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FITTED VALUE FUNCTION ITERATION WITH PROBABILITY ONE
CONTRACTIONS

JENÖ PÁL AND JOHN STACHURSKI

ABSTRACT. This paper studies a value function iteration algorithm that

can be applied to almost all stationary dynamic programming problems.

Using nonexpansive function approximation and Monte Carlo integration,

we develop a randomized fitted Bellman operator and a corresponding

algorithm that is globally convergent with probability one. When ad-

ditional restrictions are imposed, an OP(n−1/2) rate of convergence for

Monte Carlo error is obtained. Keywords: Dynamic programming, value

iteration, Monte Carlo

1. INTRODUCTION

Many economic models contain stochastic dynamic programs (SDPs), ei-
ther as representations of competitive equilibria, or, more commonly, as
sub-problems defining the behavior of firms, households, or other individ-
ual agents. When solving these SDPs, computational constraints remain a
major bottleneck. The difficulty is particularly acute in settings where the
SDP must be solved at a large number of different parameterizations, ei-
ther to compute equilibria (as in Bewley models and dynamic games), or
to estimate structural econometric models with unknown parameters in the
primitives of the SDP.

In recent years, many specialist algorithms have been proposed. These al-
gorithms take advantages of certain features of a given application in order
to obtain fast convergence rates. In most of these studies, global (or even
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local) convergence of the algorithm to the optimum is not proved. Instead,
the authors test the algorithm against a special case possessing analytical
solutions, and then compare their convergence rates against competing al-
gorithms. This leaves open the question of convergence for more realistic
problems without analytical solutions. It is for precisely these problems that
numerical methods are actually needed.

There are good reasons to be concerned about whether common dynamic
programming routines do in fact converge to optimal value functions and
policies. This is particularly the case in continuous state space settings,
where iterative techniques involve some form of function approximation.
The interplay between function approximation and dynamic programming
routines appears to be relatively delicate. For example, in value function it-
eration, many function approximation techniques fail to preserve the global
contraction properties of the Bellman operator, and several authors have
demonstrated how adding very standard function approximation steps can
lead to cycles and a failure of convergence (Boyan and Moore, 1995; Baird,
1995; Tsitsiklis and Van Roy, 1996).

While specialist algorithms that are known to converge quickly in partic-
ular settings certainly have their place, in this paper our aim is to study
a simulation-based value iteration algorithm that has guaranteed conver-
gence properties across a very wide variety of applications. Our set up in-
cludes a function approximation step, admits continuous action spaces, and
makes no use of densities. We provide general conditions under which the
fixed point of our random fitted Bellman operator converges uniformly to
the value function with probability one. Under additional regularity condi-
tions, we show that the sup norm deviation is OP(n−1/2).

The technique described here is a natural alternative to discretized value
function iteration, which also has very broad applicability, and remains a
popular benchmark in economic applications. In discretized value func-
tion iteration, a continuous state/action problem is replaced by a “nearby”
discrete problem. Relative to the method we study here, discretization has
several disadvantages. First, while the discretized algorithm always locates
the solution to the discrete problem, the deviation between this discrete so-
lution and the solution to the original problem is not easily bounded. To the
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best of our knowledge, no global convergence results are available in a set-
ting as general as the one that we treat here.1 Second, in terms of finite time
properties, discrete representation of continuous curves is costly relative to
continuous parametric representations2 and inherently subject to the curse
of dimensionality.3

1.1. Related Literature. The emphasis in the paper is on global conver-
gence in a general setting. Numerical methods for more specific models
with additional structure can be found in many papers. The literature is too
large too survey here. Useful introductions can be found in Marimon and
Scott (2001) or Aruoba et al. (2006). The latter includes discussion of meth-
ods for solving smooth SDPs where optimal policies satisfy Euler equations.
(We assume no such smoothness here.) An iterative method for concave
SDPs is analyzed in the recent paper of Fukushima and Waki (2011). Some
well-known algorithms based on Monte Carlo include those found in Keane
and Wolpin (1994), Rust (1997), Pakes and McGuire (2001) and Longstaff
and Schwartz (2001).

Recently, several authors have published studies on finite-time bounds for
fitted value function iteration. These include the seminal work of Rust
(1997), who proposes an ingenious function approximation step that can
be implemented when the one-step transition probabilities for the dynamic
programming problem are absolutely continuous with respect to Lebesgue
measure (i.e., the distribution for the next period state given current state
and action can be represented by a density). Rust proved that for decision

1One issue is that discretization errors for continuous curves tend to be bounded in

terms of derivatives, which fail to exist or cannot be bounded in many economic settings.

Optimal growth models often have unbounded derivatives as a result of Inada conditions.

Derivatives can fail to exist when models included discrete choices, binding constraints,

non-convexities and so on.
2An analogy can be made with raster graphics (i.e., bitmap) files, which are less efficient

than vector graphics files for storing regular curves.
3The number of data points needed to represent function in Rd parametrically may be

polynomial in d, while discrete representations are always exponential. The intractability

of discrete representations in moderate to high dimensions has led practitioners in fields

such as engineering and computer science to reverse the discretization process, replacing

discrete dynamic programs with continuous ones. This idea dates back to Bellman (Bell-

man et al., 1963).
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problems satisfying certain Lipschitz conditions, his algorithm breaks the
curse of dimensionality, in the sense that worst-case computational com-
plexity is polynomial in the dimension of the state space. Further impor-
tant developments for models satisfying similar restrictions were reported
in Munos and Szepesvári (2008).

Unlike these contributions, our paper studies only consistency, rather than
attempting to derive finite time bounds. However, our setting is consid-
erably less restrictive. For example, we do not assume that the one-step
transition probabilities are absolutely continuous, an assumption that was
central to Rust’s algorithm. This additional generality is important in eco-
nomics, since many applications have one-step transition probabilities that
fail to be absolutely continuous. To give an example, consider a benchmark
macroeconomic model, where next period capital stock is given by

kt+1 = (1− δ)kt + f (kt, zt)− ct

Here δ is a depreciation rate, f is a production function, ct is consumption
and (zt) is an exogenous shock process, typically Markovian. Observe that
as soon as the current state (kt, zt) and the current action ct is given, next pe-
riod capital is deterministic. As a result, the one-step transition probability
fails to be absolutely continuous, and cannot be represented by a density.

In this example, the problem is caused by stochastic rank deficiency—the
shock space has lower dimension that the state space. While the exam-
ple is simplistic, it is also representative of the growth and macroeconomic
literature—see for example the standard formulation of Stokey and Lucas
(1989, p. 290)—and illustrates the fact that a great many models in these
fields cannot be treated with density-based approaches.

Failure of absolute continuity can also be caused by discrete shocks (e.g.,
labor productivity shocks following discrete Markov chains), occasionally
binding constraints and other common features. Representative dynamic
programming problems where the transition probability fails to be abso-
lutely continuous include those found in Kydland and Prescott (1982), Coo-
ley and Hansen (1989), Imrohoroglu (1989), Aiyagari (1994), Stockman and
Tesar (1995), Huggett (1997), Santos and Vigo-Aguiar (1998), Boldrin et al.
(2001), Clementi and Hopenhayn (2006), Cooper and Haltiwanger (2006)
and Arellano (2008).
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1.2. Outline. Section 2 of the paper provides background concepts and no-
tation. Section 3 defines the model, and section 4 introduces the algorithm.
Section 5 provides convergence results, section 6 discusses rates of conver-
gence, and section 7 concludes. Remaining proofs can be found in section 8.

2. PRELIMINARIES

We begin by introducing notation. For topological space T, the symbol
C (T) denotes the collection of continuous, bounded, real-valued functions
on T, while ‖ · ‖ is the supremum norm on C (T). Operator S : C (T) →
C (T) is called a contraction of modulus ρ if 0 ≤ ρ < 1 and

(1) ‖Sv− Sw‖ ≤ ρ‖v− w‖ for all pairs v, w ∈ C (T)

S is called nonexpansive if (1) holds with ρ = 1. By Banach’s contraction
mapping theorem, every contraction S of modulus ρ on C (T) has a unique
fixed point W ∈ C (T), and, moreover, ‖Snw−W‖ = O(ρn) for each w ∈
C (T).

Lemma 2.1. Let S and S′ be operators from C (T) to itself.

(1) If S is nonexpansive and S′ is a contraction of modulus ρ, then the compo-
sition S ◦ S′ is a contraction of modulus ρ.

(2) If S and S′ are both contractions of modulus ρ with fixed points W and W ′

respectively, then ‖W −W ′‖ ≤ (1− ρ)−1‖SW ′ −W ′‖.

Part 1 is trivial. For a proof of part 2, see, for example, Rust (1997, lemma 2.1).

In what follows, all random variables are defined on a common probability
space (Ω, F , P), and E is the expectation with respect to P. If X is a map
from Ω intoR that is not necessarily measurable, then the outer expectation
of X is E∗X := infY EY, where the infimum is over all real random variables
Y such that X ≤ Y and EY exists. For a sequence of possibly nonmeasur-
able maps (Un) from Ω into a metric space (T, d) and a T-valued random
variable U, we say that Un → U holds P∗-almost surely if there exists a mea-
surable real-valued sequence ∆n with d(Un, U) ≤ ∆n and P{∆n → 0} = 1.
We say that Un converges in distribution to U if E∗g(Un) → Eg(U) for ev-

ery g ∈ C (T). For the former convergence we write Un
a.s.∗→ U, while for the

latter we write Un
d∗→ U.
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The continuous mapping theorem continues to hold in this setting:

Lemma 2.2. If T′ is another metric space and g : T→ T′ is continuous, then

Un
d∗→ U =⇒ g(Un)

d∗→ g(U)

Let (Xn)n≥1 be a sequence of (not necessarily measurable) maps from Ω into
R. We write Xn = OP∗(n−1/2) if there exists a sequence of real-valued ran-
dom variables (∆n)n≥1 such that |Xn| ≤ ∆n for all n and ∆n = OP(n−1/2).

3. SET UP

In this section we introduce a general stochastic dynamic programming
problem and describe the value function iteration algorithm.

3.1. The Model. Consider an SDP of the following form. A controller ob-
serves the state x ∈ X of a given system, and responds with an action a
from a feasible set Γ(x) ⊂ A. Given this state-action pair (x, a), the con-
troller receives current reward r(x, a), and the new state is determined as
x′ = F(x, a, U), where U is a draw from a fixed distribution φ. The process
now repeats. The controller’s objective is to maximize the sum of expected
discounted rewards given discount factor ρ.

The sets X and A are referred to as the state and action spaces respectively,
and Γ is called the feasible correspondence. We let

G := graph Γ := {(x, a) ∈ X×A : a ∈ Γ(x)}

The setG is called the set of feasible state-action pairs.

A feasible policy is a Borel measurable map σ : X → A such that σ(x) ∈
Γ(x) for all x ∈ X. Let Σ be the set of all such policies. The controller’s
problem is

max
σ∈Σ

{
E

∞

∑
t=0

ρtr(Xt, σ(Xt))

}
subject to

(2) Xt+1 = F(Xt, σ(Xt), Ut+1) with x0 given

Almost any stationary infinite horizon dynamic program with additively
separable preferences can be formulated in this way.
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We assume throughout the paper that

(1) X and A are compact metric spaces.
(2) Γ is continuous and compact-valued.
(3) The shocks (Ut)t≥1 are IID with common distribution φ.4

(4) φ is a Borel probability measure over metric space U.
(5) The reward function r : G→ R is continuous.
(6) The functionG 3 (x, a) 7→ F(x, a, u) ∈ X is continuous for all u ∈ U.

For (Xt) as given by (2), let Vσ(x0) = E ∑∞
t=0 ρtr(Xt, σ(Xt)). Let T : C (X)→

C (X) be the Bellman operator, defined at v ∈ C (X) by

(3) Tv(x) := max
a∈Γ(x)

{
r(x, a) + ρ

∫
v[F(x, a, u)]φ(du)

}
(x ∈ X)

For v ∈ C (X), a policy σ ∈ Σ is called v-greedy if σ(x) is a maximizer of
the right-hand size of (3) for all x ∈ X. The value function VT is defined
pointwise on X by VT(x) = supσ∈Σ Vσ(x). A policy σ ∈ Σ is called optimal
if Vσ = VT.

3.2. Value Function Iteration. The following result is standard:

Theorem 3.1. Under assumptions 1–6 above,

(1) T is a contraction of modulus ρ on C (X), and VT is the unique fixed point;
(2) a policy σ ∈ Σ is optimal if and only if it is VT-greedy; and
(3) at least one such policy exists.

In principle, VT can be calculated by value function iteration (VFI), which
involves fixing an initial v ∈ C (X) and iterating with T. From theorem 3.1

4The assumption of IID shocks is not restrictive. For example, consider the following

macroeconomic model with exogenous Markov shock sequence: The state space is a prod-

uct space K×Z ⊂ Rm×Rn, where k ∈ K is a vector of endogenous variables and z ∈ Z is a

vector of exogenous variables. Technology is summarized by a feasible set Θ ⊂ K× Z× K.

The exogenous process (zt)t≥0 evolves according to zt+1 = g(zt, εt+1), where (εt)t≥1 is IID.

Instantaneous rewards are given by v(k, z, k′). This formulation is a special case of our SDP.

To see this, for the state take x := (k, z) ∈ K × Z, and for the action take a := k′ ∈ K. The

feasible correspondence is Γ(x) := Γ(k, z) := {k′ ∈ K : (k, z, k′) ∈ Θ}. The shock is u := ε,

and the transition function is F(x, a, u) := F(k, z, k′, ε) := (k′, g(z, ε)) ∈ K× Z. The reward

function is r(x, a) := r(k, z, k′) := v(k, z, k′).
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we have ‖Tkv− VT‖ = O(ρk). Using this fact and optimality of VT-greedy
policies, one can show that a Tkv-greedy policy is approximately optimal
when k is sufficiently large.5

4. RANDOM FITTED VFI

Evaluation of the expression r(x, a) + ρ
∫

v[F(x, a, u)]φ(du) on the right-
hand side of (3) requires approximation of the integral. To compute it, one
can use deterministic methods or Monte Carlo. Monte Carlo tends to per-
form better in multiple dimensions, and preserves the contractiveness of the
Bellman operator. In addition, we can evaluate every integral by drawing a
single sample

(4) U1, . . . , Un
IID∼ φ

once off, and then iterating with the random Bellman operator Rn defined
by

(5) Rnv(x) := max
a∈Γ(x)

{
r(x, a) + ρ

1
n

n

∑
i=1

v[F(x, a, Ui)]

}
(x ∈ X)

A realization of ω ∈ Ω determines a particular realization (Ui(ω))n
i=1 of the

sample (4), which in turn defines a realization Rn(ω) of Rn. Each realization
Rn(ω) is an operator from C (X) to itself.

A second numerical issue is as follows: If X is infinite, then, for arbitrary
given w ∈ C (X), one cannot evaluate either Tw(x) or Rnw(x) at each x ∈ X
in finite time (or store the functions in a look-up table). Hence, we approx-
imate Rnw using a finite parametric representation. To do so, we introduce
an approximation operator A : C (X)→ A (X) ⊂ C (X), where, given func-
tion w ∈ C (X), Aw is an approximation of w, and A (X) is a class of func-
tions such that each element can be represented by a finite number of pa-
rameters. In addition, we assume that Aw can be computed on the basis
of a finite number of observations (i.e., by observing the value of w(x) at a
finite number of x ∈ X). For example, the mapping w 7→ Aw might pro-
ceed by evaluating w on a fixed and finite grid of points {xj}J

j=1, and then

5See, e.g., (Puterman, 1994, theorem 6.3.1). An appropriate k is usually chosen according

to some stopping criterion that depends on the deviation between successive iterates of T.
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constructing Aw based on these “interpolation” points. Finally, we assume
throughout that A is nonexpansive.

Example 4.1. Continuous piecewise linear interpolation in Rd is a nonex-
pansive approximation scheme.6

Example 4.2. Another nonexpansive approximation scheme is provided by
kernel smoothers. Let d be a metric on X, and let {xi}m

i=1 be a finite subset
of X. For given v ∈ C (X), let

(6) Av(x) =
m

∑
i=1

pi(x)ψ
{

d(x, xi)

h

}
where h is a parameter, and ψ : R+ → R+ is a continuous monotone de-
creasing function. The values pi(x) are called weights. In most cases, the
weights are set to pi(x) = v(xi)/{∑m

i=1 ψ[d(x, xi)/h]}. For this choice of
weights, the operator A is nonexpansive (see, e.g., Stachurski, 2008).

Other nonexpansive schemes include k-nearest neighbors, shape-preserving
Schumaker splines, and the variation-diminishing splines of Schoenberg.7

The complete procedure for random fitted value function iteration is given
in the following algorithm:

Algorithm 1: Random Fitted VFI

generate the sample (U1, . . . , Un)
IID∼ φ in (4) ;1

fix v ∈ C (X) ;2

compute vk := (ARn)kv iteratively ;3

compute a vk-greedy policy σ ;4

6To describe it, letX be a convex subset ofRd, letV be a finite subset ofX such that the

convex hull of V is X, and let T be a V-triangularization of X. (That is, T is a finite collec-

tion of non-degenerate simplexes such that the vertices of each simplex lie in V and any

two simplexes intersect on a common face or not at all.) Given a simplex ∆ ∈ T with ver-

tices ζ1, . . . , ζd+1, each x ∈ ∆ can be represented uniquely as ∑d+1
i=1 λ(x, i)ζi, where λ(x, i) is

its i-th barycentric coordinate relative to ∆. (By definition, λ(x, i) ≥ 0 and ∑d+1
i=1 λ(x, i) = 1.)

For v ∈ C (X), we define A by Av(x) = ∑d+1
i=1 λ(x, i)v(ζi). The operator A is nonexpansive

(see, e.g., Stachurski, 2008).
7See Stachurski (2008) for further discussion and references.
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In step 3, (ARn)k is the k-th iterate of ARn. In practice, when applying the
operator ARn to a given function w, first Rnw is evaluated on a finite grid
of points {xj}J

j=1 by solving the maximization problem in (5) J times. A is
then applied to produce the fitted function ARnw.

5. ANALYSIS

We begin our analysis with the following lemma:

Lemma 5.1. The operator AT is a contraction on C (X) of modulus ρ. The operator
ARn(ω) is also a contraction on C (X) of modulus ρ for all n ∈ N and all ω ∈ Ω.

As a consequence, there exists

(1) a unique fixed point VAT ∈ C (X) of AT
(2) a unique fixed point VARn(ω) ∈ C (X) of ARn(ω) for each ω ∈ Ω

The operator AT is the fitted Bellman operator where function approxima-
tion is included, but the integral is computed exactly. Its fixed point VAT

is deterministic. On the other hand, VARn is random. In what follows, we
refer to VARn as a random function, although ω 7→ VARn(ω) may not be Borel
measurable as a mapping from Ω to C (X).

Our primary goal is to study the convergence of VARn to the value function
VT.8 By the triangle inequality, the error can be decomposed as

(7) ‖VT −VARn‖ ≤ ‖VT −VAT‖+ ‖VAT −VARn‖ ∀ n ∈ N

Let us consider the two terms on the right-hand side of (7). The first term
is the function approximation error, caused by replacing T with AT. The
second is the integral approximation error, caused by replacing AT with
ARn. The following two sections consider these two errors in turn.

8The relative optimality of the (ARn)kv-greedy policy σ computed by algorithm 1 de-

pends on the deviation between (ARn)kv and VT . Using the triangle inequality, we can

bound the latter by ‖(ARn)kv − VARn‖ + ‖VARn − VT‖. By lemma 5.1, the first term is

O(ρk) in k. Convergence of VARn to VT is less clear, and hence we focus on this term.
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5.1. Function Approximation Error. Analysis of the function approxima-
tion error ‖VT −VAT‖ is relatively straightforward. The details will depend
on the particular function approximation scheme used in a given implemen-
tation, but sufficiently “fine” approximations will make the error arbitrarily
small. To give an example, consider the kernel smoother A in (6). The next
result is proved in the appendix.

Lemma 5.2. For any ε > 0, there exists a choice of {xi}m
i=1, ψ and h such that the

corresponding operator A in (6) satisfies ‖VT −VAT‖ < ε.

5.2. Integral Approximation Error. Next, we turn our attention to the inte-
gral approximation error, which is the second term on the right-hand side of
(7). Our first major result for the paper shows probability one convergence
without any additional assumptions.9

Theorem 5.1. ‖VAT −VARn‖
a.s.∗→ 0 as n→ ∞.

Remark 5.1. Theorem 5.1 provides no indication of the rate of convergence.
This problem is treated in section 6.

Proof of theorem 5.1. By lemma 2.1 and the nonexpansiveness of A, we have

‖VARn −VAT‖ ≤
1

1− ρ
‖ARnVAT −VAT‖

=
1

1− ρ
‖ARnVAT − ATVAT‖

≤ 1
1− ρ

‖RnVAT − TVAT‖

Hence, to prove theorem 5.1, it is sufficient to prove that ‖RnVAT − TVAT‖
converges to zero with probability one. To bound this term, we make use of
the following standard inequality: If g, g′ ∈ C (Y) for compact set Y, then

(8) |max g−max g′| ≤ max |g− g′| =: ‖g− g′‖

9Since Borel measurability of ω 7→ VARn(ω) is problematic, the theorem uses the concept

of P∗-almost sure convergence.
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Using (8), we obtain

|RnVAT(x)− TVAT(x)|

≤ ρ max
a∈Γ(x)

∣∣∣∣∣ 1n n

∑
i=1

VAT[F(x, a, Ui)]−
∫

VAT[F(x, a, u)]φ(du)

∣∣∣∣∣
where x ∈ X is arbitrary. Taking the supremum over all x ∈ X, we now
have

(9) ‖RnVAT − TVAT‖

≤ ρ max
(x,a)∈G

∣∣∣∣∣ 1n n

∑
i=1

VAT[F(x, a, Ui)]−
∫

VAT[F(x, a, u)]φ(du)

∣∣∣∣∣
Let y = (x, a) denote a typical element ofG, and let

(10) hy(u) :=: h(x,a)(u) := VAT[F(x, a, u)] :=: VAT[F(y, u)]

Also, for h : U → R, let φn(h) := 1
n ∑n

i=1 h(Ui) and φ(h) :=
∫

hdφ. Using
this notation, (9) becomes

(11) ‖RnVAT − TVAT‖ ≤ ρ max
y∈G
|φn(hy)− φ(hy)|

A class H of bounded measurable functions mappingU into R is called φ-
Glivenko-Cantelli if suph∈H |φn(h)−φ(h)| → 0 P∗-almost surely as n→ ∞.
A sufficient condition for this property10 is that H consists of functions
hα : U→ Rwith index α in metric space Λ, and, moreover:

(1) Λ is compact;
(2) Λ 3 α 7→ hα(u) ∈ R is continuous for every u ∈ U; and
(3) there exists a measurable function H : U → R such that

∫
Hdφ < ∞

and |hα| ≤ H for every α ∈ Λ.

In our case, the relevant class of functions is {hy}y∈G, where hy is defined in
(10). This family of functions satisfies the sufficient conditions in 1–3 above.
First, G is a compact metric space, due to our assumptions on X, A and
Γ. Second, G 3 y 7→ hy(u) := VAT[F(y, u)] ∈ R is continuous for every
u ∈ U, due to continuity of VAT and F. Third, |hy(u)| is bounded above
by the finite constant ‖VAT‖ for all y ∈ G and u ∈ U. Hence, {hy}y∈G is
φ-Glivenko-Cantelli. This concludes the proof. �

10See, for example, van der Vaart, 1998, p. 272.
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6. RATES OF CONVERGENCE

The result in theorem 5.1 gives no indication as to the rate of convergence.
To obtain a rate, we need to give a rate for the right-hand side of (11). The φ-
Glivenko-Cantelli property used in the proof of theorem 5.1 is not sufficient
for rates, so further restrictions on {hy}y∈G are required.

6.1. Donsker Classes. Let H be a class of uniformly bounded, measurable
functions fromU intoR, and let (bH , ‖ · ‖) be the Banach space of bounded,
real valued functions on H with the supremum norm. The class H is called
φ-Donsker if

νn(h) :=
√

n(φn(h)− φ(h)) (n ∈ N, h ∈H )

converges in distribution to a tight Gaussian process ν in the space bH .
Here ω 7→ νn(·)(ω) and ω 7→ ν(·)(ω) are maps from Ω into bH . The
maps ω 7→ νn(·)(ω) are not necessarily measurable, and convergence in

distribution is to be understood in the sense of νn
d∗→ ν.

Proposition 6.1. If {hy}y∈G is φ-Donsker, then ‖VARn −VAT‖ = OP∗(n−1/2).

Proof. We need some preliminary results and additional notation. Let

Gn(y) := νn(hy) :=
√

n(φn(hy)− φ(hy)) (n ∈ N, y ∈ G)

Gn can be understood as a real-valued stochastic process indexed by y ∈ G:

Gn(y)(ω) =
√

n

(
1
n

n

∑
i=1

hy(Ui(ω))−
∫

hy(u)φ(du)

)
∈ R

Regarding measurability, we have the following result, proved in the ap-
pendix:

Lemma 6.1. For each n ∈ N, the following measurability results hold:

(1) ω 7→ Gn(·)(ω) is a C (G)-valued random variable, and
(2) ω 7→ ‖Gn(·)(ω)‖ = supy∈G |Gn(y)(ω)| is a real-valued random vari-

able.

In view of (11), we have

‖VARn −VAT‖ ≤
ρ

1− ρ
n−1/2 sup

y∈G
|Gn(y)|
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Since H := {hy}y∈G is φ-Donsker, we have νn
d∗→ ν, where ν is a Gaussian

process on H . By lemma 2.2 and continuity of the norm ‖ · ‖ on bH , we

then have ‖νn‖
d∗→ ‖ν‖ in R. Observe that

‖νn‖ = sup
h∈H

|νn(h)| = sup
y∈G
|νn(hy)| = sup

y∈G
|Gn(y)|

and hence supy∈G |Gn(y)|
d∗→ ‖ν‖. By part 2 of lemma 6.1, this is conver-

gence in distribution in the regular sense, and, as a consequence, we have
supy∈G |Gn(y)| = OP(1). Therefore

‖VARn −VAT‖ ≤
ρ

1− ρ
n−1/2OP(1) = OP(n−1/2)

This concludes the proof of proposition 6.1. �

6.2. The Lipschitz Case. In this section and the next, we use proposition 6.1
to obtain sufficient conditions for rates of convergence in different (some-
what specialized) settings. Our first result is based on a Lipschitz condition.
To apply the method, we add the following assumptions:

(i) G ⊂ Rd.
(ii) Aw is Lipschitz continuous for every w ∈ C (X).11

(iii) There exists a measurable function m0 : U → R with
∫

m2
0 dφ < ∞

and12

(12) ‖F(y, u)− F(y′, u)‖2 ≤ m0(u)‖y− y′‖2 ∀ y, y′ ∈ G, u ∈ U

The next result is proved in the appendix.

Proposition 6.2. If (i)–(ii) hold, then ‖VARn −VAT‖ = OP∗(n−1/2).

Notice that the assumptions concern only the transition function, not the re-
ward function. Many dynamic macroeconomic models have Lipschitz tran-
sition rules. The consumer’s problem in the incomplete markets models of
Aiyagari (1994) and Huggett (1997) are obvious examples, and many recent

11This condition depends on the approximation architecture used in the fitted VFI rou-

tine, and is satisfied by, for example, the piecewise linear interpolation operator in Exam-

ple 4.1.
12Here ‖ · ‖2 represents the euclidean norm onRd.
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variations have a similar structure (see, e.g., Pijoan-Mas, 2006, or Ábrahám
and Cárceles-Poveda, 2010).

An important special case of our Lipschitz assumption is models with linear
transition rules. The next lemma provides details.

Lemma 6.2. If U ⊂ Rk, and F is linear, in the sense that

(13) F(x, a, u) = Ax + Ba + Cu (x ∈ X, a ∈ Γ(x), u ∈ U)

for matrices A, B and C, then assumption (ii) is satisfied.

6.3. The Monotone Case. Another way to establish the φ-Donsker prop-
erty is via monotonicity. To this end, we drop the Lipschitz assumptions of
section 6.2 and replace them with the following:

(i) X ⊂ Rd and U ⊂ R.
(ii) A maps iC (X) to itself, where iC (X) is the increasing functions in

C (X).
(iii) For all x, x′ ∈ X with x ≤ x′, Γ(x) ⊂ Γ(x′); r(x, a) ≤ r(x′, a) for all

a ∈ Γ(x); and F(x, a, u) ≤ F(x′, a, u) for all a ∈ Γ(x) and u ∈ U.
(iv) For all y ∈ G, F(y, u) ≤ F(y, u′) whenever u ≤ u′.

Proposition 6.3. If (i)–(iv) hold, then ‖VARn −VAT‖ = OP∗(n−1/2).

The proof is given in the appendix.

Assumption (ii) depends on the approximation architecture, and is satisfied
by, for example, the linear interpolation operator in Example 4.1. The other
assumptions are satisfied by a number of standard models.

Example 6.1. Consider the growth model

maxE
∞

∑
t=0

ρtu(ct) subject to

ct ≥ 0, kt+1 ≥ 0, ct + kt+1 ≤ f (kt, zt)

Suppose that zt is Markov, following transition rule zt+1 = g(zt, Ut+1),
where (Ut)t≥1 is IID. The state is (k, z) ∈ R2

+. To write the model in our
framework, we take F(k, z, k′, u) = (k′, g(z, u)), r(k, z, k′) = u( f (k, z) − k′)
and Γ(k, z) = [0, f (k, z)]. If f and g are both increasing, then assumptions
(iii) and (iv) above are satisfied.
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7. CONCLUSION

We studied a Monte Carlo VFI algorithm with function approximation. We
proved that the algorithm is consistent for a wide variety of models. This
guaranteed convergence stands in contrast to many other numerical tech-
niques proposed in the literature. Under additional restrictions, we estab-
lished a parametric rate of convergence, independent of the dimension of
the state, action and shock spaces.

Many avenues for future research exist. First, we identified only two cases
where the φ-Donsker property is satisfied (the Lipschitz and monotonicity
conditions of sections 6.2 and 6.3). Additional research should illuminate
other cases. In addition, we treated only stationary, additively separable,
infinite horizon SDPs, leaving open the cases of nonstationary models, op-
timal stopping, and general recursive utility. All of these issues are left for
future study.

8. REMAINING PROOFS

Proof of lemma 5.1. The contractiveness of AT follows from lemma 2.1. Next
we consider contractiveness of Rn. Fix n ∈ N and ω ∈ Ω. Let R := Rn(ω).
Fix w, w′ ∈ C (X) and x ∈ X. In view of (8), we have

|Rw(x)−Rw′(x)| ≤ ρ max
a∈Γ(x)

∣∣∣∣∣ 1n n

∑
i=1

w[F(x, a, Ui(ω))]− 1
n

n

∑
i=1

w′[F(x, a, Ui(ω))]

∣∣∣∣∣
Using the triangle inequality and the definition of ‖ · ‖, we obtain

|Rw(x)− Rw′(x)| ≤ ρ‖w− w′‖

Taking the supremum over x ∈ X yields the desired result.

Finally, contractiveness of ARn now follows from lemma 2.1. �

Proof of lemma 5.2. Fix ε > 0. By lemma 2.1, we have

(14) ‖VT −VAT‖ ≤ (1− ρ)−1‖AVT −VT‖

Since X is compact, VT is uniformly continuous, and we select δ > 0 with
|VT(x) − VT(y)| < (1 − ρ)ε whenever d(x, y) < δ. Using compactness
again, we choose {xi}m

i=1 such that, given any x ∈ X, there exists at least
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one xi with d(x, xi) < δ. Finally, we choose ψ such that ψ(u) = 0 whenever
u is greater than some constant M,13 and h such that Mh < δ.

Now fix any x ∈ X. Letting λ(x, i) := ψ[d(x, xi)/h]/ ∑j ψ[d(x, xj)/h], we
can write

|AVT(x)−VT(x)| =
∣∣∣∣∣∑i

λ(x, i)VT(xi)−VT(x)

∣∣∣∣∣ ≤∑
i

λ(x, i)|VT(xi)−VT(x)|

If d(x, xi) ≥ δ, then d(x, xi)/h ≥ M, and hence ψ[d(x, xi)/h] = λ(x, i) =

0. For the remaining terms in the sum we have d(x, xi) < δ, and hence
|VT(xi) − VT(x)| < (1− ρ)ε. Since x is arbitrary, we have ‖AVT − VT‖ <

(1− ρ)ε. Combining this bound with (14) completes the proof of the lemma.
�

Proof of lemma 6.1. We begin by proving measurability of ω 7→ H(·)(ω),
where

H(y)(ω) = hy(U(ω)) = VAT[F(y, U(ω))]

SinceG is compact in the product topology, the Stone–Weierstrass theorem
implies that C (G) is separable. Hence, by the Pettis measurability theorem,
we need only show that ω 7→ `(H(·)(ω)) is measurable for each ` in the
dual space C (G)∗ of C (G). By the Riesz representation theorem, C (G)∗

can be identified with M (G), the space of finite signed Borel measures on
G. Thus, it remains to show that

Ω 3 ω 7→
∫

H(y)(ω) γ(dy) ∈ R is measurable ∀ γ ∈M (G)

To this end it is sufficient to show that H(y)(ω) = VAT[F(y, U(ω)] is mea-
surable with respect to the product σ-algebra BG ⊗F , where BG is the
Borel σ-algebra on G. Since H is continuous with respect to y and mea-
surable with respect to ω, H is a Carathéodory function (Aliprantis and
Border, 2006, definition 4.50). AsG is separable, measurability with respect
to BG ⊗F is established (Aliprantis and Border, 2006, lemma 4.51).

Given measurability of ω 7→ H(·)(ω), measurability of ω 7→ Gn(·)(ω) fol-
lows from the fact that linear combinations of measurable random elements
of a separable Banach space are themselves measurable.

13A typical example is the Epanechnikov kernel.
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Regarding the second claim in the lemma, measurability of ω 7→ ‖Gn(·)(ω)‖
follows from measurability of ω 7→ Gn(·)(ω), continuity of the norm as a
map from C (G) to R, and the fact that continuous transformations of mea-
surable mappings are measurable. �

Proof of proposition 6.2. By proposition 6.1, it suffices to show that the class
{hy}y∈G is φ-Donsker when (i)–(iii) hold. A sufficient condition for {hy}y∈G

to be φ-Donsker is the existence of a measurable function m : U → R such
that

∫
m2dφ < ∞ and

(15) |hy(u)− hy′(u)| ≤ m(u)‖y− y′‖2 ∀ y, y′ ∈ G, u ∈ U

(see, e.g., van der Vaart, 1998, p. 271). To find such an m, observe that VAT

is Lipschitz, as follows from (ii) and the relation VAT = ATVAT. As a con-
sequence, there exists a K < ∞ such that, for any y, y′ ∈ G and u ∈ U, we
have

|hy(u)− hy′(u)| := |VAT[F(y, u)]−VAT[F(y′, u)]|

≤ K‖F(y, u)− F(y′, u)‖2 ≤ Km0(u)‖y− y′‖2

where m0 is the function in (iii). Letting m := Km0, we see that
∫

m2dφ =

K2
∫

m2
0dφ < ∞. All the conditions are now verified, and hence {hy}y∈G is

φ-Donsker. �

Proof of lemma 6.2. To see this, observe that for any y = (x, a) ∈ G, y′ =
(x′, a′) ∈ G, and u ∈ U,

‖Ax + Ba + Cu− Ax′ − Ba′ − Cu‖2

= ‖A(x− x′) + B(a− a′)‖2 ≤ γ(‖x− x′‖2 + ‖a− a′‖2)

where γ is the maximum of the operator norms of A and B. Since y =

(x, a) 7→ ‖x‖2 + ‖a‖2 ∈ R defines a norm on Rd, and since all norms on Rd

are equivalent, we obtain

‖F(y, u)− F(y′, u)‖2 ≤ Mγ‖y− y′‖2 ∀ y, y′ ∈ G, u ∈ U

for some M < ∞. This verifies (ii). �

Proof of proposition 6.3. From van der Vaart (1998, p. 273), it suffices to show
that the class {hy}y∈G is uniformly bounded onU, and that each element hy
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is monotone increasing on U. Since hy(u) = VAT[F(y, u)], uniform bound-
edness will hold if VAT is bounded on X. That this is the case follows from
the fact that X is compact and VAT ∈ C (X).

Regarding monotonicity, we begin by showing that VAT is monotone in-
creasing. To see that this is the case, observe that VAT is the fixed point of
AT in C (X). Since iC (X) is a closed subset of C (X), we need only show
that AT maps iC (X) into itself. Since A : iC (X) → iC (X) by assumption,
it remains to verify that T also has this property. For a proof of this fact,
see Stachurski (2009, theorem 12.1.2). As a result, VAT is increasing, and the
claim in the proposition now follows from assumption (iv) above. �
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