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Abstract

This paper investigates the frequency of extreme events for three LIFFE futures contracts for the
cdculation of minimum capita risk requirements (MCRRs). We propose a semi-parametric
approach where the tails are modelled by the Generalised Pareto Didtribution and smdler risks are
captured by the empiricad digribution function. We compare the capitd requirements from this
gpproach with those caculated from the unconditional density and from a conditiond dengity - a
GARCH(1,1) modd. Our primary finding is tha for both in-sample and hold-out samples, our
extreme vaue approach yields superior results than either of the other two modds which do not
explicitly modd the tals of the return digribution. Since the use of these interna models will be
permitted under the EC-CAD I, they could be widely adopted in the near future by European
financid inditutions for determining capitd adequacies. Hence, dose scrutiny of competing moddsis
required to avoid a potentidly costly misallocation of capita resources while a the same time
ensuring the safety of the financid system.
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1. Introduction

The notion that financid ingtitutions should hold risk-adjusted capitd as a buffer against
potential losses was given internationa regulatory credibility* in the BIS Basle Accord of
1988, now widdy agreed as an higoric landmark in the regulation of financid indtitutions.
While the origina Accord focused upon credit risk regulators have since worked on the
trestment of market risk. The caculation of a financid inditution’s Vaue a Risk (VaR) is
rapidly becoming the standardised approach to the determination of appropriate levels of
bank capital. For example, in the EU under the Capitd Adequacy Directive Il, the use of
internal risk management modds (IRMM), of which JP. Morgan RiskMetrics™ is the best
known, will be permitted as long as the indtitutions can demondrate that the modd, and the
operationa procedures relating to the modd, are “sound”. The IRMMs are used to identify
the amount of capitd required for each (netted) securities pogition to cover dl but a smdl
proportion of potentia losses (typicaly 5.009%). The sum of these postions is the firm's
vaue a risk relating to its trading exposures.

The standard vaue at risk methodology (for a criticd appraisa see Danielsson and DeVries
(1997), or Neftci (1998)) requires that the underlying return generating distribution for the
security in question is normaly distributed, with moments which can be estimated using past
data and do not time-vary. The requirement that the underlying return generating processis
norma and predictable over time leads to an under-prediction of both the number and size
of extreme events since it is awdl-known stylised fact that asset return digtributions are fat
talled. Neftci (1998) arguesthat it is possble and indeed very likely that extreme events are
“dructurdly” different from the more usud return generating process.  Under such
circumstances - where liquidity in markets dries up and where routine hedging procedures
become more difficult, or more expensive to execute, or indeed disgppear atogether - the
underlying statistical assumption of normaity becomes entirely ingppropriate. We can think
of three such events in the recent past. The “South East Asan criss’ in September 1997
which was followed by the “Russan debt crids’ of August 1998 and which was in turn
followed by the “Brazilian crisis’ of January 1999. While these crises were not unrelated,
each of them was to some degree or another associated with abnormal trading conditions,

for example after the Russian debt crisis it was reported

1 Although regulators in the USA and in particular the UK had been operating arisk related system of
capital regulation before this date.
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that liquidity in the corporate bond market had “dried up” againgt the background of a
“flight to quality” where market participants paid premium prices for US Treasuries and UK
gilts

In this paper we caculate Minimum Capita Risk Requirements for three of LIFFE's most
popular derivatives contracts. We use an unconditiond model, a GARCH(1,1) modd and a
combination of a Generdlised Pareto Didribution and the empirica didribution of the
returns. Our main finding is that in both back-tests and out- of-sample tests of the caculated
MCRRs, the proportion of exceedences produced by the extreme vaue approach, which
concentrates on the tails, are congderably closer to the nomina probability of violations than
competing approaches which fit a sngle modd for the whole distribution. The rest of this
paper is organised as follows. in Section 2 we present the data sets; in Section 3 we present
the extreme vdue theory; in Section 4 we congder adternative models of conditiona
volatility; we outline our basic methodology for caculaing MCRRs in Section 5; in Section
6 we present our results, and we conclude the paper in Section 7 with suggestions for future

research.

2. Data

In this study we calculate MCRRs for three LIFFE futures contracts - the FTSE-100 Index
Futures Contract, the Long Gilt Futures Contract and the Short Sterling Interest Rate
Futures Contract - based upon their daily settlement prices’. The data was collected from
Datastream International, and spans the period 24/05/1991 to 16/09/1996. Sample
observations corresponding to UK public holidays (i.e, when LIFFE was closed) were
ddeted from the data set to avoid the incorporation of spurious zero returns, leaving 1344
observations, or trading daysin the sample. In the empirical work below, we use the daily

log return of the origina price series.

It is evident from Table 1 that dl three returns series show strong evidence of skewness —
the FTSE-100 and Short Sterling contract returns are skewed to the right while the returns
on the Long Gilt contract are skewed to the left. They are dso highly leptokurtic. In

2 Because these contracts expire four times per year - March, June, September and December - to obtain
a continuous time series we use the closest to maturity contract unless the next closest has greater
volume, in which case we switch to this contract.

©ISMA Centre, The Business School for Financial Markets 2
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particular, the Short Sterling series has a coefficient of excess kurtosis of nearly 200. The
Bera-Jarque test Satistic consequently rgjects normality for dl three derivative return series.
The extreme fat-tailed nature of the three series provides a strong motivation for the

estimation methodol ogies employed in this paper that focus on the talls.

3. Extreme Value Theory

Assuming that X, ,X, ..., X, are the redised returns of some data generating process ke
observed on days 12,...,n, then let Y, denote the highet daily returns (the maximum)*
found below acertain leve of x. In practice the digtribution of the “parent variable’ ( X) is

not accurately known, therefore the exact didtribution of the extremes is dso unknown.
Thus, most studies focus upon the asymptotic behaviour of the extremes. Extreme vaue
theory is the study of the limiting distribution of the order Satittic Y,

Pla, (v, - b,)£x %4® F,(y) [1]
where, b, is the location parameter and a, (assumed to be postive) is the location
parameter. w stands for wesk convergence and K is one of the three asymptotic

digtributions as defined below. If the above equation holds, then it can be sad that the
distribution function of x, = m+w;, belongs to the domain of attraction of F,(y). The

three digributions, given below, have been judified as the limiting stable distributions of

extreme vaue theory.

The Gumbd digtribution (type 1):

F,(y)=expl- €7) for y1 A [2]
The Fréchet digtribution (type 2):
10 for y£EO (3]
Y " texpl- y¥) for y >0 (k >0)

The Welbull digtribution (type 3):

¥ X representsthe log price changes.
* The example given concentrates on the maximum values only. However, an application to minimum
values would follow a comparable derivation.

©ISMA Centre, The Business School for Financial Markets 3
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FY(y):}gxp(. (- y)-k) ffor y <0(k <0) (4]
, ory30

The shape parameter k reflects the weight of the tail in the digtribution of the parent variable
X . The lower is k the fatter is the digribution of X . It a0 gives the number of finite
moments of the digtributions, for example, when k is grester than unity the mean of the
digribution exists whereas when it is gregter than two the variance is finite and so on.

However, k aswdl as b, and a, (known as the “normaisng coefficients’) may be

different for minima and maxima (see Longin, (1996)).

The tall of the distribution of F, is either declining exponentidly (type 1) or by a power
(type 2) or isfinite (type 3). According to Gnedenko (1943): the Gumbel distribution can be
the limit of bounded and unbounded distributions; only distributions unbounded (to the right)
can have a Fréchet digtribution as the limit; and only digtributions with afinite right end point
can have the Welbull didribution as its limit.

The above three digtributions can be grouped together by a generdised formula (see
Jenkinson, 1955):

jfory>t* ift<0
|

[3]
ffory<t* ift>0

F, (y)=exp} (1- t.y)*]

The tal index, t , is related to the shape parameter k by t =- 1/k. Thus, the tail index
determines the type of distribution. t =0 corresponds to a Gumbd distribution whereas
t <0 corresponds to a Fréchet distribution and t >0 to aWeibull distribution. However,
it should be noted that for small vauesof t ,i.e, largevauesof k , the Fréchet and Weibull
digtributions are very close to the Gumbel digtribution.

Other fa-tailed distributions, for example, the Student-t and the Pareto distributions among
others can be linked to the three extreme vaue distributions above. Gnedenko (1943) has
given necessary and sufficient conditions for a particular distribution to belong to one of the
three distributions whereby these conditions can be employed in specific cases to derive the
type of asymptotic distribution of extremes. As such, the norma distribution can be seen to
lead to the Gumbd ditribution; the Student-t obeys the Fréchet digtribution with a shape

©ISMA Centre, The Business School for Financial Markets 4
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parameter k equa to its degrees of freedom; the stable Paretian law, introduced by
Mandebrot (1963), leads to the Fréchet distribution with a shape parameter k equd to its

characteristic exponent.

The digtribution adopted in this paper is the generdised Pareto digtribution given by the
following eguation:

yo*
Sg

Gy:s k)=1- €1- k [6]
e

where, k is arbitrary, with therange of y being O<y<¥ if KEO and O<y<s/k if
k >0. This equation is eaborated below and its interpretation as a limiting distribution is
smilar to that which motivates equation [5], and thus the idea behind the generdised Pareto
digribution isfairly smilar to that of the extreme vaue digtributions, collected together in the
generdised formula of [5]. Thus the generdised Pareto distribution is employed in this paper
for its intuitive goped and since it effectively encompasses the three limiting distributions of

extreme value theory as specia cases

Let F(Dx,) denote the unknown distribution function of the incremental changes in the log

of financid futures prices, the asympitotic theory of extremesis used in gpproximeting the tall
areas of F(Dx,). This approach follows Pickands (1975), Smith (1987), Davison and

Smith (1990), Embrechts et al. (1997) and Neftci (1998).

Closdy following Smith (1987) and Neftci (1998), we derive the Generadised Pareto
Didribution below. Let U and L represent the two thresholds of the tails, with U
representing the ‘Upper’ threshold and L representing the ‘Lower’ one, such that
Dx, >U >0 and Dx, < D <0 lieinthetwo talsof the distribution F(Dx, ). The example

derived below is for the upper tail only, however, the replication for the lower tal is amilar.
The following probability distribution of the random variable Dx, can be defined as:

P(Dx, £U)=F(U) [7]
where, U <x,,and  P(Dx, <x,)=1,i.e, Dx, isbounded by x,.

Now assuming that e, with e T R*, isthe exceedance of the threshold U a timet, then

©ISMA Centre, The Business School for Financial Markets 5
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P(Dx, £U +e )=F(U +e) 8]
where, 0<e, <X, -U.
F, (e) isgivenby

- (o) FlU+a)-FU)

1- F(U) (9]

with F, (e,) representing the conditiond distribution of (Dx, - U ) giventhat Dx, >U .
Following Pickands (1975), F,(e,) can be approximated by the generdised Pareto

distribution Gle, ;s k) with

i ke 6"
Loy i1- 8- 28 k10s">0
Gle ;s ,k):_i_ & s'g [10]
11- gal k=0,s">0

where k is arbitrary, with the range of e, beng 0<e, <¥ if K£0 and O<e, <s"/k if

k >0. Thecase of k =0 isinterpreted asthe limit k ® 0, i.e. the exponentia distribution

withmean s .

Pickands showed that the above equation arises as a limiting distribution for excesses over
thresholds if and only if the parent didtribution is in the domain of &traction of one of the
extreme vdue didributions. The moativation for the eguation is the ‘threshold gability’
property, i.e, if e, is generdised Pareto and U >0, then the conditiond distribution of

e - U (gven e >U ) isdso generalised Pareto. Another property is as follows: if n (the
number of exceedances) has a Poisson didtribution and, conditioningon n, e,,...,e, are
iid generdlised Pareto random variables, then max(e,,...,e,) aso has a generalised

extreme value digtribution (see Davison and Smith, 1990, pp. 395).

Going back to Equations [9] and [10], the distance between Gle,;s ¥ k) and F, (e, ) wil
convergetozeroas U ® X, , i.e. the further we go into the tails:

im  sup Ry (e)- Gle;s® k)| =0 [11]
U® xq 0<g,<x,

However, further conditions for F, (e,) must be satisfied for the above equation to hold,

see Pickands (1975) for more details. Moreover, the G(.) is expected to be a ‘good’

©ISMA Centre, The Business School for Financial Markets 6
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approximation of the F,(.) as long as the threshold leve is high enough. However, an

important question would be: “how high to fix this threshold? . This topic is edorated in the
fina part of this section.

The parameters to be estimated from the generdised Pareto didtributionare s and k.
Methods for estimating the generdised Pareto distribution parameters have been reviewed
by Hosking and Wallis (1987). Whereas maximum likelihood egtimators exist in large
samples provided that k <1, they are asymptotically norma and efficient when k <1/2

(Smith, 1985). Using the same approach as Neftci (1998), the parameters s and k are
obtained by maximising the log likelihood functionof Gle, ;s k).

Asauming that U is high enough o that the generalised Pareto digtribution G(et ;S ,k) with
k 1 0 isagood approximation for the probability F, (et ), then:
P Dx, < et él [12]

The above equation holds for k £0. In the case that k >0, the condition e, <s "k must

be satidfied for the dengty to be well defined.

Following the expresson [12], the dengty function of Dx, can be approximated at an

arbitrary observation point e, , by the density G(g, )

G(et;s“,k): K ? (s“-ka)'l [13]
e s

Finally, by using the density of Gle, ;s k) a each observation point, e, , thefollowinglog
likelihood function is obtained

f(k,s )—-nln 5

(CD>GJ.L('D~

e o oY
K §1- e [14]
2 S A

(e

where, n isthe number of exceedances in a sample of N observations. In this case, the

sample of extremes (n) is obtained by firg estimating the sandard deviation of the whole

©ISMA Centre, The Business School for Financial Markets 7
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sample of the returns and secondly, by sdecting al positive and negative increments greeter
than 1.645 times the standard deviation of the sample in absolute terms to represent the

extremes(n).

The reaults for the estimation of n, s (the normaising coefficient) and k (the coefficient
determining the fainess of the tail) are given in Table 2(i). The number of extremes (n) for
the upper tail is higher than those of the lower tail, except for the Long Gilt contract whereby
the number of extremesis 44 in the lower tail compared to 29 in the upper tail. As expected,
s " ispodtive for dl three contracts, highest for the FTSE-100 index contract, followed by
the Long Gilt and then the Short Sterling contracts. The result is quite smilar for the lower
tal: s* is podtive for dl the contracts, highest for the FTSE-100 index contract, followed
by the Short Sterling and then the Long Gilt contracts. Whereas the parameter k is podtive
in the lower tal for al three contracts (the highest being for the Long Gilt contract, followed
by the Short Sterling and FTSE-100 Index contracts), it is negative for the FTSE-100 Index
and Long Gilt contractsin the upper tall.

The next gep is to estimate the threshold, T, Snce it is important to know where the tail
garts for the calcuation of the MCRRs. Following the definition of U and L,

T >> maqul,|L] [15]

Using the gpproximation given in expresson [9)],

FlU +e, )- F(U)
1- FU) acle, 1ol

the following term is obtained by cross-muitiplying:
1- Fu +e ) @- |F(U)+Gle, )- Gle, JFU)| [17]
F(U) isunknown but sinceit is the unconditiona probability that an observation will exceed

thelevel U , apossble estimate is obtained by using the sample frequency, i.e.,

~ n
FIU)=— 18
L)=3 [18]
Following Neftci (1998), the estimate of the tail probability is
n & lze[. 9]/k
1- Fu+e ) @51 — [19]
i N 8 S u B

©ISMA Centre, The Business School for Financial Markets 8
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where, $'and k are the maximum likelihood estimates of s and k respectively.
Dencting thistail probability etimateby a :
k

KT

' [20]
S

a=nB

Q-l-lo:

Thus, rearranging [20] we obtain the threshold:

I
=

=~

D> a) D
R
E

Q -0

Ta

(@ oY ey end

[21]

Again the result for T (for both the upper and lower tails) is presented in Table 2(ii), with
a issat a 0.01 in this paper. For the upper tail, the threshold (i.e. the start of the tall) is set
at 0.017 for the FTSE-100 Index contract, at 0.010 for the Long Gilt contract and a 0.003
for the Short Sterling contract. Thus, the threshold is further in the tail for the FTSE-100
Index, followed by the Long Gilt and the Short Sterling contracts. The same reault is
obtained for the lower tail, with the threshold being 0.018 for the FTSE-100 Index contract,
0.010 for the Long Gilt contract and 0.002 for the Short Sterling contract. The threshold is
higher in the lower tal for the FTSE-100 Index contract compared to the upper tail. On the
other hand, the threshold is higher in the upper tail for the Short Sterling contract compared

with its lower tall.

4. GARCH modeling
In order to provide a benchmark for the evaluation of the results from the extreme vaue
estimation, we aso caculate MCRRs usng a GARCH modd. The smple GARCH (1,1)
model which we use to caculate the MCRRs is given below:

X, =MW,

h =g+ae’, +bh [22]
where, x, = Log(P./ P.,), w =h"?e, @~ N(0,1).
Following Brooks et al., (1998), the “best” modd of conditiona volatility from a large st
of candidate models was shown to be the GARCH(1,1) modd for the three contracts used

here.

©ISMA Centre, The Business School for Financial Markets 9
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For the purposes of comparison, the probability of an extreme event as predicted by the
gmple GARCH(1,1) modd, Extreme Vaue modd and the empiricd didribution is
estimated. Table 3 shows the probability of the five highest and lowest returns of the three
financid futures contracts as predicted by the extreme vaue procedure, the GARCH(1,1)
model together with the values that are predicted by the origind empiricd distribution
functior?. For the GARCH(1,1) model, the conditional volatility is predicted and the
probability of an outcome equa to or more extreme than the observed return (conditiond on
the predicted volatility for each observation) is recorded. In the case of the extreme value
procedure, returns are estimated by bootstrapping from the Pareto distribution and the
interior of the empirica digtribution for common observetions. This estimation technique is
elaborated in the following section.

As noted, the probability as predicted by the extreme vaue procedure, and the values that
are predicted by the empirica distribution are very asmilar. On the other hand, it can be seen
that the GARCH(1,1) modd performs poorly in moddling the tail events compared with the
extreme value gpproach.

5. A methodology for estimating M CRRs

Capitd risk requirements are estimated for 1 day, 1 week, 1 month and 3 month investment
horizons by smulating the conditiond dendties of price changes, usng Efron's (1982)
bootstrapping methodology. For the Generdised Pareto Didtribution modd, smulation is
carried out by bootstrapping from both the fitted tails and the empirica distribution function.

For the GARCH mode, since the standardised residuals (& / ?) from these models are
iid (according to the BDS test - see Brooks et al., 1998) the w are drawn randomly, with

replacement, from the standardised residuals and a path of future x,'s can be generated,
usng the estimates of a, b, gand nfrom the sample and multi-step ahead forecasts of h, .

In the case of the Generdised Pareto Didtribution, the path for future prices is Smulated as
follows (1) draw x, from the empiricd digribution with replacement, (2) if x, <T(L),

® The distribution function of the log price changes of the contracts.
©ISMA Centre, The Business School for Financial Markets 10
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then draw from the generaised Pareto digtribution fitted to the lower tail, (3) however, if
X, >T(U), then draw from the generdised Pareto distribution fitted to the upper tail, (4)

on the other hand, if x, fdls in the midde of the empiricd didribution, i.e
T(L)<x <T(U),then X, isretained. The number of draws of X, isequd to the length

of the investment horizon. This procedure can be consdered as a type of structured Monte
Carlo study, where we pay paticular atention to the extreme returns in the tails of the
digtribution. It will be these extreme returns which most strongly influence the vaue of the
MCRR, and hence most influence the likelihood of financid distress.

In practice a securities firm undertaking this procedure would have to smulate the price of
the contract when it initidly opened the podtion. To caculate the gppropriate capital risk
requirement, it would then have to estimate the maximum loss that the position might
experience over the proposed holding period®. For example, by tracking the daily value of a
long futures pogition and recording its lowest vaue over the sample period, the firm can
report its maximum loss per contract for this particular smulated path of futures prices.
Repesting this procedure for 20,000 simulated paths generates an empirical didtribution of
the maximum loss This maximum loss (Q) is given by:
Q=(X, - %)  Contracts [23]

whereXx, is the price & which the contract is initidly bought or sold; and x; is the lowest

gmulated price (for along postion) or the highest smulated price (for a short postion) over
the holding period. Assuming (without loss of generdity) that the number of contracts held is
1, we can write the following:
Q_& x©0
% & %p

In this case, Since X, is acondant, the distribution of Q will depend on the distribution of

[24]

X,. Hseh (1993) assumed that prices are lognormaly digtributed, i.e. that the log of the

5
ratios of the prices, Ln?x—i, are normdly distributed. However, in this paper, we do not
09

® The current BIS rules state that the MCRR should be the higher of the (i) average MCRR over the
previous 60 days or (ii) the previous trading days MCRR. At thetime of writing, itisnot clear how
CAD Il will require the exact calculation to be made.

©ISMA Centre, The Business School for Financial Markets 1
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impose this redriction, but instead Lng—— is transformed into a standard normal

5
digtribution by matching the moments of Ln?x—i’s digtribution to one of a set of possble
7]

digributions known as the Johnson (1949) digtribution. Matching moments to the family of
Johnson  digtributions (Norma, Lognormal, Bounded and Unbounded) requires a

5
soecification of the transformation from the Ln?x—i distribution to a digtribution that has a
2}

gandard normd digtribution.  In this case, matching moments means finding a distribution,

whose first four moments are known, i.e. one that has the same mean, sandard deviation,

5
skewness and kurtosis asthe Ln?i distribution.
Xo @
&0 o
For dl the samples of the three contracts, the Lngx—; distributions were found to match
2}

5
the Unbounded distribution.  Therefore, the estimated 5" quantile of the Ln?x—i’s
2}

digribution is based on the following transformetion:

Lng— —snhaé 1645 a)_ d+c [25]
04 e b a

5
a, b, cand d are parameters whose vaues are determined by the Ln?x—i’sfirst 4
a

moments.

From expression 7, it can be seen that the digtribution of Q will depend on the digtribution
Xo

Xl . . . th - a(l ..o.
of —. Hence, the first stepisto find the 5™ Quantile of Lng—;:
X Xo &

=ta [26]

Lng 0 m
&, 5
<

©ISMA Centre, The Business School for Financial Markets 12
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5
where a isthe 5" Quantile from the Johnson Digtribution, m is the Mean of Ln?i and
X0
: - 2 0 I . .
d isthe Standard Deviation of Lngx—;. Cross-multiplying and taking the exponentid,
09

))((—1 = Exponentid[(+a” Sd)+m| [27]
0
therefore

Qo Exponential[(xa” Sd)+ m| [28]
X

We dso use the unconditiona density to calculate MCRRs so that we can make a direct
comparison between this and the two other gpproaches since this much smpler approach
ignores both the non-linear dependence in the conditional voldility (which would be
captured by the GARCH formulation) and the fat tails of the returns series (which would be
accounted for using the extreme vaue gpproach). To use the unconditiona dendty, the xys

are drawn randomly, with replacement, from the in-sample returns.

Confidence intervas for the MCRRs are estimated using the jackknife-after-bootstrap
methodology (Efron & Tibshirani, 1993). These confidence intervals are estimated to give
an idea of the likdy sampling variation in the MCRR point estimates and help determine
whether the differences in the MCRRs for the conditional and unconditiona models are
sgnificantly different.

Asuming that, Ln?% ~ N(m*,Sd%) then, the corfidence interval for the
X0 @)

20 1 o ¢ a0 Y
Lng L |sj|[ Ln?g +1.960* SEéLn?g w
Xog(s%) f Xo @ s0) é X QS%)Hb
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Therefore, the confidence interval of ?8 is
Xo B s

i N é . N
Expl Ln?% +1.960* SE@Lngﬁg 0
- £ g €% Z ) b
and the confidenceinterval of g‘gg isgjven by
Xo & 506

ty
b

The jackknife-after-bootstrap provides a method of estimating the variance of the 5"

.‘. 0
1- Expl' Lnaeii

e 6
+1.960* SE@Ln?i
P& a g &% g

quantile of In(x1/Xo) usng only information in the 20,000 bootstrap samples.

To verify the accuracy of this methodology, we compared the actud daily profits and losses
of the three futures contracts with their daily MCRR forecadts. In this case, instead of
expression (6) we will work with the following:

Q=(x - x,,) Contracts [29]

where X, is the price of the contract a time t and X,,, isthe Smulated price a time t+1.

This will give us a time series of daly MCRR forecess ~ Ou measure of mode
performance is a count of the number of times the MCRR “underpredicts’ redlised losses
over the sample period. This procedure is effectively a back-test of the model’ s adequacy

over the in-sample estimation period.

However, for a fuller evduation of the results we need to perform an out- of-sample test of
the MCRRs based upon the three models, to determine whether the modes are likely to be
useful in the practica Stuation where we are determining the capital requirement to cover a
period in the future when the parameters of the models are estimated using past data. We
therefore caculated MCRRs for a 1 day investment horizon for each contract and for both
short and long positions on day t and then checked to see whether this MCRR had been

exceeded by price movementsin day t+1. Werolled this process forward, recaculating the
MCRRs etc., for 500 days, i.e. using the sample period 17" September 1996 to 12" August
1998. Out-of-sample tests are not commonly gpplied in this literature, but are an essential

part of the model evauation process, since it is likely that back-tests will over-state the
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success of al models, since the data used to assess the adequacy of the MCRR calculations,
has aso been used to determine the parameters of the models. Moreover, back-tests are
likely to be biased towards profligate modds which fit to sample-specific fegtures of the

data, but are unable to generdise in a genuine out-of- sample forecasting environment.

6. The MCRRs

The MCRRs for the three contracts based upon the unconditional densty, the GARCH(1,1)
and EVT modds are presented in Table 4. Close ingpection of the results reveds that the
MCRRs are dways higher for short compared with long futures positions, particularly asthe
investment horizon isincreased. This is because the distribution of log-price changesis not
symmetric: there is a larger probability of a price rise in dl three futures contracts than a
price fal over the sample period (i.e., the mean returnsin Table 1 are dl positive), indicaing
that there is a greater probability that a loss will be sustained on a short relative to a long
postion. For example, the MCRR for along Short Sterling position, caculated using the
GARCH(1,1) modd and held for three months is 3.627%, but is 5.798% for a short

position.

The MCRRs based upon the GARCH(1,1) modd ae adways higher than for the
unconditiond dendty method of cdculation. This result highlights the excess volatility
persstence implied in the GARCH(1,1) modd (see Hseh, 1993, for a discusson of this
issue). A higher degree of perastence implies that a large innovation in contract returns (of
ather 9gn) causes volaility to remain high for a reatively long period, and therefore the
amount of capita required to cover this protracted period of higher implied voldility is dso
higher. The effect of thisvolatility perastence is consgderable — with MCRRs increasing by a
factor of two or three in most cases, compared with those generated from the unconditiona
dengty. For example, the MCRR GARCH(1,1) estimate for a Short Sterling contract
position is 3.627% for a three month investment horizon, whereas the comparable figure for
the unconditional density is 1.643%. For the extreme value theory gpproach, the MCRRs
tend to be smdler than the GARCH(1,1) modd but greater than the Unconditiona Densty
for the FTSE-100 Index and the Short Sterling contracts, however those for the Long Gilt
are smdler than both the conditiond and unconditiona volatility modds. Moreover, capita
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requirements are highest for the contract which is mogt volatile, i.e. the FTSE-100 stock
index futures contract, while the Short Sterling contract is least volatile of the three and
therefore requires less of acapital charge. This holdstrue for al three dternative methods of
estimation.

Approximate 95% confidence intervals for the MCRRs calculated from the unconditional
dengity, the GARCH mode and the EVT approach are presented in Table 5. The most
important feature of these resuits is the “tightness’ of the intervals around the MCRR point
edimates. For example, the 95% confidence interva around the MCRR point estimates of
12.028% for a Long Gilt contract position of three months is 11.787% to 12.509%. Also,
in the cases of dl three contracts the confidence intervas for the conditiona GARCH and
unconditional density modds as well as the extreme vaue theory Approach never overlap.
This indicates that there is a highly datidicaly sgnificant difference between the MCRRs
generated using the conditiond GARCH, the EVT and unconditiona density.

Table 6 presents the proportion of times that the MCRR is violated during the estimation

sample. The back-testing results show that the realised percentages of MCRR violations (for
both long and short positions) are in generd lower than the nomind 5% coverage. The same
holds true for the other two modds. Thus, dthough al the models give rather different sets
of MCRRs, the out-of-sample tests show that they are dl adequate for the estimation of

minimum capita requirements, i.e., the redised percentages of MCRR violations is 5% or
less than 5% (with the exception of the EVT mode for along position in the FTSE contract,
which is 5.1%). However, if the proportion of exceedences is consderably less than 5%,

thisimplies that the capita charge has been set too high and thus bank capital istied up in an
unnecessary and unprofitable way. In this regard, the extreme value modd yidds the best
results overdl, since the proportion of exceedences is much closer to the nomind 5% leve

while for the others the number of exceedences is too few. In generd, the extreme vaue-
generated MCRRs have a proportion of violations which is up to a percentage point higher
than those from the unconditiond and GARCH models. The most noticegble improvement is
for along pogtion in the Short Sterling contract, where EVT gives 4.9% of exceedences,

compared with 4.46% and 4.24% for the unconditiona and GARCH models respectively.
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The out-of-sample test results, shown in table 7, are aso highly supportive of the extreme
vaue approach compared with its competitors. For example, consdering along position in
the Long Gilt contract, the proportion of violations is 2.8% for the unconditiona dengty, and
3.4% for the GARCH modd, whileit is 4.4% for the MCRR generated using extreme vaue
theory. The superior performance of the extreme vaue approach indicates that a securities
firm who adopted this methodology, could cut is capital requirement by up to one third while
dill retaining a number of violations which iswithin acceptable limits

6. Conclusions

Under CAD |1 European banks and investment firms will be able to caculate appropriate
levels of capita for their trading books using IRMMS'. It is expected that these modes will
be in widespread usage, particularly in London, soon after the necessary legidation has been
passed. These models are aready in use in the USA. Hence, close scrutiny of competing
models is required to avoid wastage of capitd resources whilst a the same time ensuring the

safety of the financid system.

Given this devdopment in the internationa regulaory environment, in this paper we
investigated certain aspects of this technology by cdculating MCRRs for three of the most
popular derivatives contracts currently trading on LIFFE. Our results demondrate the
usefulness of the extreme vaue gpproach in providing a superior fit to the data and giving
improved back-testing and out-of-sample results.  Further research in this area might
condder the application of such techniques to other data series or the consderation of

dternative fat-tailed digributions.

" This proposal is due to be adopted by the EU’s Council of Ministers and the European Parliament
under the co-decision procedure.
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Tablel
Summary Statistics of Derivative Returns

Nonregular Cases.

Futures Contracts FTSE-100 Long Gilt Short Sterling
Mean 0.00034 0.00013 0.00004
Variance 8.283E-005 2.654E-005 1.680E-006
Skewness 0.29556* -0.09153* 8.55407*
Kurtoss 2.73215* 3.43428* 199.165*
Normality Test 484.2252* 639.9767* 222326 7*
Statistict

Notes. * represents significance at the 5% leve (2 tailed-test); T Bera and Jarque test

Table?2

No. of Extremes, Parameters of the Generalised Pareto Distribution
& the Threshold Levd:

Upper Talil
FTSE-100 I ndex Long Gilt Short Sterling
n 28 29 19
a 0.02246 0.01243 0.00667
k -0.02521 -0.12329 0.15124
Threshold (V) 0.01664 0.01003 0.00325
Lower Tail
FTSE-100 | ndex Long Gilt Short Sterling
n 19 44 15
a 0.05232 0.01324 0.01773
Kk 0.03680 0.86250 0.54101
Threshold (L) 0.01800 0.00983 0.00189
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Table3
Probability of an Extreme as predicted by the smple GARCH(1,1) model, Extreme

Value Modd and the Empirical Digtribution.

FTSE-100 Index contract

Returns Probabilities

GARCH(1,1 EVT Empirica
)

-0.04569 0.00000 0.00070 0.00074
-0.03862 0.00000 0.00075 0.00074
-0.02795 0.00052 0.00165 0.00149
-0.02568 0.00075 0.00170 0.00149
-0.02449 0.00105 0.00220 0.00223

0.053872 0.00000 0.00070 0.00074
0.049636 0.00000 0.00150 0.00149
0.038794 0.00000 0.00166 0.00149
0.035462 0.00020 0.00170 0.00149
0.028351 0.00036 0.00229 0.00223
Long Gilt contract
Returns Probabilities
GARCH(1,1 EVT Empirica
)
-0.02284 0.00000 0.00077 0.00074
-0.02123 0.00030 0.00075 0.00074
-0.01941 0.00045 0.00180 0.00149
-0.01873 0.00090 0.00187 0.00149
-0.01860 0.00105 0.00222 0.00149

0.036544 0.00000 0.00079 0.00074
0.019327 0.00015 0.00085 0.00074
0.018795 0.00035 0.00095 0.00074
0.017054 0.00060 0.00157 0.00149
0.016885 0.00086 0.00239 0.00223
Short Serling contract
Returns Probabilities
GARCH(1,1 EVT Empirica
)
-0.00901 0.00000 0.00065 0.00074
-0.00809 0.00000 0.00065 0.00074
-0.00715 0.00003 0.00155 0.00149
-0.00660 0.00005 0.00160 0.00149
-0.00562 0.00025 0.00322 0.00149

0.029236  0.00000 0.00085 0.00074
0.008044 0.00001 0.00090 0.00074
0.007369 0.00006 0.00156 0.00149
0.006933 0.00021 0.00170 0.00149
0.006821 0.00040 0.00249 0.00149
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Table4
Capital Requirement for 95% Coverage Probability as a Per centage of the Initial Value for unconditional density and
based on GARCH(1,1) model, and the extreme value theory appr oach

Horizon L ong Positions Short Pogitions
Uncond. GARCH(1,2) EVT Uncond. GARCH(1,1) EVT

FTSE-100 I ndex

3 months 12.775 25.498 20.391 21.102 32.540 30.820

1 month 7.954 10.417 13.369 10.782 14.567 19.763

1 week 3.272 6.031 5.600 3.845 7.905 5.998

1 day 1.392 4.275 2.340 1.419 5.570 3.161

Long Gilt

3 months 7.906 12.028 4.954 10.906 14.070 5.489

1 month 4.855 7.305 3.672 5.623 9.833 4.010

1 week 2.007 4.653 2.506 2.090 5.378 3.005

1 day 0.849 2932 1.152 0.898 3.276 1.413
Short Sterling

3 months 1.643 3.627 2.810 3.061 5.798 4.320

1 month 0.986 2.377 2.001 1.237 4.008 3.010

1 week 0.348 1.423 1.555 0.382 2.799 2.004

1 day 0.127 0.903 0.753 0.130 1.437 0.975
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Tableb

Approximate 95% Central Confidence Intervalsfor the MCRRsgiven in Table 4.

Horizon L ong Positions Short Positions
Uncond. GARCH(1,2) EVT Uncond. GARCH(1,2) EVT
FTSE-100 I ndex

3 months [12.516, 13.105] [24.988, 26.517] [19.575, 20.799] | [20.822, 21.442] [31.889, [29.587,
33.842] 31.436]

1 month [7.815,8.124] [10.209, 10.834] [12.834, 13.636] | [10.581,11.003] [14.276, [18.972,
15.149] 20.158]

1 week [3.181, 3.393] [5.910, 6.272] [5.376, 5.712] [3.759, 3.921] [7.747,8.221] [5.758, 6.118]

1 day [1.388, 1.403] [2.486, 2.638] [2.246, 2.387] [1.408, 1.431] [2.941, 3.121] [3.035, 3.224]

Long Gilt

3 months [7.714,8.145] [11.787,12509] [4.756,5.053] | [10.666, 11.197] [13.789, [5.269, 5.599]
14.633]

1 month [4.764, 4.967] [7.159, 7.597] [3.525, 3.745] [5.556,5.804] [9.636,10.226] [3.850, 4.090]

1 week [1.992, 2.049] [4.560, 4.839] [2.406, 2.556] [2.059, 2.141] [5.270,5.593] [2.885, 3.065]

1 day [0.837, 0.866] [1.942, 2.061] [1.106, 1.175] [0.879, 0.932] [2.838,3.012] [1.356, 1.441]

Short Sterling

3 months [1.552, 1.781] [3.554, 3.772] [2.698, 2.866] [3.034, 3.102] [5.682, 6.030] [4.147, 4.406]

1 month [0.959, 1.017] [2.329, 2.472] [1.921, 2.041] [1.219, 1.265] [3.928,4.168] [2.890, 3.070]

1 week [0.333, 0.367] [0.825, 0.876] [1.493, 1.586] [0.365, 0.404] [1.134,1.203] [1.924, 2.044]

1 day [0.118, 0.139] [0.308, 0.327] [0.722, 0.768] [0.119, 0.145] [0.413,0.438] [0.936, 0.995]
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Table6
Backtests: Realised Per centages of MCRR Violations
Contract L ong Position Short Position
Pand A: Unconditiona Dengity
FTSE-100 4.464% 4.390%
Long Gilt 4.464% 3.423%
Short Sterling 4.241% 3.720%
Pand B: GARCH (1,1)
FTSE-100 4.241% 3.943%
Long Gilt 4.018% 3.348%
Short Sterling 4.092% 3.274%
Pand C. EVT
FTSE-100 5.134% 4.539%
Long Gilt 4.985% 4.539%
Short Sterling 4.911% 4.092%

Note: the nomind probability of MCRR violations was set at 5% (see text for more details).

Table7

Out-of-Sample tests. Realised Per centages of MCRR Violations

Contract L ong Position Short Position
Pand A: Unconditiond Densty
FTSE-100 4.400% 3.800%
Long Gilt 2.800% 2.200%
Short Sterling 1.200% 0.200%
Panel B: GARCH (1,1)
FTSE-100 5.200% 4.400%
Long Gilt 3.400% 2.200%
Short Sterling 1.000% 0.200%
Pand C. EVT

FTSE-100 4.800% 4.600%
Long Gilt 4.400% 3.200%
Short Sterling 1.400% 0.400%

Note: the nomina probability of MCRR violations was set a 5% (see text for more detalls).
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