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Abstract 

 

Current research on financial risk management applications of econometrics centres on the 

accurate assessment of individual market and credit risks with relatively little theoretical or 

applied econometric research on other types of risk, aggregation risk, data incompleteness and 

optimal risk control. We argue that consideration of the model risk arising from crude 

aggregation rules and inadequate data could lead to a new class of reduced form Bayesian risk 

assessment models.  Logically, these models should be set within a common factor 

framework that allows proper risk aggregation methods to be developed. We explain how 

such a framework could also provide the essential links between risk control, risk assessments 

and the optimal allocation of resources.  
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Introduction 
The role of risk management in financial firms has evolved far beyond the simple insurance of 

identified risks, to a discipline that centres on complex econometric and financial models of 

uncertainty. Financial risk management has been defined by the Basel Committee (2001) as a 

sequence of four processes: the identification of events into one or more broad categories of market, 

credit, operational and ‘other’ risks and into specific sub-categories; the assessment of risks using data 

and a risk model; the monitoring and reporting of the risk assessments on a timely basis; and the 

control of these risks by senior management.  

 

Of the trends in financial markets that have had a significant impact on risk management practices 

today, deregulation has been a main driving force.  Since the 1970s the deregulation of capital flows 

has led to increased globalization (Sverrisson and Van Dijk, 2000); deregulation of industries has 

enabled the rapid expansion of new companies such as Enron (Bodily and Bruner, 2002; Bratton, 

2003); and with the deregulation of financial operations new risks have been acquired – with some 

banks offering insurance products and insurance companies writing market and credit derivatives 

(Broome and Markham, 2000). Over-the-counter derivative markets rapidly overcame all others in 

notional size but capitalization, on the global scale, decreased during this period and by the early  

1980s some individual banks, if not national banking industries, had become highly vulnerable.  

 

As a result the supervision and regulation of banks and other financial firms has increased. In 

particular, capital adequacy requirements have been extended to cover more types of risks.1 The first 

Basel Accord in 1988 covered only credit risks in the banking book; the Basel 1 Amendment in 1996 

extended this to market risks in the trading book; and now the new Basel 2 Accord that will be 

adopted by all G10 – and many other – countries in 2007 refines credit risk assessments to become 

more risk sensitive and extends the calculation of risk capital to include operational risks. Also in 

Basel 2, minimum solvency ratios will now be applied to asset management and brokerage 

subsidiaries, and well as to traditional banking operations. 

 

Some financial services have become concentrated into the hands of very few firms. Primarily this has 

been the result of deregulation leading to greater competition (Fraser and Zardkooi, 1999; Stiroh and 

Strahan, 2003) but increased regulation of banking activities has also played a role. Under the new 

Basel Accord some services such as agency and custody will for the first time attract regulatory capital 

charges and consequently the best economic solution may be to out-source the service.  On the other 

hand all types of financial services – insurance, asset management and banking – are being merged 

into one large complex banking organization. This consolidation of services highlights the importance 
                                                 
1 As well as providing a margin for losses, the imposition of minimum solvency ratios might reduce the 
incentives to take risks; however there is evidence that capital requirements are ineffective for the latter (Blum, 
1999; Jones, 2000). 
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of a firm-wide risk management function that is able to examine the total risks of the whole 

organization (Berger, Demsetz and Strahan, 1999). Consequently, changes in regulatory supervision of 

banking activities include a move away from ‘product based’ capital requirements to ‘rules based’ 

capital requirements that may be uniformly applied across all subsidiaries in a large complex group so 

that risks and returns from all activities can be assessed on a comparable basis and properly 

aggregated. 

 

Disintermediation in the traditional banking industry has played an important role in changing the 

structure of financial institutions. Rather than relying on a bank for bonds or loans, many large 

companies now favour the direct insurance of debt by issuing bonds and equity through the capital 

markets (Bhattacharya, Boot and Thakor, 1998). As a result banks are now relying more on flow 

business for their income, especially from fees and commissions on services in corporate finance. The 

decline of traditional banking has, however, been accompanied by a rise of other types of financial 

intermediaries, including pension and mutual funds and non-bank finance companies (Allen and 

Santomero, 1997). Instances of multi-layered intermediation are now frequent and the structure of 

inter-linkages between different agents in the financial sector has become increasingly complex 

(Freedman, 200). Thus new technological advances have facilitated the provision of financial services 

from new types of intermediaries, with internet and intranet based technologies now providing 

improved communications, security, database and order management.  

 

Set against this background, this paper envisions how financial econometric research might best lead 

the financial risk management industry in the future. Its outline is as follows: section I examines how 

market, credit, operational, business and systemic risks have been changing in response to the global 

trends in financial markets discussed above; section II reviews the recent academic literature on risk 

assessment and highlights the most important sources of error in risk capital models; section III takes a 

critical look at risk control, arguing that the current incentive system could fail to reduce market and 

credit risks and possibly increase systemic risk; section IV examines the major issues that are likely to 

be a focus for future research and outlines the framework for new elements of risk modelling; section 

V concludes. 

 

I The Risk Management Impact of Recent Trends in Financial Markets  

Increased capital flows, rapid dissemination of information and faster transfers of funds have all 

served to increase market risks. For example Figure 1 shows that the 5-year average volatility of the 

SP500 equity index is now above 20%, an all time high, and the index short-term volatility has been in 

excess of 15% for several years. Even more noticeable than index volatility is that individual stock 

volatility has increased dramatically during the past few years – particularly when measured at the 

intra-day frequency. Figure 1 also shows that the 5-year average volatility of the IBM stock has almost 
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doubled since the beginning of 1990. The fact that stock index volatility has not increased apace is due 

to a decrease in correlation between returns to stocks within a domestic index. On the other hand, the 

correlation of stock returns within international industrial sectors has increased (Diermeier and Solnik, 

2001). 

 

Deregulation of capital flows in the worlds emerging economies has been the main catalyst for 

globalization in regions such as Eastern Europe and Asia, where the un-checked growth of capitalism, 

poor accounting standards and inefficient financial intermediation precipitated some major credit 

crises during the 1980s (Bisignano 1999). Figure 2 shows that Baa credit spreads in the US recently 

rose again to the high levels of the early 1980s, precipitated first by the Russian debt crisis and then by 

the large number of company defaults in the US communications sector. The increasing pace of 

technological advance was the catalyst behind unprecedented price increases in technology stocks in 

the late 1990s. This enabled some communications companies to pay the ludicrous sums that 

governments demanded for their licences by mounting huge debts on the promise of consumer 

demand, but this demand never materialized. With greater disintermediation of the debt than in the 

previous crises, banks suffered less but economic growth in the US and Europe has been depressed by 

the high default rates amongst technology companies such as Worldcom and Global Crossing.  

 

[Figures 1 and 2 here] 

 

Recent global trends in financial markets have increased many types of operational risks: the rapid 

growth of some new companies adopting dubious accountancy and management practices followed 

the deregulation of industries and subsequently there has been a marked increase in company fraud 

(for example, Enron formed after deregulation of the US energy market in US in the early 1990s); 

systems risks have risen with our increasing reliance on technology; the concentration of key financial 

services into a single geographical location increases operational risks arising from damage to physical 

assets. Financial institutions now offer highly structured products having access to a wide range of 

asset classes across the world and the complexity of these financial instruments highlights several 

types of operational risks: with less transparency in the trading and new and complex systems systems 

risk have increased; products and business practice risks increase because of the danger of mis-pricing 

and mis-selling these products; and ‘human’ risks in general increase because now only a few 

experienced people understand the systems and the products. 

 

In preparation for the imposition of operational risk capital charges under the new Basel Accord, the 

risk management group of the Basel Committee prepared two quantitative impact studies (QIS) on 

operational risks in large banking conglomerates. QIS2, the first of these two studies (Basel 

Committee, 2002) examined operational losses from 30 large banks over the period 1998-2000. The 
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results are reproduced in table 1.2 The highest frequency risks were in retail banking services, 

particularly from such things as credit card fraud and check kiting which fall into the external fraud 

category, and in execution, delivery and process management in general. Whilst total losses were also 

highest in these categories, these high frequency low impact risks have relatively small impact on the 

regulatory capital charge because their expected loss is normally covered by general provisions in the 

business. Loss severity per event was greatest for internal fraud in trading and sales, commercial 

banking and asset management, and for clients, products and business practices risks in corporate 

finance. The growth of complex structured products has clearly increased pricing model risk. Model 

risk is not a high frequency low severity operational risk. It can impact the operational risk regulatory 

capital charge significantly and should therefore be a major focus for operational risk control. 

 

[Table 1 here] 

 

Business risk – the risk of insolvency due to inappropriate management decisions – has grown as the 

structure of financial institutions continues to change. As the demand for banking loans declines but 

the need for corporate finance increases, this has the effect of reducing market and credit risk for 

banks but they now face more business risks. A case in point is Abbey National, now the 6th largest 

British bank, but originally just a building society. Having obtained a license for retail banking, it 

rapidly expanded its services to treasury operations and corporate finance. This lasted only a few 

years, until large losses recently revealed how the management had over-extended itself with these 

particular decisions. Business risk has also increased with the mergers and acquisitions that have 

accompanied consolidation of the financial industry (Cornette and Tehranian, 1992). Historically 

banking, insurance and asset management have very different risk management cultures that can be 

difficult to merge. Irreconcilable differences can even arise between investment and commercial 

banking: for example, all the conglomerates formed after the ‘bang bang’ in the UK in the 1980s, 

including BZW and CountyNatWest, have now failed. As a result, international accounting firms have 

developed new audit models to account for the growing importance of business risks when valuing the 

firm (Morgan and Stocken, 1998). 

 

Systemic risk is the risk of a systemic event leading to mass insolvencies in the banking and other 

sectors. It arises from the ‘domino effect’ emanating from a limited idiosyncratic shock when agents’ 

                                                 
2 The second study of operational losses, QIS3 (also available from www.bis.org), covered 90 banks over one 
year. Unfortunately that year was 2001 and so the results, whilst otherwise similar to those of QIS2, were 
dominated by a single event: the damage to physical assets in commercial banking operations located within the 
World Trade Centre in Manhattan. Clearly, as re marked above, the concentration of key services into one 
location increases this type of operational risk. 
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behaviour is homogenous.3 The similarity of risk management practices can increase systemic risk 

through increased ‘herding’ behaviour. For example, consider the traditional ‘portfolio insurance’ 

strategies that are popular with pension funds (Rubinstein and Leland, 1981). If the price of some risky 

assets fall the funds that have not performed well as a result must maintain their solvency ratio. They 

may be forced to sell risky assets and, assuming they sell the assets that are under-performing, the 

price of these will be depressed even further. But now the next level of funds, though not originally 

concerned by their solvency ratio, may be forced into selling assets. The vicious circle continues and a 

downwards spiral in prices is instigated.  

 

From this perspective, the trend towards increasing regulation of the financial industry could in fact be 

counter-productive because it imposes homogeneity on risk assessments and control (Kaufman, 1996). 

Increased integration of the financial industry has increased the contagion effect that is central to 

systemic risk (Rochet and Tirole, 1996). Systemic risk has also been enhanced by illiquidity spillover 

effects – where problems in one market induce firms to liquidate positions in other markets – and the 

concentration of key services in the hands of very few firms: in the event of a crisis, such as a terrorist 

attack or a major computer virus, an essential activity could be gravely affected with catastrophic 

consequences. There is a large academic literature on the development of theoretical models and on 

the mounting empirical evidence of systemic risks in the financial industry: a long and useful survey 

paper is given by De Bandt and Hartmann (2000). 

 

Finally, the convergence of the industry towards large complex global organizations highlights the 

need for a firm-wide risk management function that can take proper advantage of new diversification 

opportunities (Berger, Demsetz and Strahan, 1999). Senior managers require consolidated risk reports 

that cover all activities and all risks in all locations. With the need to net many types of risks across the 

whole enterprise a new type of risk model risk has emerged: ‘aggregation risk’ may be defined as the 

model risk resulting from inappropriate assumptions about risk factor dependencies.  

 

II Risk Assessment 

Firm-wide risk assessments are linked via solvency ratios to capitalization. Thus banks have a definite 

interest in refining their minimum regulatory capital calculation methods, in so far as regulatory 

capital constraints could become biting.  Also important for listed companies is the need to satisfy 

rating agencies that they hold sufficient capital to justify their credit rating. Equity analysts examine 

capitalization as a key element of firm value.  But beyond regulations and ratings, accurate risk 

assessment and the corresponding linkage to capital is a tool for increasing shareholder value. It is the 

key input to management decisions on the global positioning of risks in an uncertain environment and 

                                                 
3  A systemic event arises when bad news within one firm, sector or market contaminates other firm(s), sector(s) 
or market(s) with adverse effects.  
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consequently risk assessment underpins all aspects of effective risk control. Given the importance of 

accurate risk assessment of financial operations it has been in the mainstream of academic research in 

finance for many years. Here we survey only some of the more recent papers. 

 

Market Risk 

The RiskMetrics product introduced by JPMorgan in the early 1990s set the standard for market risk 

assessment: a structural model of the P&L distribution is obtained via mapping positions to risk 

factors and marking to market or model daily, and the risk metric of a lower percentile of the P&L 

distribution is termed the Value-at-Risk (VaR).4 During the last decade there has been a vast amount 

of academic research on the use of VaR for market risk assessment. One strand develops superior risk 

metrics (following Artzner et. al. 1999); another adapts standard VaR models for different portfolio 

effects such as liquidity, non-linearity and non-normality (Bangia et. al., 1999; Britten-Jones and 

Shaefer, 1999; Eberlien et. al. 1998; Glasserman, et. al., 2002); yet another applies risk factor 

dependency models based on copulas that are more appropriate for portfolio VaR than assuming 

simple linear correlations (Embrechts, McNeil and Straumann, 1999; Embrechts, Höing and Juri, 

2003; Embrechts, Lindskog and McNeil, 2003).   

 

However a recent strand of research has cast doubt on the efficiency of these structural VaR models 

for risk capital estimation. For instance, Berkowitz and O’Brien (2002) show that structural models are 

too conservative in their VaR estimates and have difficulty forecasting changes in P&L volatility. One 

reason is that many approximations are needed to overcome the theoretical and computational burden 

of aggregating the risks of thousands of individual positions. Another is that, being based on close of 

day values, they omit the intra-day position changes that are implicit in daily P&L. Berkowitz and 

O’Brien demonstrate that reduced form VaR forecasts based on the generalised autoregressive 

conditional heteroscedasticity (GARCH) models that were introduced by Engle (1982) and Bollerslev 

(1986) are better able to capture time-variability in P&L volatility, producing lower VaR estimates 

overall but which nevertheless capture volatility clustering so that losses in excess of VaR are fewer 

and less excessive. Subsequently Burns (2002) investigates the use of different GARCH models for 

reduced form VaR forecasting, showing that more reactive GARCH models provide better forecasts 

than more persistent ones.   

 

Credit Risk 

There is no single ‘best practice’ model for credit risk capital assessment, although the Basel 2 

‘Internal Rating Based’ methodology provides a simple portfolio model (Gordy, 2003). Crouhy, Galai 

and Mark (2000) survey the main approaches:  the structural firm value models that are broadly based 

                                                 
4 See www.riskmetrics.com  
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on the option theoretic approach of Merton (1974) and were popularised by the ‘CreditMetrics’ 

methodology;5 the ratings based models developed by the KMV corporation; the macroeconomic 

model of Wilson (1997); and the actuarial loss model of Credit Swisse First Boston (1997). Whilst 

attempts have been made to recover a unified structure (Gordy, 2000; Hermann and Tasche, 2002) 

there are fundamental differences between them and no consensus on the best approach. In contrast to 

market risk, there has been little detailed analysis of the empirical merits of different models for credit 

risk capital assessment. Nickell, Perraudin and Varotto (2001) suggest that both firm value and rating 

based models substantially underestimate the risk of bond portfolios  but the marginal and joint 

distributions of important risk factors such as default and recovery rates are extremely difficult to 

model in the absence of reliable data. Consequently it is difficult to test these models (Jackson and 

Perraudin, 2000) and none has been sanctioned by banking regulators for the assessment of minimum 

regulatory capital. Academic research in this area has instead focused on the determinants of credit 

risk factors (Duffie and Singleton, 1997 and 1999; Collin-Dufresne et. al., 2001) the dependency 

between risk factors (Hu and Perraudin, 2001) and the integration of credit risk to market VaR models 

(Duffie and Singleton, 2003). 

 

Operational Risk  

With institutions already mapping events to operational loss categories and building warehouses of 

operational risk data, the pivotal issue is increasingly the analytical methodologies, the so-called 

Advanced Measurement Approaches: ‘AMA’. Even though the data collection is still at a relatively 

early stage, the AMA model design will influence the data collected, so users already need to know 

the modelling methodology, even if it is not fully implemented until a later stage.  

 

At the time of writing the industry has (unofficially) agreed upon the actuarial loss model approach as 

‘best practice’ for operational risk assessment (Alexander, 2003; Embrechts, Furrer and Kaufmann 

2003; de Fontnouvelle et. al. 2003; Netter and Poulson, 2003).  But many data reliability issues still 

need resolving. An internal loss experience for the important (low frequency high severity) operational 

risk types is rare and any relevant data are likely to be in the form of risk self-assessments and/or 

external loss experiences. Also, for all risk types the loss experience data require filtering because 

severity data are truncated and frequency data can be subject to significant reporting bias. Many 

variants of AMA concern the design and validation of self-assessments, the scaling external data and 

the methods used to combine data from different sources. 

 

                                                 
5 See www.riskmetrics.com  
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Aggregation Risk  

Currently each type of risk is assessed using a specific structural model and risk is assessed by a single 

metric such as ‘VaR’ at a very early stage. A ‘bottom up’ approach is standard where risks are 

assessed first at the instrument or event level by risk category (separately for credit, market, 

operational and other risks); then individual assessments are progressively aggregated into portfolios 

of similar instruments or activities; these are aggregated over business units and, usually only at the 

very end, across major classes of risks, to obtain a global representation of firm-wide risk. This 

process leaves no option but to apply very basic rules to aggregate risk capital first into broad 

categories, then across different business units and finally over different categories of risk.  Often 

individual risk estimates are simply added to obtain an approximate upper bound for capital – with 

aggregation based on an independence assumption being regarded as an approximate lower bound. 

However neither of these bounds are necessarily correct, and nor are they accurate.  

 

To see this, Alexander and Pezier (2003) compare the aggregate risk capital assessment based on the 

assumption of independent risk factors with the upper bound assessment based on fully dependent risk 

factors. While the independency assumption gives an aggregate risk capital estimate that is a small 

fraction of the upper bound it still does not provide a satisfactory lower bound when compared with 

real economic capital data from major banking conglomerates. They attribute this to many negative 

tail correlations between fixed income and equity risk factors.  

 

Model Risk 

All risk models have the same general structure. The model is based on assumptions about the 

behaviour of the identified risk factors and some data are obtained on these risk factors. Given the 

model assumptions and the data, parameter forecasts are made to forecast the (profit and) loss 

distribution over the risk horizon of the model and the risk metric (usually a quantile or a standard 

deviation) is applied.  Two types of model risk arise from (i) inappropriate assumptions and (ii) 

incomplete data. Both give rise to model risk because they generate uncertainty about parameter 

forecasts. Inappropriate assumptions include univariate and bivariate risk factor distributional 

assumptions (such as normality, constant volatility and modelling dependencies with simple linear 

correlations). In the aggregation model particularly crude assumptions are made about dependencies 

between broad categories of risk, as explained above.  
 
Asset or risk factor marginal distributional assumptions are the main source of pricing model risk 

(Cairns, 2000; L’Habitant, 2000; Charemza, 2002; amongst others). However little research is 

available on issues that specifically relate to risk model risk, with the exception of Derman (1997).  

What is clear is that in a firm-wide risk capital model it is rather inane to focus on the model risk 

arising from marginal distributional assumptions when individual risk assessments are aggregated 
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using only very basic dependency assumptions. For the purpose if economic capital allocation and 

particularly for minimum regulatory capital calculations it is the aggregation risk that really matters. 

 

III Risk Control  

Regulatory and technological changes have served to increase both the accuracy of risk assessments 

and the frequency with which risks are reported.  But this trend towards more accurate ‘real-time’ 

monitoring of risks is not necessarily a good thing. With real-time monitoring traders are immediately 

aware of variations in Value-at-Risk (VaR) or whatever the risk metric used to set limits and just 

knowing the risk in real-time could produce a panic reaction, even if there is no threat to the minimum 

solvency ratio.  A limit could be easily be breached intermittently in a particular activity and, when 

previously we wouldn’t know it, now we do.  

 

However, accurate real-time risk monitoring by itself does not increase systemic risk. It is only when 

many market participants react in the same way when they receive the same signals that the stability of 

the whole system can be threatened. Effective risk reduction depends, primarily, on the incentives 

given for risk control. But in the current system junior managers are given ‘ownership’ of risks: that is, 

at the same time as monitoring and reporting them, they also have the power to make decisions about 

the control of these risks. Moreover, these people are often rewarded on an individual basis – usually 

for reducing their ‘own’ risks, regardless of the effect on other risks within the organisation or other 

risks in the financial system – and common classical statistical objectives are applied to all, such as 

‘minimize the variance of a hedged portfolio’ or ‘maximize risk adjusted return on capital’.  

 

There are good reasons why the current incentive system could fail to reduce market and credit risks 

and even increase systemic risk. Firstly, when objectives are optimised regardless of the effect on 

other risks and returns in the organization it is highly unlikely that global hedging will be efficient for 

the enterprise as a whole. The decisions made to control risk are best taken at the senior management 

level in the organisation because senior managers could choose to increase some risks when this has 

global benefits to the organization. Secondly, the use of incentives based on classical statistical 

objectives tends to increase homogeneity in risk control. Many financial markets are dominated by the 

leading actions of a few large conglomerates, so when risk mangers in these organisations have 

incentives based on similar objectives they have similar reactions to market events. Panic reactions 

could spread very quickly through the markets, leading to increased volatility and even mass 

insolvencies in the banking and other sectors.  

 

Even though systemic risk is a primary concern for regulators, recent changes in regulations have 

served to increase homogeneity in the risk control process. By defining ‘sound’ practices that increase 

the accuracy and frequency of risk reporting and prescribing internal models for regulatory capital that 
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are also used for internal economic capital calculations, both signals and reactions to these signals are 

becoming more homogeneous. Many large banks have ‘real time’ VaR monitoring with frequent 

reporting to junior managers that are given incentives which are sub-optimal from the firm-wide 

perspective, and are also based on statistical objectives that are fairly homogeneous across the banks 

that are operating that business activity. In portfolio management the presence of different types of 

investors – arbitrageurs or hedgers, trend followers or noise traders – has been shown to prevent the 

formation of asset price bubbles and crashes (DeLong et. al., 1990; Shleifer and Vishney, 1997; 

Brunnermeier, 2001; Wurgler and Zhuravskaya, 2002). Similarly, senior management should aim to 

provide risk management incentives that induce heterogeneity in risk control.  

 

IV Future Directions for Risk Model Research 

We have seen that aggregation risk is an overwhelming source of risk capital model risk. Fine-tuning 

of market and credit VaR estimates of individual instruments or small portfolios may impact the 

relative risk capital allocations within a particular activity but, since very crude aggregation rules have 

to be used, this has less impact on the risk capital at the level of the asset class or business unit.  At the 

level of the firm, aggregation risk underpins the poor performance of structural risk capital models 

compared with the reduced from alternative. We have also seen how another important model risk 

arises from incomplete data. This is significant in long term market risks, in credit risk assessment 

where for instance multivariate default and recovery rate distributions for high credit ratings have 

virtually no historical basis, and it is naturally of great importance for operational risk assessment. 

Thirdly, we have argued that effective risk reduction at the global level depends, primarily, on the 

incentives given for risk control. A quantitative model is required for risk control, a model that has an 

explicit link with the risk capital assessment model. Only in this way will the incentives given to 

individual managers’ induce truly efficient hedging of risks. In this section we examine how these 

three considerations could influence future research in risk management.  

 

A Common Framework  

Many large organizations are now changing their subsidiaries from independent legal entities to 

branches that fall under the jurisdiction of the regulator of the head office. As branches do not need to 

physically hold the necessary capital, new techniques for the proper aggregation of risks and new 

integrated risk systems will be on the agenda for future research.6 The global positioning of risks is an 

immensely difficult task in the current environment. Financial risk management has focussed on 

market and credit risks only, with some important but less easily quantifiable risks being ignored. But 

we have seen that operational, business and systemic risk are all likely to be perceived as being more 
                                                 
6 Risk aggregation should be distinguished from risk integration, despite the similarity of these terms to a 
mathematician. The implementation of an integrated risk management system that can monitor the net effect of 
many scenarios (such as a 1% rise in interest rates) is currently one of the great challenges facing risk managers 
of large conglomerates. 
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important in the future. As new, or previously less important risks take the centre stage, and large 

complex banking groups are faced with the difficult tasks of aggregating risks from models that have 

completely different foundations, and integrating systems that have completely different technologies 

and data warehouses, the need for a clear distinction between market, credit, operational and other 

risks dissolves. In a perfect world these traditional boundaries would be relaxed, as banks adopt a 

more ‘holistic approach’ to risk management where all risks are assessed on similar principles and 

modelled within a single system. It is only within a unified framework such as this that we can 

develop proper methods for risk aggregation and thus aim for the efficient global positioning of risks.  

 

The first step in this direction is to define a common risk assessment framework for all types of risk.  

However very little academic research has focused on this area, with the exception of Alexander and 

Pezier (2003) who apply a reduced form common risk factor model to investigate the effect of risk 

factor dependencies on market and credit risk aggregates. Using historical data on risk factors that are 

common to many business units and to different risk types, Alexander and Pezier compare the 

economic capital estimates obtained using the model with the actual economic capital data from 

several major banks. In the common factor model, the aggregation of risks is based on the historical 

distributions of risk factor and their correlations. Another advantage modelling risks and returns in 

different business activities in the same framework is that it facilitates the constrained optimisation of 

a risk adjusted return performance objective and provides an explicit link between risk control and risk 

capital assessments.  

 

No explicit link between risk control and risk assessment is necessary to comply with the ten 

principles of risk management sound practices set out by the Basel Committee (2001) for the new 

Accord. Nevertheless, such a link is essential for internal purposes. Business unit managers need to 

understand how risk controls affect their economic capital, and whether the benefits of reduced 

economic capital outweigh the costs of the controls. It is therefore unfortunate that recent legislation in 

the US is likely to hinder the development of this link in the near future. Following the recent spate of 

large-scale company frauds, Enron being one particularly important example, the Sarbanes-Oxley Act 

of July 2002 has introduced new legislation for US listed companies, holding CEOs and CFOs 

personally liable for the accuracy of their corporate disclosures. A reliable risk management process 

has become key to legal indemnity in the US, yet many senior executives (or their legal 

representatives) seem satisfied with no more than a qualitative assessment of risk controls.  

 

Bayesian VaR 

With so much historical data available for assessing short-term market risks, some risk managers 

believe it possible to assess even long-term market risks with a reasonable degree of accuracy. This is 

unfortunate, even more so because this ethos has been carried into the development of risk sensitive 
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portfolio models of credit risk and to classical statistical models of operational risk based on historical 

loss experience data. But whatever the assumptions, all models are subjective and all data are 

incomplete. Even the decision to use ‘objective’ historical market data is the result of a subjective 

choice. And since historical data on risk factor returns are not forward looking, they are incomplete. 

They contain no expectations of future returns. Different agents may justifiably have very different 

prior views about default rates, long-term volatilities or any other important inputs. 

 

Hence a key direction for future research in market and credit risk assessment is to incorporate prior 

beliefs about the future. Surprisingly, given the huge literature on Bayesian estimation, little research 

on this can be found in the risk management literature other than in Dowd (2000) and Siu, Tong and 

Yang (2001). These papers apply Bayesian market VaR models to capture both a subjective view 

towards the financial markets and the information contained in historical data. Closed-form Bayesian 

VaR estimates obta ined through conjugate prior assumptions contain classical VaR estimates as a 

special case corresponding to uniform priors. With risk managers now being required to provide 

subjective assessments of new types of risk (e.g. operational, business and systemic risks) and 

forecasts of market, credit risks over one year or more, more research on the use of Bayesian methods 

for forecasting all types of risk is needed. 

 

Research into operational risk assessment is still at an early stage, yet the experience of handling such 

incomplete data has already been very instructive. The use of subjective data from expert opinions 

and/or ‘risk self-assessments’ in addition to historical loss experiences is rapidly becoming standard 

practice in operational risk assessment. The industry already has much to learn from early research 

into Bayesian methods for operational risk assessment. Commercial ‘AMA’ solutions, aiming to 

provide maximum flexibility in model design, offer many functional forms for frequency and severity 

distributions but little guidance on how the type and source of data should influence their choice. The 

result can be a complex and expensive system that lacks transparency. Suppose a firm employs a 

negative binomial frequency distribution and a gamma severity distribution for internal loss 

experiences. Then how should the severity data be de-truncated and combined with loss experience 

data from an external consortium, which may of course use a different truncation level? And if risk 

self-assessment data are used to provide subjective but more forward looking judgements on the loss 

model over the risk horizon, can psychologically meaningful questions be designed that are 

compatible with this choice of functional forms? If so, can the results be properly validated by risk 

assessments based on external data and how should they be updated using internal loss experiences? 

Further limitations are that (i) in order to deal with the diverse data types and sources that are 

characteristic of operational risks, these systems sometimes resort to ad hoc procedures; and (ii) they 

provide neither an assessment of dependencies between different types of operational risks, nor any 

link from risk control to risk capital assessment. In contrast, the Bayesian operational risk assessment 
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methodologies advocated by Cruz (2002) and Alexander (2003) amongst others are specifically 

designed to deal with multiple types of data. 

 

Linking risk control with risk capital 

We end this section by providing a brief outline of two new types of risk model. The first is a risk 

control model where subjective risk assessments in a Bayesian VaR model provide the link between 

risk control and risk capital. The second is a common factor risk assessment model that admits the 

proper aggregation of economic capital and, through the maximization of firm-wide risk adjusted 

return on capital (RAROC), can determine the optimal costs of capital that should be charged to each 

business unit in a risk management incentive scheme. 

 

Figure 3 depicts a framework for an operational risk control process where the effect of risk control on 

operational risk capital can be assessed. The model is simplified so that only one key risk driver is 

associated with each risk indicator: product complexity affects the number of failed trades; systems 

quality (the age of the system, the staff expertise and the systems resources) affects system downtime; 

and financial incentives (pay structure, bonus scheme, budgetary incentives and so forth) affects staff 

turnover.7 The link from risk control to risk capital is provided when risk self-assessments are 

explicitly based on the values of key risk indicators. Then a Bayesian risk assessment model that 

combines two data sources – historical loss experiences and risk self-assessments – into a single loss 

distribution provides a risk capital estimate that is linked to the values of key risk drivers. This type of 

risk management model provides a framework for a scenario analysis that is capable of assessing the 

effect on capital limits as any risk driver is changed.  

 

[Figures 3 and 4 here] 

 

In our second example, Figure 4 depicts a common factor model that captures dependencies between 

broad risk categories across business units, and between business units across risk categories. This is 

the common factor model framework introduced by Alexander and Pezier (2003) for market and credit 

risk aggregation. Their results show that senior management could choose to increase economic 

capital in some of the more flexible lines of business because, when common risk factors are 

correlated, increasing the risks in some activities could have the effect of reducing the total economic 

capital for the firm. Figure 4 extends their framework to include the cost of capital charged to each 

business unit in the optimisation objective function. Through the maximization of firm-wide risk 

adjusted return on capital (RAROC), the model can determine the optimal costs of capital that should 

                                                 
7 In the more general framework several key risk drivers would be common to different key risk indicators and 
this framework could also be used to derive the dependencies between different types of operational risks that 
are needed for proper operational risk aggregation. 
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be charged to each business unit in a risk management incentive scheme that will be optimal for the 

firm as a whole. 

 

V Summary and Conclusions  

Up to now, financial econometric research has focussed on the assessment of market and credit risk 

with little work on other types of risk or on other risk management issues. But current trends in 

financial markets are changing our perception of the important risks.  In particular, operational, 

business and systemic risks are all becoming more important for the shareholders of the large banking 

conglomerates that exist today and for their firm-wide risk management functions, whose primary aim 

is to allocate internal resources efficiently. Much of the literature concerns just one of the sources of 

model risk in risk capital models: the errors resulting from inappropriate risk factor distributional 

assumptions. Whilst this is the main source of pricing model risk, there are other important sources of 

model risk in risk capital models and these should be examined in future research on risk assessment.  

 

For the purpose of forecasting risk all models are subjective and all data are incomplete. Even the use 

of a volatility forecast derived from a statistical model whose parameters are estimated using historical 

returns data is a subjective choice. And the data are incomplete because they contain no information 

on agents’ beliefs about what will happen in the future. One of the lessons to learn from our early 

experiences with the assessment of operational risks is that subjective risk self-assessments and expert 

opinions, or data based on the experiences of other firms can improve upon assessments that are based 

solely on internal historical experiences. Thus it seems likely that a new strand of academic research 

will focus on proper Bayesian methods for assessing market, credit and operational risks combining 

data from multiple sources into one risk assessment for each risk class.  

 

For a large banking conglomerate the overwhelming source of risk capital model risk is that arising 

from the use of crude risk aggregation techniques. Senior managers may well ask what is the point in 

providing a relatively precise assessment of the market and credit risk for a portfolio when very crude 

aggregation rules are applied to aggregate risks into first business units and broad risk categories and 

then eventually for the whole firm? These crude rules are necessary because each broad type of risk is 

assessed via a structural model and there is little commonality between the models used for different 

types of risk. To derive proper methods for risk aggregation requires going back to the drawing board, 

to re-define the framework of risk models. There is a clear need for further research into reduced form 

VaR models based on common risk factors in which component risks can be aggregated using realistic 

assumptions about risk factor dependencies.  

 

Financial econometric research could also broaden its scope to encompass some of the wider issues 

facing large conglomerates. Risk control is evolving towards the traditional management role, where 
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optimal incentives are decided by senior management for the benefit of the entire firm, not an 

individual junior manager. This requires a business model for risk control, which not only accounts for 

costs but also includes firm-wide benefits in the objective. We have argued that future research into 

risk capital assessment models should both quantify the effect of risk control on the risk assessment 

and derive optimal incentives for risk control. A framework for two risk models that incorporate these 

effects has been outlined. 

 

In summary, we have argued that there is a clear need for further research into reduced form VaR 

models that are set within a common framework, admit the proper aggregation of risk, are capable of 

incorporating prior beliefs about the future and, perhaps most importantly, provide an explicit link 

from risk control to the risk capital assessment and to the optimal allocation of resources. Although 

this agenda is very ambitious, with more resources available to academic research in financial risk 

management much of this could be achieved during the next decade. 
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Table 1: Results from Basel Committee Quantitative Impact Study 2 

The QIS2 of the Basel Committee (2002) reported results on operational losses by operational risk type (i.e. by event category and business unit) from 30 large global banking 

institutions, each with tier 1 capital in excess of 3 billion Euros, during the three year period 1998 – 2000. The upper table reports the total number of loss events in each risk 

type and the lower table reports the total losses in million Euros, totalled over the 30 banks and over all three years.  

 

  

Internal 
Fraud 

External 
Fraud 

Employment 
Practices & 

Workplace Safety 

Clients, Products & 
Business Practices 

Damage to 
Physical Assets  

Business 
Disruption & 

System Failures 

Execution, Delivery 
& Process 

Management 

Total 

Corporate Finance 4 3 15 15 1 0.01 33 71 
Trading & Sales 16 6 36 107 3 34 708 910 
Retail Banking 419 3693 267 641 350 19 1758 7147 
Commercial Banking 68 519 23 44 63 13 288 1018 
Payment & Settlement 12 60 8 21 28 48 593 770 
Agency & Custody 6 2 12 31 10 8 347 416 
Asset Management 4 4 10 32 0.01 2 233 285 
Retail Brokerage 4 2 11 94 9 187 420 727 
Total 533 4289 382 985 464 311 4380 11344 
         

  

Internal 
Fraud 
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Employment 
Practices & 

Workplace Safety 

Clients, Products & 
Business Practices 

Damage to 
Physical Assets  

Business 
Disruption & 

System Failures 

Execution, Delivery 
& Process 

Management 

Total 

Corporate Finance 3293 25231 6109 131012 16 0 28432 194093 
Trading & Sales 68819 826 7837 89038 100 6221 325593 498434 
Retail Banking 114937 198575 53836 385722 60174 1796 191617 1006657 
Commercial Banking 78765 287275 3569 76159 13534 1359 135346 596007 
Payment & Settlement 732 4767 718 1058 2045 2638 111993 123951 
Agency & Custody 2265 267 374 7517 859 1707 43244 56233 
Asset Management 8566 603 1037 8968 0 644 34302 54120 
Retail Brokerage 426 596 1845 17387 561 5646 26029 52490 
Total 277803 518140 75325 716861 77289 20011 896556 2581985 
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Figure 1  

US Equity Market Statistical Volatility  

The main Figure shows a 5-year equally weighted moving average statistical volatility of the SP500 index in dark grey bold, along with the more variable short-term 
exponentially weighted average (EWMA) estimate with the ‘RiskMetrics’ smoothing constant 0.95. Inset is a graph showing similar volatility estimates for the stock IBM 
over the same period. All data are weekly closing prices, adjusted for splits and dividends, from www.yahoo.com .  
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Figure 2 

Baa Credit Spreads: 1955-2003 

The graph shows a time series of monthly data on Baa credit spreads obtained by subtracting the 10year US treasury yield from Moody’s Baa bond index. Both series were 
downloaded from www.federalreserve.gov/releases/h15/data.htm . 
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Figure 3 

Linking Operational Risk Control to Risk Capital  

In operational risk, a ‘key risk driver’ (KRD) is a variable that can be directly affected by management actions. Examples of KRDs given here are product complexity, 
systems quality and incentive schemes. One or more key risk drivers is linked to each ‘key risk indicator’ (KRI) – although for simplicity only one KRD is depicted for each 
KRI here – and common KRDs can be used to identify dependencies between different types of operational risks. A KRI is a variable that is associated with the loss 
frequency and/or loss severity of an operational risk, such as the number of failed trades, systems downtime and staff turnover. The object of this schematic is to show that 
when risk self-assessments are based on KRI values and when these risk self-assessments are used in conjunction with historical loss experience data to forecast the loss 
model, then the risk management process has an explicit link from risk control to risk capital.  
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Figure 4 
 
Application of Common Factor Model to EC Aggregation, Risk Control and Optimal Incentive Schemes 
 
The linear factor model is y = Xβ + ε where y is a vector of historical returns to each of the business units and each of the risk types, X is a matrix of common risk factor 
returns, β is a matrix of risk factor sensitivities (either given by price models or estimated by regression on the factor model, as indicated by the dotted lines) and ε denotes the 
residual returns. Expected returns are E(y) = E(X)β + E(ε) and aggregate economic capital (EC) is determined from V(y) = β′ Vβ + V(ε). Total expected return (ER) is the sum 
of the components of E( y) and firm-wide RAROC = [ER - αEC]/EC where the cost of capital α is fixed (e.g. to the risk-free interest rate). The optimiser maximizes RAROC 
by changing β subject to constraints on the feasible business activities and by changing the cost of capital charged to each business unit. Risk control then implements the 
optimal β and the optimal EC and costs of capital determine the incentive scheme. 
 
 
 
 

Optimizer 

Risk Factor Returns 
Risk Type Returns to Business Units Factor Model Factor Model 

Historical Database  
Durations, Deltas, 

CAPM Betas  

Expected Return  Economic Capital Optimal EC Optimal Return  

RAROC  Optimal RAROC 

Optimal Durations, 
Deltas, CAPM Betas  

Sensitivities Optimal Sensitivities  

Costs of Capital  Optimal Costs of Capital 


