID∼ φ,

where G : S× Z → S is measurable. Let QG be the corresponding stochastic
kernel. If G(x, z) ≤ F(x, z) for all (x, z) ∈ S× Z, then QG � QF.

Proposition 4.1. Let Q`, Q, Qu be stochastic kernels on S. If Q` � Q � Qu and
both Q` and Qu are bounded in probability, then Q is bounded in probability.

4.2 Existence of Excessive and Deficient Measures

Condition 2 of theorem 3.1 requires existence either an excessive or a deficient
distribution. In some cases this is easy to verify. For example, if S has a least
element or a greatest element then the condition always holds (remark 2.3).
However, there are many settings where S has neither (S = R

n and S = R
n
++

are obvious examples). In this case, one can work more carefully with the def-
inition of the model to construct excessive and deficient distributions. One
example is Zhang (2007), who constructs such measures for the stochastic op-
timal growth model.

13For example, suppose that the latter condition holds. Pick any µ ∈ P . Fixing h ∈ ibS,
we have Qh ≤ Q′h. Integrating with respect to µ gives 〈µ, Qh〉 ≤ 〈µ, Q′h〉, or, equivalently,
〈µQ, h〉 ≤ 〈µQ′, h〉. Since h was an arbitrary element of ibS, we have shown that µQ � µQ.
The proof of the converse is also straightforward.
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However, identifying excessive and deficient measures may be nontriv-
ial. For this reason, we now provide a sufficient condition which is relatively
straightforward to check in applications.

Proposition 4.2. Let Q be a stochastic kernel on S. If there exists another kernel Qu

such that Qu is Feller, bounded in probability and Q � Qu, then Q has an excessive
distribution. Likewise, if Q` is Feller, bounded in probability and Q` � Q, then Q has
a deficient distribution.

Examples of how to use this result are provided in the applications. In ad-
dition, we note that propositions 4.1 and 4.2 can be combined with theorem 3.1
to obtain the following stability result:

Theorem 4.1. Suppose that Q is increasing and order reversing. If there exist kernels
Q` � Q � Qu such that Q` and Qu are bounded in probability and at least one of
them is Feller, then Q is globally stable.

4.3 Order Reversing

In this section we give sufficient conditions for order reversing. To state them,
we introduce two new definitions: We call kernel Q on S upward reaching if,
given any x and c in S, there exists a t ∈ N such that Qt(x, {y ∈ S : c ≤ y}) > 0;
and downward reaching if, given any x and c in S, there exists a t ∈ N such that
Qt(x, {y ∈ S : y ≤ c}) > 0.

Example 4.3. The AR(1) process in (5) is both upward and downward reach-
ing. For example, fix x, c in S = R, and take t = 1. We have

Q(x, {y ∈ S : y ≤ c}) = P{ρx + ξ1 ≤ c} = P{ξ1 ≤ c− ρx},

which is positive because ξt ∼ N(0, 1). Hence Q is downward reaching.

We can now present the main result of this section.

Proposition 4.3. Suppose that Q is increasing and bounded in probability. If Q is
either upward or downward reaching, then Q is order reversing.

16



Using proposition 4.3, we can also provide more specialized results for the
model in example 2.1. To simplify the exposition, we assume without loss of
generality that Z is the support of φ.14 Also, observe that each finite path of
shock realizations {zi}t

i=1 ⊂ Z and initial condition X0 = x ∈ S determines
a path {xi}t

i=0 for the state variable up until time t via (1). Let Ft(x, z1, . . . , zt)

denote the value of xt determined in this way.15

Proposition 4.4. Suppose that x 7→ F(x, z) is increasing for each z ∈ Z, F is con-
tinuous on S× Z, and QF is bounded in probability. If any one of

1. ∀ x, c ∈ S, ∃ {zi}k
i=1 ⊂ Z such that Fk(x, z1, . . . , zk) < c

2. ∀ x, c ∈ S, ∃ {zi}k
i=1 ⊂ Z such that Fk(x, z1, . . . , zk) > c

3. ∀ x, x′ ∈ S, ∃ {zi}k
i=1 and {z′i}k

i=1 with Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k)

holds, then QF is globally stable.

The interpretation of the strict inequality for vectors in conditions 1–3 is that
(xi)

n
i=1 < (yi)

n
i=1 if xi < yi for all i.

Example 4.4. Consider the AR(1) model F(x, z) = ρx + z with 0 ≤ ρ < 1.
Clearly the model is increasing and continuous in the sense of proposition 4.4.
We showed in example 4.1 that boundedness in probability holds. Thus, to
show the model is order reversing, it remains to verify one of conditions 1–3
in proposition 4.4. Taking condition 1, fix x, c ∈ R. We need to choose a shock
sequence that drives the process below c when it starts at x. This can be done
in one step, by choosing z1 such that ρx + z1 < c.

5 Applications

We now turn to more substantial applications of the results described above.

14That is, φ(Z) = 1, and φ(G) > 0 whenever G ⊂ Z is nonempty and open. Z can always
be re-defined so that this assumption is valid.

15Formally, F1 := F and Ft+1(x, z1, . . . , zt+1) := F(Ft(x, z1, . . . , zt), zt+1) for all t ∈ N.
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5.1 Nonlinear Autoregression

Our first application is a non-specific additive shock model, which helps to
illustrate the generality our results. The dynamics are given by

Xt+1 = F(Xt, ξt+1) = f (Xt) + ξt+1, {ξt}
IID∼ φ, E ‖ξt‖ < ∞, (10)

where S = Rn, and f : Rn → R
n. We assume that

1. The function f is increasing.
2. P{ξt ≤ z} is non-zero for all z ∈ Rn.
3. ∃ α ∈ [0, 1) and L ≥ 0 such that ‖ f (x)‖ ≤ α‖x‖+ L for all x ∈ Rn.

The last assumption is a growth condition on f . Global stability cannot hold
without some restriction along these lines. The second assumption can be re-
placed by: P{ξt ≥ z} is non-zero for all z ∈ Rn.

Let QF be the stochastic kernel associated with (10) via (2). For this model,
the MMC does not apply, QF is not irreducible, the splitting condition fails,
the model is not an expected contraction, the standard Harris recurrence con-
ditions are not satisfied, and the process is not Feller.16 Indeed, to the best
of our knowledge, global stability of QF—or even existence of a stationary
distribution—cannot be established using any result in the existing literature.

On the other hand, a straightforward proof of global stability can be con-
structed via theorem 3.1 without additional assumptions. To begin, note that
F(x, z) := f (x) + z is increasing in x for each z because f is increasing, and
hence, by example 2.2, QF is increasing. Second, QF is bounded in probability,
as can be shown by taking V(x) := ‖x‖ in (9).17 Third, QF is order reversing
by proposition 4.3. Indeed, if we fix x, c ∈ S = R

n and let E be the event

16For a discussion of irreducibility, see Meyn and Tweedie (2009, ch. 4). On the splitting
condition, see, e.g., Bhattacharya and Lee (1988), or Bhattacharya and Majumdar (2001). For
expected contractions, see, e.g., Santos and Peralta-Alva (2005, p. 1952). For more on Harris
recurrence, see Harris (1956). A beautiful modern interpretation of Harris’ method is given in
Hairer and Mattingly (2008).

17By the triangle inequality, E ‖ f (x) + ξ1‖ ≤ ‖ f (x)‖+E ‖ξ1‖ ≤ α‖x‖+ L +E ‖ξ1‖.
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{ξ1 ≤ c− f (x)}, then, by assumption, P(E) > 0. Moreover, if E occurs, then
f (x) + ξ1 ≤ c. Hence QF is downward reaching, and order reversing holds.

To complete the proof of global stability via theorem 3.1, then, the only
difficulty is to show existence of an deficient or excessive measure. For this
purpose, we use proposition 4.2. To apply the lemma, we need to find a domi-
nating process that possesses at least one stationary distribution. For the dom-
inating process, consider

Xt+1 = G(Xt, ξt+1) = g(Xt) + ξt+1, g(x) := α‖x‖1 + L1. (11)

Here 1 is the unit vector in Rn, and α and L are as above. The model (11)
is easily shown to be Feller and bounded in probability.18 Moreover, F ≤ G,
because if fi(x) is the i-th component of f (x), then fi(x) ≤ | fi(x)| ≤ ‖ f (x)‖ ≤
α‖x‖+ L.

∴ f (x) ≤ α‖x‖1 + L1 = g(x).

∴ F(x, z) = f (x) + z ≤ g(x) + z = G(x, z).

We conclude that the conditions of proposition 4.2 are satisfied, and the proof
of global stability is done.

NOTE: Clean up above to reflect new results.

5.2 Optimal Growth

NOTE: Clean up
Variations on the stochastic optimal growth model form the foundations

of many economic studies, and the existence of ergodic, non-trivial stochas-
tic equilibria is of fundamental importance when comparing predictions with
data. We begin by looking at the most elementary case, where consumption is
chosen to maximize E ∑∞

t=0 δtu(ct) subject to kt+1 + ct ≤ ξt f (kt). All variables
are nonnegative and {ξt}

IID∼ φ. For now, we assume that u is bounded with

18Since g is continuous, the model is Feller. In addition, (9) is valid for the coercive function
V(x) := ‖x‖∞ := maxn

i=1 |xi|, and hence boundedness in probability also holds.
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u′ > 0, u′′ < 0, and u′(0) = ∞; while f (0) = 0, f ′ > 0, f ′′ < 0, f ′(0) = ∞ and
f ′(∞) = 0. (Extensions are discussed below.)

To study the dynamics of the optimal process, we take yt = ξt f (kt) as the
state variable, and consider the income process yt+1 = ξt f (yt − σ(yt)), where
σ(·) is the optimal consumption policy. Let Q be the corresponding stochastic
kernel. For the state space we take S = R++. (Zero is deliberately excluded
so that any stationary distribution on S is automatically non-trivial.) It is well-
known that optimal savings y 7→ y− σ(y) is increasing and continuous, and
hence Q is increasing and Feller on S (cf., e.g., Stokey et al., 1989, p. 393).

Brock and Mirman (1972) were the first to prove global stability of this pro-
cess, for the case where ξt has support [a, b], with 0 < a < b. The same result
can be obtained from theorem 3.1. Indeed, Hopenhayn and Prescott (1992)
show that Q satisfies the conditions of their stability result, which, as discussed
in section 3, is a special case of theorem 3.1.19

The assumption that ξt has bounded support can be removed.20 Instead,
one can assume that ξt has sufficiently small tails. In particular, suppose now
that E ξt < ∞ and E (1/ξt) < ∞. (These restrictions bound the right and
left-hand tails respectively.) Boundedness in probability is known to hold (see,
e.g., Nishimura and Stachurski (2005) or Kamihigashi, 2007), so, in view of
theorem 3.2, order reversing is sufficient for global stability. To verify order
reversing, it suffices to show that Q is either upward or downward reaching
(proposition 4.3). Suppose that P{ξt ≤ z} > 0 for all z ∈ S. If we fix any
x, c ∈ S, then P{ξt f (x− σ(x)) ≤ c} = P{ξt ≤ c/ f (x− σ(x))} > 0. Thus, Q is
downward reaching,21 and hence globally stable.22

The stability results for optimal growth models presented in this section
can be extended in many ways. For example, in the previous result, we can

19See Olson and Roy (2006), Kamihigashi (2007) or Chatterjee and Shukayev (2008) for ad-
ditional discussion of the case where ξt has bounded support.

20Stability without bounded shocks was first shown by Stachurski (2002), using stricter con-
ditions than those considered here.

21Since S = R++ and optimal consumption is interior, we have f (x− σ(x)) > 0.
22A closely related result was proved by Zhang (2007). His result is also a special case of

theorem 3.1.
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remove the assumption that f is concave.23 Without concavity of f , opti-
mal consumption may be discontinuous, and Q is no longer Feller. However,
monotonicity of Q still holds, as does boundedness in probability (Nishimura
and Stachurski, 2005). Existence of a excessive measure is not difficult to es-
tablish.24 Moreover, the order reversing proof in the previous paragraph goes
through unchanged. This proves global stability under weaker conditions than
those used in Nishimura and Stachurski (2005).

Remark 5.1. The preceding results feel counterintuitive. To prove stability
we used order reversing, and to prove order reversing we relied on nonzero
probability of arbitrarily bad productivity shocks. These shocks are stabiliz-
ing, rather than destabilizing, because, as a result of the Inada conditions we
imposed, the fundamental structure of the economy acts against divergence.
Large shocks do not destabilize, they simply promote mixing.

5.3 An Open Economy with Borrowing Constraints

Next we consider an overlapping generations model of wealth distribution,
which is a variation of the small open economy studied by Matsuyama (2004).
Agents live for two periods, consuming only when old. Each household con-
sists of one old and one young agent (child). There is a unit mass of such
households indexed by i ∈ [0, 1]. In each period t, the old agent of household i
provides financial support bi

t to her child. The child has the option to become
an entrepreneur, investing one unit of the consumption good in a “project,”

23In models of renewable resource exploitation, f is biologically determined, and typically
non-concave. For motivation and further discussion, see, for example, Dechert and Nishimura
(1983), Majumdar, Mitra and Nyarko (1989), or Mitra and Roy (2006).

24To do so we can use proposition 4.2. Since f ′(∞) = 0, we can choose positive constants
α, β with αE ξt < 1 and f (x) ≤ αx + β (Nishimura and Stachurski, 2005, proposition 4.3).
Now take G(x, z) := z(αx + β), so that F(x, z) := z f (x − σ(x)) ≤ z f (x) ≤ G(x, z). Letting
QF and QG be the corresponding kernels, the last inequality implies QF � QG. In view of
proposition 4.2, it remains only to show that QG is Feller and bounded in probability. Since
G(·, z) is continuous, QG is Feller. Using αE ξt < 1, condition (9) can be established for V(x) =
x + 1/x, which is coercive on S = R++. Boundedness in probability then follows.
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and receiving stochastic output of θ + ηi
t+1 in period t + 1. Let ki

t+1 ∈ {0, 1} be
young agent i’s investment in the project. If the remainder bi

t − ki
t+1 between

current income and investment on the project is positive, then she invests this
quantity at the world risk-free rate R. If it is negative then she borrows ki

t+1− bi
t

at the same risk-free rate. Independent of her investment choices choice, she
receives an endowment of ei

t+1 units of the consumption good when old.
Suppressing the i superscript to simplify notation, her wealth at the begin-

ning of period t + 1 is

wt+1 = (θ + ηt+1)kt+1 − R(kt+1 − bt) + et+1. (12)

We assume that
et+1 = ρet + εt+1, 0 < ρ < 1, (13)

and that the idiosyncratic shocks {ηt} and {εt} are IID, nonnegative, andP{εt >

α} > 0 for any α ≥ 0. We also assume that

R < θ, γR < 1. (14)

The first inequality in (14) implies that becoming an entrepreneur is always
profitable, even ex post, and every agent would choose to do so absent addi-
tional constraint. Due to market imperfection, however, each agent may bor-
row only up to a fraction λ ∈ (0, 1) of θ + ρet, the minimum possible value of
her old-age income. That is,

R(kt+1 − bt) ≤ λ(θ + ρet). (15)

Note that his constraint rules out default even in the worst case.
Letting c denote consumption, young agents maximize E t[c

1−γ
t+1 bγ

t+1] sub-
ject to (12), (15), and

ct+1 + bt+1 = wt+1. (16)

Since maximization of c1−γ
t+1 bγ

t+1 subject to (16) implies that bt+1 = γwt+1, old
agents give a fixed fraction γ of their wealth to their child. Since becoming
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an entrepreneur is always profitable, young agents do so whenever feasible,
implying

kt+1 = κ(bt, et) :=

1 if R(1− bt) ≤ λ(θ + ρet),

0 otherwise.
(17)

Recalling bt+1 = γwt+1 and (12), we can now write

bt+1 = σ(bt, et, ηt+1, εt+1) (18)

where σ is defined by

σ(b, e, η, ε) := γ[(θ + η − R)κ(b, e) + Rb + ρe + ε] (19)

The right-hand side of (12) is increasing in kt+1 by (14), and κ easily seen to
be increasing. As a result, σ(b, e, η, ε) is increasing in (b, e, η, ε). The system
of equations (18) and (13) determines a (discontinuous) Markov process on
S := [0, ∞)× [0, ∞) with state vector Xt := (bt, et).25 The corresponding kernel
Q is increasing (see example 2.2).

We now show that Q is globally stable. Let mη := E ηt and mε := E εt. To
see that Q is bounded in probability, note from (13) that

E et ≤ mε/(1− ρ) + ρte0 ≤ e := mε/(1− ρ) + e0 (20)

for all t. In addition, it follows from (18) and (19) that

E bt+1 ≤ γ[θ + mη − R + RE bt + e].

Using γR < 1, we obtain the bound

E bt ≤ γ[θ + mη − R + e]/(1− γR) + b0 (21)

for all t. Together, (20) and (21) imply that Q is bounded in probability.26 Since
P{εt > α} > 0 for any α ≥ 0, it is easy to see that Q is upward reaching,

25We do not exclude (0, 0) from the state space since it is not an absorbing state.
26The function V(b, e) = b + e is coercive on S, and equations (20) and (21) imply that

suptE [V(bt, et)] ≤ suptE [bt] + suptE [et] < ∞, which gives (8).
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and thus order reversing by proposition 4.3. In view of these results and the-
orem 3.1, Q will be globally stable whenever it has a deficient or excessive
measure. Since (0, 0) is a least element for S, remark 2.3 implies that Q has a
deficient measure, and we conclude that Q is globally stable.

We have shown that given any initial distribution µ0 of (b0, e0), the distri-
bution µt of (bt, et) converges to a unique stationary distribution µ∗. Recalling
Remark ???, we can easily examine the effect of a change in a parameter. For
example, suppose that the initial distribution is µ∗, and that the credit con-
straint (15) is relaxed by increasing λ ≤ 1. This change shifts κ and thus σ

upward. Hence the distribution of (bt, et) (in fact only the distribution of bt

since et is exogenous) keeps shifting upward over time and converges to the
new stationary distribution, which stochastically dominates the initial station-
ary distribution µ∗.

6 Conclusion

This paper considered global stability of stochastic economies and time series
models, based on a new mixing condition called order reversing. Our main
theorems (theorem 3.1 and theorem 3.2) generalizes earlier results based on
monotone mixing due to Razin and Yahav (1979), Stokey et al. (1989), and
Hopenhayn and Prescott (1992), significantly extending the range of possible
applications, and shedding light on the interactions between shocks, structural
dynamics and stochastic stability.

Other new results contained in the paper are propositions 4.1–4.4 and the-
orem 4.1. These results provide additional stability conditions and aid in veri-
fication of order reversing and other conditions of our main stability theorem.
Their usefulness is illustrated in the applications discussed in section 5.

7 Proofs

State general assumptions for state and order!
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Before proving theorem 3.1, we need some additional results and notation. To

begin, let Φ be any stochastic kernel on D ⊂ Rq, let x ∈ D and let D-valued stochastic

process {Xt} be Markov-(Φ, x). The joint distribution of {Xt} over the sequence space

D∞ will be denoted by Px. For example, Px{Xt ∈ B} = Φt(x, B) for any B ⊂ D,

and Px ∪∞
t=0 {Xt ∈ B} is the probability that the process ever enters B. Evidently Px

depends on Φ as well as x, but this dependence is suppressed in the notation.

We say that Borel set B ⊂ D is

• Strongly accessible for Φ if Px ∪∞
t=0 {Xt ∈ B} = 1 for all x ∈ D, and

• uniformly accessible for Φ if, for all compact C ⊂ D, there exists an n ∈ N and

δ > 0 with infx∈C Φn(x, B) ≥ δ.

The following lemma is fundamental to our results, although the proofs is delayed to

maintain continuity.

Lemma 7.1. Let B be a Borel subset of D. If Φ is bounded in probability and B is uniformly
accessible, then B is strongly accessible.

Now we return to the specific setting of theorem 3.1, where S is a subset ofRn such

that order intervals are compact and compact sets are order bounded. Let Q be a given

kernel on S, and let Q× Q be the product kernel (4). For given pair (x, x′) ∈ S× S,

let {Xt} and {X′t} be Markov-(Q, x) and Markov-(Q, x′) respectively, and also inde-

pendent of each other. As discussed in section 2.1, the bivariate process {(Xt, X′t)},
that takes values in S × S, is Markov-(Q × Q, (x, x′)). Its joint distribution over the

sequence space (S× S)∞ is denoted by Px,x′ . In this notation, Q is order reversing if

∀ x, x′ ∈ S with x ≥ x′, ∃ k ≥ 0 such that Px,x′{Xk ≤ X′k} > 0.

In addition, Q is called order mixing (Kamihigashi and Stachurski, 2010) if

∀ x, x′ ∈ S, Px,x′ ∪∞
t=0 {Xt ≤ X′t} = 1.

Put differently, Q is order mixing if G := {(y, y′) ∈ S × S : y ≤ y} is strongly ac-

cessible for the product kernel Q × Q. Order mixing is clearly stronger than order

reversing, and significantly more difficult to check in applications. However, we will

show below that if Q is increasing and bounded in probability, then order reversing

and order mixing are equivalent.
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Lemma 7.2. If Q is bounded in probability, then so is the product kernel Q×Q.

Lemma 7.3. If Q is increasing and bounded in probability, then {µQt} is tight for all µ ∈P .

Lemma 7.4. If Q is increasing and order reversing, thenG is uniformly accessible for Q×Q.

Proofs are given at the end of this section.

Let us now turn to the proof of theorem 3.1. The proof proceeds as follows: First

we show that under the conditions of the theorem, Q is order mixing. Using order

mixing, we then go on to prove existence of a stationary distribution, and global sta-

bility.

Regarding the first step, to show that Q is order mixing we need to prove thatG is

strongly accessible for Q×Q under the conditions of theorem 3.1. Since Q is bounded

in probability, Q × Q is also bounded in probability (lemma 7.2), and hence, by of

lemma 7.1, it suffices to show that G is uniformly accessible for Q× Q. This follows

from lemma 7.4.

This is an important result in its own right, and we state it as a theorem:

Theorem 7.1. If Q is increasing and bounded in probability, then Q is order mixing if and
only if Q is order reversing.

We now prove global stability, making use of order mixing. In the sequel, we

define icbS to be the bounded, increasing and continuous functions from S to R (i.e.,

icbS = ibS ∩ cbS). We will make use of the following results:27

Lemma 7.5. Let µ, µ′, µn ∈P .

1. µ � µ′ iff 〈µ, h〉 ≤ 〈µ′, h〉 for all h ∈ icbS,
2. µ = µ′ iff 〈µ, h〉 = 〈µ′, h〉 for all h ∈ icbS, and
3. µn → µ iff 〈µn, h〉 → 〈µ, h〉 for all h ∈ icbS.

Proof of theorem 3.1. We begin by showing that if Q is globally stable, then conditions

1–2 of the theorem hold. Regarding condition 1, fix x ∈ S. Global stability implies that

{µQt} is convergent for each µ ∈ P , and hence {Qt(x, ·)} = {δxQt} is convergent.

Since convergent sequences are tight (Dudley, 2002, proposition 9.3.4) and x ∈ S was

27See Torres (1990) for proofs.
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arbitrary, we conclude that Q is bounded in probability, and condition 1 is satisfied.

Condition 2 is trivial (take µ = µ∗ to generate a constant sequence).

Next we show that if Q is increasing, order reversing and conditions 1–2 hold,

then Q has at least one stationary distribution. By theorem 7.1, Q is order mixing, and

Kamihigashi and Stachurski (2010, theorem 3.1) implies that, for any ν and ν′ in P we

have

lim
t→∞
|〈νQt, h〉 − 〈ν′Qt, h〉| = 0, ∀ h ∈ ibS. (22)

Now let {µQt} be a tight and monotone sequence, existence of which is guaranteed

by conditions 1–2 and lemma 7.3. We suppose without loss of generality that {µQt} is

increasing, since the other case changes nothing in what follows except the direction

of the inequalities.

By Prohorov’s theorem, tightness implies existence of a a subsequence of {µQt}
converging to some ψ∗ ∈P . By monotonicity, the entire sequence converges: µQt →
ψ∗. But then µQt � ψ∗ for all t ≥ 0, because for any h ∈ icbS and t ≥ 0 we have

〈µQt, h〉 ≤ sup
t≥0
〈µQt, h〉 = lim

t→∞
〈µQt, h〉 = 〈ψ∗, h〉.

From part 1 of lemma 7.5 we conclude that µQt � ψ∗.

Next, we claim that ψ∗ � ψ∗Q. To see this, pick any h ∈ icbS. Since µQt � ψ∗ for

all t, and since Qh ∈ ibS,

〈µQt, Qh〉 ≤ 〈ψ∗, Qh〉 = 〈ψ∗Q, h〉.

Using the fact that h ∈ cbS we can take the limit to obtain

〈ψ∗, h〉 = lim
t→∞
〈µQt+1, h〉 = lim

t→∞
〈µQt, Qh〉 ≤ 〈ψ∗Q, h〉.

Hence 〈ψ∗, h〉 ≤ 〈ψ∗Q, h〉 for all h ∈ icbS, and ψ∗ � ψ∗Q as claimed. Iterating on this

inequality we obtain ψ∗ � ψ∗Qt for all t.
To summarize our results so far, we have

µQt � ψ∗ � ψ∗Q � ψ∗Qt.

for all t ≥ 0. Fixing h ∈ icbS, this implies that

〈µQt, h〉 ≤ 〈ψ∗, h〉 ≤ 〈ψ∗Q, h〉 ≤ 〈ψ∗Qt, h〉.
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Applying (22), we obtain 〈ψ∗, h〉 = 〈ψ∗Q, h〉 for all h ∈ icbS. By lemma 7.5, this implies

that ψ∗ = ψ∗Q, and ψ∗ is stationary for Q.

It remains to show that Q is globally stable, and ψ∗ is unique. Fixing µ ∈ P and

applying (22) again, we have

|〈µQt, h〉 − 〈ψ∗, h〉| → 0, ∀ h ∈ ibS. (23)

Since icbS ⊂ ibS, this implies that µQt → ψ∗ (see lemma 7.5). Finally, uniqueness is

also immediate, because if µ is also stationary, then by (23) we have 〈µ, h〉 = 〈ψ∗, h〉
for all h ∈ icbS. By lemma 7.5, we then have ψ = ψ∗.

Proof of theorem 3.2. Under the conditions of the theorem, Q is order mixing, as proved

in theorem 7.1. In addition, boundedness in probability and the Feller property guar-

antee the existence of a stationary distribution by the Krylov-Bogolubov theorem (see,

e.g., Stachurski, 2009). Global stability then follows from Kamihigashi and Stachurski

(2010, theorem 3.1).

Proof of proposition 4.1. Pick any x ∈ S and fix ε > 0. Let K be a compact set such

that Qt
`(x, K) ≥ 1− ε for all t. By our assumptions on S, there exists an x` ∈ S with

Qt
`(x, {y ∈ S : y ≥ x`}) ≥ 1− ε for all t. By similar reasoning, there exists xu ∈ S such

that Qt
u(x, {y ∈ S : y ≤ xu}) ≥ 1− ε for all t. Since Q` � Q � Qu, it then follows

that Qt(x, {y ∈ S : y ≥ x`}) ≥ 1− ε and Qt(x, {y ∈ S : y ≤ xu}) ≥ 1− ε for all t.
Combining these bounds, we obtain Qt(x, [x`, xu]) ≥ 1− 2ε for all t. Since the order

interval [x`, xu] is compact, it follows {Qt(x, ·)} is tight. As x ∈ S was arbitrary, we

have shown that Q is bounded in probability.

Proof of proposition 4.2. If Y is a random variable, then let L Y be its distribution.28 Let

µ ∈ P . Consider the first case, where F ≤ G. We claim that if µ is stationary for

QG, then µQ � µ. To see this, let X and ξ be independent random variables taking

values in S and Z respectively, with L X = µ and L ξ = φ. It is immediate from the

definitions that L F(X, ξ) = µQF and L G(X, ξ) = µQG = µ. Since G ≤ F we have

G(X, ξ) ≤ F(X, ξ) pointwise on Ω. We conclude that µ = L G(X, ξ) � L F(X, ξ) =

µQF, as was to be shown.

The proof of the second case is similar.

28Formally, L Y is the image measure of Y under P.
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Now we turn to the proof of proposition 4.3.

Proof of proposition 4.3. Suppose first that Q is upward reaching. Pick any (x, x′) ∈ S×
S. Let {Xt} and {X′t} be indepedent, Markov-(Q, x) and Markov-(Q, x′) respectively.

We need to prove existence of a k ∈ N such that P{Xk ≤ X′k} > 0.

Since Q is bounded in probability, there exists a compact C ⊂ S withP{Xt ∈ C} >
0 for all t ≥ 0. By assumption, we can take an order interval [a, b] of S with C ⊂ [a, b].
For this a, b we have

P{a ≤ Xt ≤ b} > 0 for all t ≥ 0.

As Q is upward reaching, there is a k ∈ N such that P{b ≤ X′k} > 0. Using indepen-

dence, we now have

P{Xk ≤ X′k} ≥ P{Xk ≤ b ≤ X′k} = P{Xk ≤ b}P{b ≤ X′k} > 0,

as was to be shown. The proof for the downward reaching case is similar.

Proof of proposition 4.4. Let {ξt}∞
t=1 and {ξ ′t}∞

t=1 be IID from φ and independent of each

other. Consider first condition 3. We claim that QF is order reversing. Fix x, x′ ∈ S.

Let {zt}k
t=1 and {z′t}k

t=1 be as in the statement of the corollary. Define the constant

γ := P{Fk(x, ξ1, . . . , ξk) < Fk(x′, ξ ′1, . . . , ξ ′k)}.

We need only show that γ > 0. By hypothesis, Fk(x, z1, . . . , zk) < Fk(x′, z′1, . . . , z′k). By

continuity of F, there exist open neighborhoods Nt of zt and N′t of z′t such that

z̃t ∈ Nt and z̃′t ∈ N′t for t ∈ {1, . . . , k} =⇒ Fk(x, z̃1, . . . , z̃k) < Fk(x′, z̃′1, . . . , z̃′k).

This leads to the estimate

γ ≥ P∩n
t=1 {ξt ∈ Nt and ξ ′t ∈ N′t} =

n

∏
t=1

φ(Nt)φ(N′t).

Since Z is the support of φ, this last term is positive, and γ > 0.

The proof of the corollary will be complete if conditions 1–2 of the corollary imply

that QF is upward and downward reaching respectively (see proposition 4.3). The

arguments are very similar to the proof just completed and hence we omit them.

Finally, we complete the proof of all remaining lemmas stated in this section.
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Proof of lemma 7.1. Let B be a uniformly accessible subset of D. To prove the lemma, it

suffices to show that Px ∪t {Xt ∈ B} = 1 whenever {Φt(x, ·)} is tight. To this end, fix

x ∈ D, and assume that {Φt(x, ·)} is tight. Let τ := inf{t ≥ 0 : Xt ∈ B}. Evidently we

have ∪∞
t=0{Xt ∈ B} = {τ < ∞}. Thus, we need to show that Px{τ < ∞} = 1.

Fix ε > 0. Since {Φt(x, ·)} is tight, there exists a compact set C such that

inf
t

Px{Xt ∈ C} = inf
t

Φt(x, C) ≥ 1− ε.

Since B is uniformly attracting, there exists an n ∈ N and δ > 0 such that infy∈C Φn(y, B) ≥
δ. For t ∈ N, define pt := Px{τ ≤ tn}. We wish to obtain a relationship between pt

and pt+1. To this end, note that

1{τ ≤ (t + 1)n} = 1{τ ≤ tn}+ 1{τ > tn}1{τ ≤ (t + 1)n}

≥ 1{τ ≤ tn}+ 1{τ > tn}1{X(t+1)n ∈ B}

≥ 1{τ ≤ tn}+ 1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}.

Taking expectations yields

pt+1 ≥ pt + Ex1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}.

We estimate the last expectation as follows:

Ex1{τ > tn}1{Xtn ∈ C}1{X(t+1)n ∈ B}

= Ex[1{τ > tn}1{Xtn ∈ C}Ex[1{X(t+1)n ∈ B}|Ftn]]

= Ex[1{τ > tn}1{Xtn ∈ C}Φn(Xtn, B)]

≥ Ex1{τ > tn}1{Xtn ∈ C}δ

= Ex(1− 1{τ ≤ tn})1{Xtn ∈ C}δ

= Ex1{Xtn ∈ C}δ− Ex1{τ ≤ tn}1{Xtn ∈ C}δ

≥ (1− ε)δ− Ex1{τ ≤ tn}δ

= (1− ε)δ− ptδ.

∴ pt+1 ≥ pt + (1− ε)δ− ptδ = (1− δ)pt + (1− ε)δ.

The unique, globally stable fixed point of qt+1 = (1− δ)qt + (1− ε)δ is 1− ε, so

1− ε ≤ lim
t→∞

pt = Px{τ < ∞} ≤ 1

Since ε was arbitrary, we obtain Px{τ < ∞} = 1.
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Proof of lemma 7.2. Fix x, x′ ∈ S and ε > 0. Since Q is bounded in probability, we can

choose compact sets C and C′ such that

Qt(x, C) ≥ (1− ε)1/2 and Qt(x′, C′) ≥ (1− ε)1/2 for all t.

∴ (Q×Q)t((x, x′), C× C′) = Qt(x, C)Qt(x′, C′) ≥ 1− ε for all t.

Since C× C′ is compact in the product space, Q×Q is bounded in probability.

Proof of lemma 7.3. Fix µ ∈ P and ε > 0. Since individual elements of P are tight

(Dudley, 2002, theorem 11.5.1), we can choose a compact set Cµ ⊂ S with µ(Cµ) ≥
1− ε. By assumption, we can take an order interval [a, b] of S with Cµ ⊂ [a, b]. For this

a, b, we have

µ([a, b]c) = µ(S \ [a, b]) ≤ ε. (24)

By hypothesis, {Qt(x, ·)} is tight for all x ∈ S, so we choose compact subsets Ca and Cb

of S with Qt(a, Ca) ≥ 1− ε and Qt(b, Cb) ≥ 1− ε for all t. Since Ca ∪Cb is also compact,

we can take an order interval [α, β] of S with Ca ∪ Cb ⊂ [α, β] ⊂ S. We then have

Qt(a, [α, β]) ≥ 1− ε and Qt(b, [α, β]) ≥ 1− ε for all t. Letting Iα := {x ∈ S : x ≥ α}
and Dβ := {x ∈ S : x ≤ β}, this leads to

∴ Qt(a, Iα) ≥ 1− ε and Qt(b, Dβ) ≥ 1− ε for all t. (25)

In view of remark 2.2 and (25), we have

a ≤ x =⇒ Qt(x, Iα) ≥ Qt(a, Iα) ≥ 1− ε,

and, by a similar argument,

x ≤ b =⇒ Qt(x, Dβ) ≥ Qt(b, Dβ) ≥ 1− ε.

Since [α, β] := {x ∈ S : α ≤ x ≤ β} = Iα ∩ Dβ, we have

Qt(x, [α, β]c) = Qt(x, Dc
β ∪ Ic

α) ≤ 2−Qt(x, Dβ)−Qt(x, Iα).

This leads to the estimate

a ≤ x ≤ b =⇒ Qt(x, [α, β]c) ≤ 2ε. (26)
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Combining (24) and (26), we now have

µQt([α, β]c) =
∫

Qt(x, [α, β]c)µ(dx)

=
∫
[a,b]

Qt(x, [α, β]c)µ(dx) +
∫
[a,b]c

Qt(x, [α, β]c)µ(dx)

≤
∫
[a,b]

2ε µ(dx) + µ([α, β]c) ≤ 3ε.

Since [α, β] is compact and t is arbitrary, we conclude that {µQt} is tight.

Proof of lemma 7.4. Let C be any compact subset of S× S. We need to prove existence

of an n ∈ N and δ > 0 such that (Q×Q)n((x, x′),G) ≥ δ whenever (x, x′) ∈ C. To do

so, we introduce the function

ψn(x, x′) := (Q×Q)n((x, x′),G) = Px,x′{Xn ≤ X′n}.

Intuitively, since Q is increasing, the event {Xn ≤ X′n} becomes less likely as x rises

and x′ falls, and hence ψn(x, x′) is decreasing in x and increasing in x′ for each n. A

routine argument confirm this is the case.

Since C ⊂ S × S is compact, we can take an order interval [a, b] of S with C ⊂
[a, b] × [a, b].29 Moreover, since Q is order reversing, we can take n ∈ N such that

δ := ψn(b, a) = Pb,a{Xn ≤ X′n} > 0. Observe that

(x, x′) ∈ C =⇒ (x, x′) ∈ [a, b]× [a, b] =⇒ x ≤ b and x′ ≥ a.

∴ (x, x′) ∈ C =⇒ (Q×Q)n((x, x′),G) = ψn(x, x′) ≥ ψn(b, a) = δ.

In other words,G is uniformly accessible for Q×Q.
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