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Location models with a continuum of consumers have severe conceptual 
shortcomings. This article considers an alternative foundation for location 
economics. The commodity space of each of a finite number of consumers is 
the collection of measurable subsets of land. This space is so large that a solution to 
the consumer maximization problem does not always exist. The main result is 
the definition and use of a topology on land parcels to show that a solution will 
always exist for utilities continuous with respect to the topology. The underlying 
preferences are exposed. Journal of Economic Literature Classification Numbers: 
022, 930, 021. 0 1988 Academic Press, Inc. 

I. INTRODUCTION 

The canonical model of location theory has a continuum of consumers 
distributed over a geographical space such that each consumer values and 
owns a density of land (see, for example, Cl, pp. 121-1301 or [20]). Thus, 
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utility is a function of a density of land, while location theorists take no 
exception to modelling consumers as a continuum. Hildenbrand Cl 1 ] an 
related papers provided the axiomatic underpinnings for the use of such 
continuum models as mathematically convenient approximations to 1 
but finite economies. It is demonstrated in this literature that if the nu 
of consumers in a sequence of finite economies becomes large, for insta 
by increasing proportionately the number of agents of various types, 
core shrinks to the set of equilibria and the equilibria of the finate 
economies approximate those of the continuum economy. In the course of 
replicating the finite economies, the total endowment of the economy is 
increased in proportion to the number of agents so that it increases without 
bound. As a consequence, the equilibrium concept of the ~~~t~n~~~ 
economy equates mean supply to mean demand, so that in all of the fini 
economies as well as the continuum economy, agents are endowed wit 
consume, and derive utility from positive quantities of goods. The average 
amount of goods held by consumers is positive. 

Location theory does not use this type of approach. If a land parcel is to 
be represented by a subset of a Euclidean space -(say 9’): then the 
~-finiteness of the space implies that there is only a ~ou~tab~~ ~~rn~~r of 
parcels of positive area in each partition of the space. As a consequence, a 
continuum of consumers must be endowed with and trade par-eels of land 
of zero area (on average). Furthermore, any sequence of large but finite 
economies close to such a continuum economy has the property that 
average land area holdings must become close to zero, that economies 
approximated by a continuum economy are path01 
equilibria and comparative statics results of a continu 
necessarily close to those of a reasonable finite model. T 
in the continuum model cannot be interpreted as areas (unless the corn- 
modity space is not o-finite), so consumers must have preferences over par- 
cels of zero area (see [3 ] for proofs of these state nts ). An alternative 
interpretation is that the continuum of agents esents fractions of 
individual consumers rather than individuals t selves. This inter- 
pretation has severe limitations as well (see [6]). The time has come to 
develop a new theoretical basis for location theory. 

It is not without reason that location theory has strayed from the use of 
elling techniques such as the assumption of a finite number of 

gents with initial endowments and preferences over alternative commodity 
undies. Perhaps the framework of location theory that is closest to 

established economic theory is the one in which lan 
another commodity (see [IS]), measured i 
tity equal to the total area of land. While 
land in the general equilibrium mold, it fails to 
qualities other than size, such as shape, an 
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the issues of location theory. If, however, parcels are differentiated by 
spatial characteristics of location, shape, and so on, then there are infinitely 
many commodities present, in fact uncountably many. To make matters 
even more complicated, each separate parcel is indivisible in the sense that 
the acts of splitting or combining produce parcels with other charac- 
teristics, different commodities. In short, the properties of land imply that 
the assumptions concerning the commodity space, preferences, and produc- 
tion technologies used by standard general equilibrium models do not 
apply to land. Thus, models such as those of Debreu [S], Bewley [7], 
Mas-Cole11 [ 133, and Jones [12] cannot be used directly in this context; 
see [3, 21) for more detail. 

The purpose of this paper is to analyze consumer behavior head-on 
when a commodity space that is a natural representation of land, a collec- 
tion of subsets of the plane, is used. We shall explicitly address the com- 
plications that are due to the size of the commodity space and the 
indivisibility of the elements. The first approach is due to Berliant [2], who 
models land as the a-algebra of measurable subsets of a two-dimensional 
set of finite measure that represents the world. In modelling the consumer, 
however, a key linearity assumption is made by postulating the existence of 
a marginal utility density such that the utility of a parcel is the integral of 
the density over the parcel. To state the assumption more intuitively, it is 
as if there is a fertility density over land and the value of a parcel to a con- 
sumer is the total fertility it carries. So while land is not a simple, 
homogeneous good such that only area matters, we can reduce its utility to 
underlying fertility units. Expressed in these units, land does become 
homogeneous, much as composite labor is reduced to simple labor in the 
Marxist theory of value. Thus, location and shape matter only through the 
“fertility” they embody, but are of no intrinsic value. The present paper 
generalizes [2] to the extent that the linearity assumption is dropped and 
preference for location or shape, such as cohesiveness, is admissible. 

The main contribution of this article is the demonstration that a solution 
to the consumer’s problem exists in the context of a large number of 
recombinable, indivisible commodities. The focus on the demand side is 
justified by noting that for many commodities, such as land, supply is 
rather inelastie. While location theory is the prime example, there are other 
applications. For example, it may be argued that all units of some good are 
differentiated. Each apple is slightly different from every other apple, and 
half an apple is not the same as two halves. If so, by splitting an apple two 
new commodities are produced. If the utility of the whole apple is not 
necessarily the same as the sum of the utilities of the two halves, then our 
framework can be imposed. Furthermore, the mathematical problem solved 
below is that of showing the existence of a solution to an infinite dimen- 
sional programming problem with a nonlinear objective function (i.e., a 
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function that is not separable) and a linear constraint. As a consequence, 
the result might be of interest to those attempting to solve a programming 
problem with time, as the dimensionality of the space in which the subsets 
reside is arbitrary. 

The consumer’s problem we address is that of maximizing a (~~~~i~e~r~ 
utility functional subject to a budget constraint by appropriate choice of an 
element of the o-algebra of measurable subsets of a Euclidean compactum. 
As usual, we would like to have a continuous utility function and a com- 
pact budget set. Hence the o-algebra must be endowed with a topology. 
Given a utility function and a budget set of financially feasible commodity 
bundles, the topology ought to be strong enough to make the former 
continuous, but weak enough to make the latter compact. Moreover, 
the topology should be strong enough so that the budget constraint is 
preserved under limits. 

So far, the problem of finding a suitable topology looks similar to the 
one Bewley [7] faced in generalizing equilibrium analysis to economies 
with infinitely many commodities. The Mackey topology did the job there, 
and it is in fact the strongest topology consistent with the desired duahty, 
making it a sharp solution. But we face an additional complication, namely 
that our commodities do not constitute a linear space (as they are 
indivisible). While it might seem natural to ensure compactness along with 
the continuity of a utility and dual elements (prices) by ernbed~i~~ %he 
o-algebra in a large linear space endowed with a “sharp9’ topology, too 
many elements might be introduced into the commodity space in the 
process. Su.ch an added element could arise as the limit of a sequence of 

elements of the o-algebra of increasing utili%y. In this case, the Bimit wodd 

not be a commodity bundle. For example, imagine a preference for world- 
wide presentation such as that once possessed by the queen of the British 
empire. For simplicity, assume a uniform rent (or cost) density an 
budge% that can cover half the world of the unit interval (the world is stih 

at). Let 

“[Z, ;I”[;, i]” . . . “[G$ + (n = I, 2,...) 

represent a sequence of commodities of increasing utility. If the indicator 
functions of these sets are embedded in I,” with the weak* to 
the limit is 4 1 rO, 1,, half the indicator function on the interval. 
is a natural limit that is not in the commodity snace. 

A topology on a space of parcels that does ensure that limits 
elements of the space is the one induced by the Hausdorff metric on 61 
subsets of a compactum (see [ll, p. 17]), which we describe next. Let 
a metric on a compact space M, and let E be a closed subset of M. Define 
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the s-neighborhood of E, B,(E) = (X E M( 3y E E such that d(x, y) < E}. 
The Hausdorff metric on closed subsets, say E and F, of M is given by 
H(E, F) = inf{e E (0, co] 1 EC B,(F) and Fc B,(E)}. To see how this metric 
measures distance, let E be a closed ball in a convex, compact subset of R” 
and let F be this ball along with one point not in the ball. We employ the 
Euclidean metric on 9P’. The Hausdorff distance between E and F is simply 
the Euclidean distance between the added point and the point in the ball 
closest to the added point. Naturally, this distance tends to zero as the 
added point gets closer to the ball. If E is a ball in R” and F is just a point, 
then the Hausdorff distance between E and F is the Euclidean distance 
between F and the point in E furthest from the point in F. This distance is 
positive whenever E and F differ. 

The Hausdorff metric .is potentially useful in location theory since it 
differentiates parcels by shape as well as location, and is compact. 
However, four problems associated with the application of this topology to 
our problem can be identified. First, it does not preserve the budget under 
limits. For instance, the Hausdorff limit of the sequence specified above is 
the entire unit interval, which is twice as expensive as any element of the 
sequence. Second, the topology does not generalize the special case of the 
linear utility functions of Berliant [Z]. For example, the sequence specified 
above demonstrates that the integral of any positive density function is dis- 
continuous in the topology. Third, the topology is restricted to closed sets. 
Strictly speaking, this does not hinder the demonstration of the existence of 
a solution to the consumer’s problem. However, equilibrium analysis would 
be difficult as closed sets cannot fill the compacturn without overlap. 
Fourth, the Hausdorff topology is not extendable to a linear space in any 
obvious way, so price analysis along standard duality lines is difficult. 

The topology we propose for location theory is a modification of the 
Hausdorff metric topology that overcomes the first three problems. Its con- 
struction is motivated by an observation on the first problem. The remark 
on Lemma 1 of the Appendix shows that the value of the limit of a 
sequence of parcels converging in the Hausdorff topology is at least as 
large as the limit of the values of parcels in the sequence. In other words, 
linear valuations may be discontinuous, but they are upper semicon- 
tinuous. Even though the Hausdorff topology is not stronger than the 
weak* topology, it is stronger in an upper semicontinuous sense. At first 
sight, it is disappointing that the value discontinuity is in the wrong direc- 
tion: upward rather than downward. However, it is possible to turn this 
around by comparing (open) sets through the Hausdorff distance of their 
complements. This alteration eliminates the first problem with the 
Hausdorff topology. A value discontinuity is now downward and in 
agreement with the budget constraint. In such a case, the limit set could be 
small. In particular, the sequence consisting of complements of elements of 



A FOUNDATION OF LOCATION THEORY 341 

the sequence specified above converges, in the new topology, to the empty 
set. To correct for this and to resolve the second and third problems with 
the Hausdorff topology, the latter manifesting itself by t e confinement of 
the Hausdorff metric on complements (or “outer Eiausdorff” topoIog~) to 
open sets, we augment as follows. Given a space of measurable sets, the 
outer Hausdorff metric is applied to the interiors of sets. n conjunction, all 
sets are subjected to a topology generated by a marginal utility density as 
in [2]. Thus, two measurable sets are close in our topology if and only if 
the complements of their interiors are close in the Hausdorff metric and rhe 
whole sets are close in aggregate marginal utility density, The linear utilities 
of Berliant [2] can be seen to be continuous with respect to this topology 
(see Section III for more detail). 

The Hausdorff and outer Hausdorff topologies are t comparab1.e. 
However, some partial comparison is possible, namely w  respect to the 
subtraction or addition of single points. The IIausdorff topology records 
the addition of an isolated point, but not the subtraction of an interior 
point. The outer Hausdorff topology does the opposite. Since subtraction 
of interior points seems more important, the outer ausdorff topology 
looks finer, at least to consumers who care more about the absence of holes 
than the presence of isolated points. Thus, employment of the outer 
Wausdorff metric is not only convenient mathematicaIIy, but also 
intuitively attractive. 

The topology just described is a good device for evaluating commodities 
in terms of location and shape as well as size. For instance, two reels are 
close substitutes when their interiors are close in the 
topology and their boundaries have substantial overlap. 
envisage is a reconstruction of location theory along the lines of classical 
general equilibrium theory with a finite number of agents trading parcels 
that enter utility and production functions directly. This contrasts with the 
prevailing strand of thought, the so called new urban economics in which 
densities of land feed densities of utility and pro 
[I41 points out, the main difficulty with a pr 
infinitely many commodities is the determination o he existence of a jnon- 
trivial) solution to the consumer’s problem or of a ret0 optimum. In fact, 
he assumes this away and is then able to demons te the existence of an 
equilibrium. While we admit that his context of Banach Iattices is incom- 
parable to our a-algebra of parcels, this paper represents an attempt to fill 
a gap by deriving demand. A next step is equilibrium lysis. An existence 
theorem for the case of linear utilities can be fou in [4]. Ftarther 
existence results will not be easy in view of the possible ~o~exte~d~bi~it~ of 
the topology to linear spaces. Yet such an eq~ilib~i~~ analysis will be an 
important undertaking as it paves the way for an explicit treatment of the 
spatial externalities that underlie phenomena such as agglomeration and 
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spatial interaction. The techniques of Shafer and Sonnenschein [19] could 
be useful. 

In the next section we will be more specific by presenting the formal 
framework of the analysis. Section III contains examples of utilities con- 
tinuous with respect to the topology and examines the relationship of our 
work to classical urban economics. Since the main result is the derivation 
of demand from utilities and prices, this analysis is undertaken 
straightaway in Section IV, leaving the study of the relation between 
preferences and utilities to Section V. Section VI concludes the article. 

II. THE MODEL 

Let m be Lebesgue measure on B?‘“, let L be a compact subset of .?P, and 
let a be the o-algebra of measurable subsets of L. Elements of B that are 
the same almost surely are not considered to be equivalent. If the 
framework is interpreted in location theoretic terms, L is land, a subset 
of g*, and % is the consumption set of each agent. Land can be 
heterogeneous and anything can be embedded in it, so it is a differentiated 
commodity that can be divided and recombined in an infinity of varieties. 
Combination with a null set may create a nonequivalent parcel by virtue 
of, for example, the new set having a larger connected area. Furthermore, 
there is only one instance of each potential parcel of land, so that there is a 
discrete choice as to whether to purchase it or not; there is an indivisibility 
associated with this commodity. 

Let H be the Hausdorff metric on nonempty, closed sets in g (see [ll, 
P. 1611. 

For A, BE ~23, define the difference set A\B = {x E A /x&B} and for 
E>O, the s-ball B,(A)= (~ELI~xEA with Ijx-ylj <&}. AcB is defined 
to be XE A implies x E B. If BE B’, B is the interior of B in the relative 
topology on L. Let B’= L\B. dB is the boundary of B in the relative 
topology on L, the set of points in L each of whose neighborhoods (relative 
to L) contains members of both B and B’. 

A topology on 6&J is now defined. All further references to continuity 
which do not specify a topology implicitly employ the one given below. It 
is based on the Hausdorff metric on exteriors. 

Fix h E L’. A basis for the topology is given by the collection of sets of 
the form 

for BE 9, 6 > 0. Note that, as not all points can be separated, this is not a 
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Hausdorff space, let alone a metric space. (For example, d3 and C may have 
common interior and remainders with equal h-values but different 
locations.) E is isolated in this topology. 

As argued in the Introduction, additive utility functions are continuous 
in this topology. The topology is a generalization designed to capture 
spatial features such as location and shape. For example, a utility function 
that reflects preference for cohesiveness is U(B) = sup[j, h(x) rim(x) + 
C,“= i 2-j. V(B,)] with the supremum taken over all ordered partitions 
(B,, B2,...) of B and V(B)=sup xGB{~) B,(x) c B}. This utility function is 
also continuous in our topology, although some effort is required to prove 
this fact. 

The price space corresponding to the commodity space g is somewhat 
problematic, as duality theory does not supply a natural space. It is 
desirable to have no arbitrage in equilibrium, for otherwise traders wou 
always wish to change their demands. In the context of the model no 
arbitrage means that traders cannot put parcels together or take t 
apart and make a profit. Hence prices should be additive as a functi 
parcels. If traders are not to make a profit by putting together or taking 
apart an infinity of parcels, then prices should be countable additive. 
furthermore, a parcel of zero area is to have a zero price, then t 
Radon-Nikodym theorem yields a price space that 
integrable functions on L; that is, if BE @ the price of 
for an integrable p. The zero area-zero price conditio 
fulfilled at equilibrium for continuous utility as null additions to closed sets 
are not recorded by our topology. (Proof: Let A be closed and B null. 
Compare A UB to A. By Lemma 2 of the Appendix, (Au &)“c 
(A0 v 0 v &¶) = A: hence the two sets have equal interior. 
both sets have null boundary, hence equal h-value.) 

III. EXAMPLES 

It is natural to ask what utility functions are continuous with respect to 
this topology and to wonder about whether our subsequent derivation of 
demand gives any hints as to the form of demand derived from such 
utilities. To see that linear utilities expressible as integrals are continuous 
with respect to such a topology, pick a utility u(B) = JB f(x) &z(x), wheref 
is in L”. Note that one can always choose h =f for the topology, which 
makes this utility continuous with respect to it. Clearly, with more than 
one consumer and different densities f, it might not be possible to define 
one topology (with a given h) for all consumers. The trick in this case is to 
define a separate topology for each of a finite number of consumers (with 
different h terms) and take the coarsest topology consistent with each, 

642/44/2-9 
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individual topology. However, this strategy is more closely related to the 
demonstration that an equilibrium exists rather than the study of demand, 
so it is deferred to future work. Suffice it to comment that linear utilities 
can be made continuous with respect to the topology by choice of h; 
demand has been characterized in [2]. With a little more work, it is 
possible to verify that the example of Section II also is continuous with 
respect to the topology. 

Of more interest is a set of examples that provides a link between our 
theory and classical location theory. In the latter literature, utilities are 
generally specified as U(X, q, t), where x E 93 is a quantity of composite good 
or numeraire, qe B is the quantity of land consumed, and t E L is the 
location of the land or consumer (see [22]). For simplicity, we suppress x, 
leaving the inclusion of other goods to the Conclusion. 

The variable q has a natural analog in our model, J h(x) &z(x) 
(especially if h 5 1). The variable t presents more of a problem. There are 
many analogs of this variable, the most natural of which seem to be 
continuous with respect to our topology. 

To be specific, let s: 93 + C’(L), where Co(L) is the set of continuous 
functions on L with the Co topology, be a continuous map such that 
s(B)(t) =0 for all t #I?. An example is the map s(B)(t) = r(B, t) where 
r(B, t)=sup(r>OjyEd for all y with I/t--yll<r}. Further, let 
g: Co(L) --f L be a nonempty, upper hemi-continuous correspondence such 
for all t, t’tzg(S(B)), u(q, t) = u(q, t’) for all q. An example is g(f) = 
argmax,,,f(t). It is clear why g is defined to be a correspondence and not 
a function, for otherwise discontinuities in many topologies would arise in 
this particular example. We call a map g a locator map. In fact, g(s(B)) is 
the center of the largest bali contained in B. Defining W(B) = 
4.fs 44 dm(x), g(@))), using the uniform continuity theorem [15, 
p. 1801, W is continuous in our topology. A more specific example is 
W(B) = u(js h(x) dm(x), sup,,= r(B, t)) for some continuous v. 

Given that demand exists, it is clearly possible to construct first order 
conditions for specific forms of g, s and h. For example, if h - 1 while g and 
s take the special forms above, a necessary condition is 

1 1 
U~--=U2-- at demand B*, 

Pl P2 

where subscripts represent derivatives, 

p1 = lim inf SB p(x) dm(x) and p2 = lim jB,c~8, P(X) dm(x) 
Bc B*)c E’O m(B -0 I m(B) m(B,(i* )) ’ 

p, is the “essential infimum” of p on (B*)‘, analogous to the standard 
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“essential supremum.” It is shown below that demand is nonempty, so 
these conditions are not vacuous. Such conditions are of use when 
calculating equilibria for specific economies where the coherence of land 
parcels matters to agents. 

Another example of interest is given by the utility 8( 
sB r(B, t) &n(t) =ss r(B, t) &n(t) =fL r(B, t) C&Z(F). It is easy to see that if 
{B,);= I converges to B in the topology, then (r( B,, t) >;= 1 conver 
r(B, t) for each t. By Lebesgue’s dominated convergence theorem, 
converges to B(B), so i? is continuous in the topolo y. Each of these 
examples values shape by measuring the cohesiveness of a set, unlike the 
traditional model. The example W also records location, and utilities from 
the traditional model can be used in place of U. 

IV. DERIVATION OF DEMAND 

Consumers determine demand for land along with demand for all ot 
goods. However, the complicating pecularities, noncompactness of the con- 
sumption set and a nontrivial topology thereon, are specific to land as an 
indivisible commodity in the sense of the Introduction. Therefore, the other 
goods may be ignored, at least for the time being. After this section’s 
analysis of a pure land market, the linkage with other goods will be dis- 
cussed in the Conclusion. Thus, consider a consumer with a utility function 
U defined on the commodity space 9? and with a budget y. In partial 
equilibrium analysis y would represent income not spent on other goods, 
while in general equilibrium analysis it would be the value of the initial 
endowment or parcel. The utility function is taken to be continuous in the 
topology of the preceding section. This means that parcels are close 
substitutes when their interiors are near in the outer Hausdorff metric and 
they are of approximately the same measure (in terms of h). 

The consumer’s problem is 

subject to 

The main result is: 

THEOREM 1. If U is continuous with respect to the topology’ defined in 
Sectiovl II9 then there exists a solution to (1) subject to (2). 
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ProojI Utility is defined up to a monotonic transformation and, 
therefore, may be assumed to be bounded. Moreover, since the empty set 
fulfills the budget constraint, there is a supremum value in the consumer’s 
problem, (1) subject to (2). Thus let {Bk}~=r c g be a sequence with 
U(B,) tending to the supremum and sBk p(x) &z(x) < y for all k. If B, = L 
infinitely often, then L solves the problem. Otherwise we may assume 
that { (~k>c>?z 1 converges in the Hausdorff topology since the latter is 
compact, as L is [ll, p. 171. 

Letting G = (g E L” ) 0 < g d 1 } and embedding ( 1 Bk )F= r , indicators of 
the sets Bk, in L”, 1, E G for all k. Note that G is weak*-closed. Since G 
lies in the closed unit ball of L”, the Banach-Alaoglu theorem (see [17, 
p. 661) implies that G is weak*-compact. Hence, we may take (lBk}~=, to 
be convergent in the weak* topology on L”. 

The limit of the sequence ((&,)‘>p= r, which is convergent in the 
Hausdorff topology, is closed and thus can be denoted B’ with B open 
relative to L. 

Let 

z,= lim k~ o. jL l~~(x)(l- l&l) h(x) ddx) = :imm jBk,BW) d4x) 

and 

w= lim k-m jL lBk(4U - l&N ~(4 dm(x) = t$nm jBk,B ~(4 dd-4. 

Both u and w  exist since 1, is weak*-convergent and hence converges on 
(1 - lB) h, (1 - 1,) p E L’. Let %? be $3 restricted to subsets of B’. By 
Lyapunov’s theorem, the image of 9 under the vector measure (ii z:) is 
closed. Also, 

lim 
k+m 

Hence there exists C E %? with 

s h(x) d@x) c 
( i 

V 
= . 

s 

0 
P(X) Qfdx) w 

C 

Also, CnB=IZ(. Let A=BuC. 
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We want to eliminate an annoying asymmetry between A = B u C and 
B, = I$ v (Bk\l&). I n a sense, namely of the “outer” Hausdorff topology, 
is the limit of 8,. But B need not be the interior of solution A. Tn principle, 
C may have added interior to B. To correct for this, we subtract some 
points from C, namely Su ([B LJ (C\S)]‘\B), where S is a countable 
dense subset of B’ which indeed, as a subset of &‘* and therefore second 
countable, is separable. 

Basically, S destroys the interior of C, and any interior that may still be 
created in uniting B and CjS is also subtracted away. Nevertheless, the 
points we subtract form only a null set: They belong either to S, which is 
countable, or to [Bu (C\S)]‘\B. But the latter, by Lemma 2, is contained 
in dB, which is null by Lemma 3. In short, we define 
C’=C\{SU(BU(C\S)]~\B}} and A’=BuC’.Then~‘=Band C’=C 
a.s. Also, as C’ c Cc B’, C’ = A’\B. 

Now 

The first term tends to zero by choice of C, while the second term tends to 
zero by Lemma 1 and Lebesgue’s dominated convergence theorem. Hence 
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By a similar argument, 

Since JBk p(x) dm(x) d y for all k, JA, p(x) &z(x) < y. 
Since Sk -+ B in the outer Hausdorff topology and U is a continuous 

function, U(A’) attains the supremum value of U over the budget set. 
Q.E.D. 

Implicitly, it has been proved that the budget set is sequentially compact 
in the given topology. 

V. UNDERPINNING BY PREFERENCES 

The topology described in Section II can be given a metric structure 
under certain conditions. For A, BE a’, define a distance (or pseudometric) 

d(A, B) = H((& (8)‘) + 1 
A 

h(x) dm(x) - s, h(x) dm(x) 1. 

If an equivalence class of &Z? is defined to be a collection of elements of g’, 
each pair of which has distance zero, then d defines a metric on such 
equivalence classes of g. Let &j be the set of equivalence classes of elements 
of 28. 

Note that Theorem 1 yields as a solution a particular element of g’, not 
of 3. The reason is that not all elements of an equivalence class of 28 have 
the same value, so some could violate the budget constraint. However, it is 
convenient to use this metric space to define preferences, since all elements 
of an equivalence class of 3 must have the same utility if the utility is to be 
continuous with respect to the topology defined in Section II. 

In this section conditions on preferences, objects more primitive than 
utilities, that imply the existence of continuous utilities are investigated. 

A preference order 2 over 3 is called continuous if sets of the form 
{BE &? 1 B 2 C} and (BE 3 1 C 2 B) are closed in the topology of Section II 
for each C E &?. 

THEOREM 2. If a preference order 2 over $ is continuous, then there 
exists a continuous utility representation U of 2. 

Proof First we show that g is separable. The proof in [S, p. 3601 
shows that there is a countable set & c W of open elements such that if A is 
compact and C is open, A c C, then there exists E E 8 with A c E c C. We 
have added L and /zl to &. 
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For each EE &, Halmos [lo, Theorem 40.53 gives us t 
(B E W 1 B c EC> with the L’ topology on indicators of sets is separable; 
its countable dense subsets 9,. 

In constructing a countable subset of & that is dense in our metric, it is 
natural to take equivalence classes of unions of & and respective FE mem- 
bers, E u F. The interior of the latter is relevant in evaluating the outer 
Hausdorff component of the metric, but, unfortunately, need not be simply 
E, since F may have added interior. To correct for this, we subtract some 
points from F, namely SW { [Ecj (F\S)]“\E}9 where S is a countable 
dense subset of EC which indeed, as a subset of $A? and therefore secon 
countable, is separable. Basically, S destroys the interior of F, and any 
interior that may still be created in uniting E and F\S is also subtract 
away. In short, for each EC& and FE& we defi 
F’=F\(Su ([Eu(F\S)]*\E)} and 9; the collection of such 5”. Then 
for each EE 8, F’ E .F;k, (E u F’)’ = E and F’ = F a.s. for some FE 9$. 

NQW 9= (EuF’~&\EE&, FIEF&~ is countable as it is of the sa 
cardinality as of a countable product of countable sets [ 
Corollary 2.141. We show that it is dense in 3. Let BE & and fix 6 > 0. If 
B=L, put E=L. If &=a, put E=@. 

Otherwise, let B’ = (x E 8 / inf, + 8 /Ix - y lj 2 6/3k >, where k 3 I is chosen 
so large that {8,B’ \h(x)l &I(X) < 6/3; then i?\B’ is nonempty, is open, and 
has positive Lebesgue measure. Clearly, B’c L is closed, hence compact. 
By definition of &, the latter contains an E with B’ c E c I?. Also, 
H[(8)‘, E’] < 6/3k. (This fact is established easily: On the one han 
(@CF. On the other, if XEEC, then XEF, hence x&k or 
inf,,+. j/x - ~11 < 6/3k, hence inf,,+g j/x - ylj K cS/3k, so jjx - yJj < 6/3k fox 
some y E (8)‘.) 

B\8 is situated in EC. Since F > is dense in (B E &I / 
topology of indicators of sets, it contains, by Lebesgue’s dominated 
convergence theorem, a member F’ c E’ with j / IF,(x) - 1 &.x)j 
/h(x)\ &P?(X) < 6/3. Defining B* = Eu F’ E $9 and using En F’ = a, Eat(&)‘, 
(8*)‘]i = M[(h)‘, E’] < 6/3k 4 613, 
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+ js B\B WI ddx) -s,, WI dm(x) j 
G jA,, IW)l dm(x) + j Il&)- lB\&)l IW)l dm(x) 
< s B\B’ 

Ih(x)l &n(x) + d/3 q. 

In sum, the distance between BE .8 and B* E %’ is less than 6. Hence 3 is 
dense in ~8. Since the former is countable, the latter is separable. By Rudin 
[16, p. 391, T$ is second countable, so 2 has a continuous utility represen- 
tation according to Debreu [9, Proposition 31. Q.E.D. 

An alternative, but less direct, technique of proof would be to show that 
L@ is compact and metrizable, hence second countable. 

VI. CONCLUSION 

In this article, it has been shown that a continuum of consumers is not 
necessary to the development of location theory. A useful topology has 
been proposed as a tool for the analysis of an economy with a finite num- 
ber of consumers, and a solution to the consumer problem has been shown 
to exist when this topology is employed. Further questions related to the 
existence of equilibria and their welfare properties have yet to be tackled. 
Standard commodities can be added to the model with land in a relatively 
straightforward fashion. If U: 8 x L@+ -+ W is continuous in the product 
topology on L@xB<, then there exists a solution to the maximization 
problem 

(3) 

subject to 

s p(x) dm(x) + q .z G Y, (4) 
BE1 

where p E L’, p 2 0, and q E ai, qi > 0 for each i (see the corollary of the 
Appendix). 
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APPENDIX 

LEMMA 1. Let {Bk}pzl c 9 be a sequence of open sets with nonempty 
complements such that B; --f B’ in the Hausdorff topology and let p E L’. 
Then fBkn B p(x) dm(x) --t Se P(X) dm(x). 

Proof. Let x E B. Since B must be open, B,(x) c B for some E positive. 
Hence x 6 B&B’). Since B; -+ B’ in the Hausdorff topology, B,(F) 2 B; for 
k large enough, say k> N. It follows that x#B; and, therefore, XE B,n 
k > N. Hence lsknB + l,, pointwise. Consequently, using Lebesgue’s 
dominated convergence theorem, 

)iirn lBx n B P(X) dm(x) = ?‘, !imm lBk n &) p(x) dm(x) = / p(x) dm(x). 
9 

Remark. Suppose ‘p 80 a.s. and JBk p(x) dm(x) < z for all k. Then 
JBknB p(x) dm(x) <z and by Lemma 1, jB p(x) dm(x) dz. In other words, 
the imposition of Hausdorff convergence on complements insures preser- 
vation of the budget constraint in the limit. 

LEMMA 2. Let A and B be disjunct sets. Then (A v B)’ c (A v d u aA). 

Proof: Let XE (Au B)‘. Then XE Au B. If XE Au 8, we are done. 
Otherwise x E aB\A. Sufficiently small neighborhoods contain non-B-men+ 
bers which, by choice of x, must belong to A. Thus, while x does not 
belong to A, it must be in 8A. 

LEMMA 3. An open set in W” has null boundary. 

Proof Since $2” is separable metric, it has a countable base [t6, p. 391. 
Hence an open set, A, is the countable union of balls, B,, B,, . . . . Therefore 

and 

COROLLARY. If $9 is given the topology defined in Section I 
U: ?.8 x a’+ -+ W is continuous in the product topology on 6&Y x c@+, p E E” 
(p>O), qfz%!‘, q’>O for all i= 1,2 , . . . . I, then there exists a solution to (3) 
subject to (4). 
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ProoJ: (@, 0) E 93 x 9P+ is in the budget set, so since the ordinal utility 
function can be chosen to be bounded, 

(B,Z)ESTXX;, 
f p(x)dm(x)+q.Z,<y 

B 

is well defined. Choose a sequence 

(B,,Z,),rn_,,(Bk.Zk)~~xW:,j P(x)dm(x)+q.Z,GY for all k, 
Bk 

with lim, _ o3 U(B,, Z,) = C. The projection of the budget set onto its 
second component is compact in 92; since q’> 0 for all i, so without loss of 
generality Zk -+ Z* E .#+ . 

As in the proof of Theorem 1, by passing to a subsequence we can take 
(Bk}pz I to be convergent to some B* in our topology with 

k _ cL) -rR, P(X) dm(x) = JB* P(X) dm(x). lim 

Hence 

Also, 

U(B*, Z*) = /irnm U(BA, Z,) = C. 

Y> r P(x)~Nx)+q.zk for all k, 
JBk 

so 

y> lim k m J~ka(x)dm(x)+~~m~q.Z,=f~*p(x)dm(x)+q,Z*. Q.E.D. 
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