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The basic elements of input output analysis, notably technical coefficients, quantity and value 
equations, and a total factor productivity growth measure, are derived as intermediate constructs 
when the problem of national income or product determination is directly related to input and 
output flow data. By embedding input-output concepts in a neoclassical framework, specifica- 
tion issues are resolved, notably the problems of construction of coefficients and of determi- 
nation of value. Conversely, neoclassical concepts of marginal productivities can be related to a 
consistent input-output framework of data. Sources of substitution are identified. 
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I. Introduction 

Input-output analysis and neoclassical economics seem to part as schools 
of thought, with little appreciation of each others' contributions. Neoclassical 
economists criticize the rigidity of the input-output model, particularly its 
assumption of fixed coefficients and the failure to explain factor rewards. 
Input-output analysis is perceived as a mechanical manipulation of data. On 
the other hand, the neoclassical concept of a smooth production function 
which maps factor inputs directly into some jelly output, and its associated 
marginal productivities, meets a cool reception in the world of input-output 
economists. Neoclassical economics is considered an elegant, but futile 
theory. I do not intend to contribute to the criticism, but will attempt to 
accommodate it. I take the neoclassical critique seriously and will rethink the 
methodology of input-output analysis. By relating input-output, including its 
statistical basis, to economic problems and applications, I hope to inject 
theoretical stucture. Open issues, such as the choice of model in the 
construction of coefficients, the relationship with fixed proportions, the 
consolidation of the quantity and value systems in a unifying framework, and 
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the foundation of productivity measurement, can be enlightened by an open- 
minded reconsideration of the relationship between data and economic 
objectives. The basic assumptions and equations of input-output  analysis 
may emerge in the process, but possibly modified. 

The core sections of the paper are the next two. In section 2, the 
construction of an input output matrix is related to the quantity and value 
equations in which they are put to use. The equations, in turn, are derived in 
section 3 from the formulation of an economic problem, such as the 
determination of the national product. Section 4 introduces substitution, 
Section 5 discusses patterns of specialization that trouble solutions to 
economic models at the interface of neoclassical economics and input-output  
analysis. Section 6 resolves the trouble in a framework of intercountry 
substitution. An intertemporal version of substitution is reflected in producti- 
vity growth. Section 7 embeds the concept in the same economic problem 
that was used to generate the equations of input-output  analysis. 

2. Quantity and value equations: Construction implications 

The center-piece of input output analysis is a matrix, 

E J 
a l  I a l n  

/4___ - • 
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of technical coefficients, aij, which describe the commodity inputs per units of 
commodity outputs. Here (1 . . . . .  n) classifies the commodities. For example, if 
1 is iron and 2 is automobiles, then a12 is the quantity of iron needed in the 
production of an automobile. The standard reference is Leontief (1966). The 
simplicity of the framework has attracted both economists and statisticians 
to the field of input-output  analysis. The matrix of coefficients, A, is thus 
used as the point of departure both for economic analysis and for national or 
regional accounting. In economic analysis, two input-output  equations are 
prominent, namely the following: 

x = A x  + y, (M} 

p = p A  + v. (F) 

Here x is a vector of gross outputs, y is a vector of net outputs, p is a row 
vector of prices, and v is a row vector of value-added coefficients. The first 
equation equilibrates supply and demand and the second equation balances 
revenues and costs. They are the so-called quantity and value equations of 
input-output  analysis, also called the material and financial balances. The 
latter terminology is reflected in the notation indexing the equations (M) and 
(F). A well-known application of the input-output  equations is national 
planning, particularly the determination of output levels which are required 
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to sustain a certain level of final demand. An example would be a study of 
the implications of an exports promotion program. The increase of exports 
would appear in the final demand vector, y, directly, and in the gross output 
vector, x, indirectly through equation (M). Another example would involve 
the tracing of price effects which result from an increase in the value-added 
coefficients associated with an energy shock. It is straightforward to assess 
the direct energy costs increase in the row vector of value-added coefficients, 
v, but the indirect price effects are determined through eq. (F). In either case, 
analysis amounts to the solution of the input-output  equations. Mathemati- 
cally, the inversion of the matrix I - A  is at stake, which defines the so-called 
Leontief inverse of the A-matrix. 

Since input-output constitutes a more or less unified framework for 
economy wide analysis, statisticians use it for the organization of inter- 
sectoral data. If the above commodity classification, (1 . . . . .  n), can also be 
used for sectors, then it is natural to set up a so called transactions table, 

I tll . . . t i n  /In+ 1 l 
T= 

L t n l  Inn tnn+l 

The first row of the table displays the sales receipts of sector l from sectors 
1 . . . . .  n as well as the final demand compartments (household and govern- 
ment consumption, investment and net exports). Table T underlies matrix A, 
in the sense that by appropriate divisions of transactions elements of T, one 
may calculate the technical coefficients of A. Thus, the input-output  coeffi- 
cients matrix bridges the gap between economic analysis and national 
accounts. However, one must be careful not to consider the input-output  
coefficients matrix as the point of departure for analysis. If all interaction 
between input-output statisticians and economists were channeled through 
the single concept of an input-output coefficients matrix, the two depart- 
ments of investigation would have their own dynamics, with little cross 
fertilization. Moreover, by taking an input-output  coefficients matrix as the 
point of departure, one risks imposing a framework of analysis that simply 
does not fit reality. 

A prime illustration of an active interface between statistical and economic 
investigations is the construction of input-output matrices. If reality were to 
present itself through a simple input-output  transactions table, T, the 
construction of a matrix of technical coefficients, A, would be a straight- 
forward matter of divisions: 

= tJk" 
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This situation is too simplistic. For one, the very existence of a transactions 
table presumes that commodities and sectors can be classified in the same 
way. Moreover, it suggests that sectors have a multitude of inputs, but only 
single outputs, To accommodate  the obvious implications, Professor Stone 
has suggested accounting for inputs and outputs separately. Hence input 
flows are tabulated in a use table, U, and output flows in a make table, V. In 
the System of National Accounts (S.N.A.) proposed by the United Nations 
(1967), the convention is that the dimensions of matrices U and V are 
commodities × sectors and sectors × commodities, respectively. The inputs of 
sector 1 are listed in the first column of matrix U and the outputs in the first 
row of matrix V, and so on. The framework is general. In particular, the 
traditional transactions model is recovered if sectors can be identified with 
their primary commodity outputs or, more precisely, if make table 1/ is 
diagonal. Then the transactions table, T, coincides with the use table, U, 
augmented by a column. The last column of T makes the row totals add to 
the gross outputs, as determined by the column totals of the make table, V. 
In this case, the matrix of technical coefficients is obtained by dividing the 
use part of the transactions matrix by the (diagonal) output matrix that is, 
A = U V  ~. In general, however, the make table, V, features non-zero 
off-diagonal elements, since sectors produce mixtures of outputs. The 
problem of constructing an input output matrix, be it T or A, is therefore 
non-trivial. Alternative methods to deal with it exist and are described by 
Viet (this issue). These are the industry technology model, the commodity  
technology model, and many more. Alternative assumptions are made on the 
nature of the off-diagonal elements of make table V, also called secondary 
products, or on their input technologies. The choice of model is made on the 
basis of the reasonableness of the assumptions, as judged by the statisticians 
or the economists. Whatever model is employed, some matrix of technical 
coefficients, A, comes out ot it and is used in the equations of input-output  
analysis, particularly (M) and (F). 

Implications of input -output applications for the statistical construction of 
an input-output  matrix can be introduced by reporting some of my own 
experience at the Institute for Economic Analysis at New York University, 
where I had to construct input output coefficients for non-fuel minerals. The 
coefficients were to be part of an enlargement of the United States Bureau of 
Economic Analysis (BEA) input output matrix. The BEA constructs the 
input-output  matrix, A, according to the so-called industry technology 
model, on thc assumption that each industry has a specific input technology 
which is independent of the commodity composition of its output vector 
[Viet (this issue)]. This methodology is problematic. The resulting A-matrix 
is not invariant with respect to units of measurement. Invariance with respect 
to units of measurement simply means that, for example, the quantity of iron 
per automobile (al2 in section 2) ought to double when metric pounds are 
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used instead of kilograms (one metric pound is 500 grams). The reason that 
the industry technology model fails to meet this requirement, is that it 
employs a concept of 'industry output', which intermingles different commo- 
dities. In other words, apples and oranges are added up. Wassily Leontief 
urged me to think of an alternative method for the construction of input- 
output coefficients, to comply with the requirements of invariance with 
respect to units of measurement. Now, if this were the only concern, one 
might propose setting all elements of the A-matrix equal to zero. This 'zero' 
method is well defined and invariant with respect to units of measurement. 
Intuitively, however, putting A = 0  is nonsense. It is important to clarify this 
intuition. The 'zero' method is nonsensical in the context of the application 
because it invalidates the material balance equation, (M), or, for that matter, 
the financial balance equation, (F). The left-hand sides would no longer 
equal, but exceed the right-hand sides. Hence (M) and (F) impose restrictions 
on the construction of the matrix A. 

The moral of my thought experiment is that the economic structure of 
input-output analyisis has implications for the statistical construction of the 
matrix. Kop Jansen and ten Raa (1990) list the elements of the structure, 
namely the material balance and the financial balance, as well as base year 
price invariance and a scale property. The material and financial balances are 
essentially eqs. (M) and (F) presented above. Only when they are observed 
do input-output matrices balance material requirements and financial 
accounts. The element of base year price invariance, (P), is essentially the 
invariance with respect to units of measurement, since a price system is 
basically a system of measures. The scale property, (S), is a counterpart of 
the latter in the real sphere. It requires that /f an economy must have 
constant returns to scale and fixed proportions, then it must have constant 
coefficients. This logical requirement makes no assumptions on the obser- 
vation of economies, but restricts the method of construction of the 
coefficients. More precisely, Kop Jansen and ten Raa (1990) have proved that 
the just described structure of input-output analysis, involving (M), (F), (P) 
and (S), not only imposes restrictions on the choice of model of construction, 
but determines it uniquely. By one theorem, in the real sphere, the 
combination of (M) and (S) is shown to imply that the A-matrix must be 
constructed by the so-called commodity technology model. By another 
theorem, in the nominal sphare, the combination of (F) and (P) is shown to 
imply the same result. The theorems do not necessarily favor the commodity 
technology model over alternative constructs. If, however, an alternative 
method of constructing input-output matrices is used, then one must be 
prepared to revise the basic structure of input-output analysis, since at least 
one of the equations or properties must be violated. For example, if one uses 
the U.S. input-output coefficients, which are constructed according to the 
industry technology model, but continues to decompose productivity growth 
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rates by standard input-output  analysis without revision, then a bias creeps 
in. This bias has been analyzed and estimated by ten Raa and Wolff (1991). 

As mentioned before, another risk of considering an A-matrix as the point 
of departure for statistical and economic work, is that the frame need not fit 
reality. An input-output  matrix, however constructed and however sensitive 
to the data, suggests economy-wide relations which need not hold. For the 
purpose of clarification, suppose we accept the basic structure of input-  
output analysis, say (M) and (S) and/or (F) and {P), and suppose we 
construct the input output matrix accordingly. Then, following Kop Jansen 
and ten Raa (1990), the matrix A is constructed by the specifications of the 
commodity technology model. This model is defined by the assumption that 
each commodity has a unique input structure, irrespective of the sector of 
fabrication. Now it is well known that the commodity technology model has 
the problem of negatives. If applied mechanically, the formula yields some 
negative coefficients. The negatives are very small and are usually suppressed 
one way or another. It is natural to hypothesize that the negatives are due to 
errors of measurement. To his own surprise, ten Raa (1988) has rejected the 
hypothesis. In other words, the construction of coefficients which is consis- 
tent with the basic structure of input-output  analysis yields negatives which 
cannot be ascribed to errors of measurement. 

One reason that might account for the rejection is that ten Raa (1988) 
assumes that the variances of the errors are known. If the variances have to 
be estimated from a sample, it is more difficult to reject and the requirement 
of non-negative coefficients may be salvaged. I shall detail this approach after 
the introduction of multiple observations in section 4. The nature of the 
problem of negatives is easy to understand. Imagine that sector 1 is pure, 
producing a single output, commodity 1, but that sector 2 produces not only 
commodity 2, but also commodity 1, as a secondary product. The input 
coefficients for commodity 1 are revealed by sector 1. The input coefficients 
for commodity 2 are obtained by purification of sector 2. More precisely, 
evaluation of the commodity technology model formula of the matrix of 
input-output  coefficients involves inversion of the output flow table, which in 
this example amounts to subtraction of the secondary product and the 
associated input requirements from sector 2. The input requirements asso- 
ciated with the secondary product (commodity 1) are given by the already 
computed input coefficients for this commodity. The problem of negatives 
emerges when sector 1 uses an input which is not used by sector 2. This 
input must be subtracted from sector 2 in the process of purification. The 
subtraction creates a negative input coefficient for this input in sector 2. 
Statistically, the problem can be ascribed to an error of measurement only by 
hypothesizing that either the entire input cell in sector 1 creating the negative 
in sector 2 or the zero entry in sector 2 is fake. I find this difficult to accept. 
A more reasonable approach of the problem seems to me to accept the 
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possibility of coexisting technologies for the production of commodity 1 in 
sectors 1 and 2. 

When this point of view is adopted, there is no point is constructing a 
single matrix of technical coefficients. The question of what remains to be 
done cannot be answered in general, but depends on the economic issue that 
is addressed, as well as data availability. A good example is the issue of 
profit maximization, which can be modeled in an input-output  like frame- 
work, without technical coefficients. The relationship with input-output  
coefficients matrices will be discussed, but is not essential to the model and 
certainly imposes no non-negativity requirements. 

3. Quantity and value equations: Economic origins 

Optimization naturally is at the core of neoclassical economics. However, 
formulating an input-output  problem in terms of a linear programming 
model does not necessarily introduce neoclassical elements in input-output  
models. Since the 1960s, linear programming formulations of Leontief-type 
systems, in which real and price systems can be viewed as a set of 
constraints, are a normal part of standard texts. The Dorfman et al. (1958) 
model considers the maximization of the value of a given bill of final 
demands by choice of prices and the minimization of labor input by choice 
of gross outputs. As ten Raa and Mohnen (this issue) argue, these combi- 
nations of objectives and instruments are not neoclassical. The problem is 
that the Leontief-type systems have been taken for granted and that the 
linear programs have been chosen to make the systems dual to each other. 

Instead of taking an input-output  coefficients matrix as a point of 
departure, I propose to relate data directly to economic problems, without 
imposing a preconceived input-output  structure. To illuminate, consider the 
problem of the maximization of the national product, y, valued at the world 
price vector, p, subject to a constraint on resources, say a labor force, N. 
Here y is a commodity vector, which lumps together the familiar categories 
of the national product, namely household and government demand, invest- 
ment, and net exports. In view of the last item, y may have negative 
components. Other items in final demand may have negative elements as 
well. Investment, for example, is comprised of gross fixed capital formation 
and net inventory change. If inventory depletions exceed inventory additions 
and if the negative net inventory change exceeds new capital formation, as 
may well occur in severe recessions, elements of this component  will also be 
negative. Individual elements of private consumption may also be negative if 
consumers sell used materials (cars, clothing, etc.), p is an exogenous row 
vector of given world prices. N is the exogenous number of workers. The 
input output data comprise a use table, U 0, a make table, V o, and a sectoral 
employment row vector, Lo. If we drop the subscripts, the data turn 
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variables, namely U, V, and L. We now relate the subjects of the economic 
problem, the national product, y, and the labor force, N, to the variables, 
(U, V,L). Recalling the dimensions of U (commodity x sector) and V (sector 
x commodity),  we see that V v - U  is the net output matrix (commodity 
x sector) and that aggregation over sectors yields the net output vector. 
Hence y=(V v -  U)e, where e is the vector with all entries equal to unity and 
T denotes transposition. Similarly, the resource constraint reads Le<N. It 
remains to restrict the variables, (U, V,L), in agreement with the production 
possibility set. Certainly feasible are the observed values, (Uo, Vo, Lo). If we 
assume constant returns to scale, then (U,V,L)=(Uo.~,~Vo, Lo,~ ) is also 
feasible for any non-negative vector of scales, s. (Here ~ is the associated 
diagonal matrix.) Thus, the problem is written as 

max py 
s_>.0 

subject to 

y = ( V v - U ) e ,  Le<N, (U,V,L)=(Uo,~,~Vo, Lo} ). 

As far as I am concerned, we are done. We have related the economic 
problem directly to the data and economic analysis can be performed; see 
ten Raa and Mohnen (this issue). Input output analysis is implicit. To reveal 
it, consider the following change of variables: 

x=VTe=(~Vo)Te=vrk~e=V~s or S=VoTX=(VTo)IX. 

The change of variables is one-to-one only if the make table, V o, is 
invertable. In other words, the recognition of standard input output analysis 
is possible only if there are equally many commodities and sectors. This 
condition is not needed for a head-on analysis of the above economic 
problem. ! now invite the reader to go through a number of steps, which are 
mathematically trivial, but not so methodologically. The change of variables 
turns the problem into 

max py 
x6X 

subject to 

y=(V~r-U)e, Le<N, (U,V,L)=(UoVoTX, VoTXVo, LoVoTX, 

where X is the cone spanned by the rows of Vo, because of x =  v~iTs, s>O. 
Elimination of (U, V, L) by substitution of the last constraint yields 
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max py 
xEX 

subject to 

y = [( VoTX V0) T -  U o VoTxJe, 

This can be simplified to 

max py 
xEX 

subject to 

y= VToVoTX - UoVoTx, 

o r  

L o VoTxe<=N. 

LoVoTx<=N 

max py 
xE~t" 

subject to 

x = A x + y ,  Ix<N, 

where we introduced the shorthand A = U o V o  T and l=LoVo r. This 
notation may be recognized as the formula for technical coefficients accord- 
ing to the commodity technology model. We see that standard input-output  
analysis may provide the correct formulation of an economic problem, but 
that it is by no means trivial. In particular, the method of construction of the 
input-output  matrix is implicit in the formulation of the economic problem. 
The analysis involved a listing of the economic variables of the problem, 
(y,N), plus a relationship with the data, (Uo, Vo, Lo), and the associated 
variables, (U, V,L). In proceeding this way, technical coefficients merely fall 
out as values of mappings defined on the data. The mappings are determined 
by the formulation of the economic problem. 

The material balance equation, (M), has emerged in the course of rewriting 
the economic problem. I shall now discuss the emergence of the financial 
balance equation, (F). Let us assume, in addition to constant returns to scale, 
free disposability and that output vectors span non-negative space. The 
problem becomes 

max py 
x > O  
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subject to 

x > A x + y ,  lx<=N. 

Although the material balance constraint set is widened by the replacement 
of the equality sign, this will not affect the solution, for it is easy to show 
that the constraint is binding. The latter problem, also called the primal 
program, lends itself to a more convenient formulation of the so-called dual 
program. Applying Schrijver (1986~ p. 90), the dual program becomes 

min wN 
w>~O 

subject to 

p <pA + wl. 

Here w is the Lagrange multiplier associated with the labor force constraint, 
or marginal productivity of labor. An increase in N by one unit in the primal 
problem would increase the solution value of py. The latter increase is w, 
which, therefore, is also called the shadow wage rate. In contrast to standard 
input-output  analysis, the wage rate is related to the quantity system 
through the concept of marginal productivity. This is the central place where 
a neoclassical framework provides structure to input-output  analysis. The 
extension to other factor inputs, such as capital, is obvious. Although there is 
non-substitutability at the sectoral levels, changes in the composition of final 
demand allow for factor intensity variation and, therefore, full employment. 
The rewards are the marginal productivities with respect to the national 
product. 

By the main theorem of linear programming~ the solutions to the primal 
and dual programs yield equal values: 

py = wN. 

This is the equality between the national product and income, in our 
single-factor economy with zero operating surplus. Now, by the two inequali- 
ties of the primal program, 

( p - p A - w l j x > p y - - w N  =0. 

A last step to establish the value equations involves a new concept, Define 
active and sleeping sectors as follows. Sector i c I (the active sectors) if x i>0,  
and i~ l l  (the sleeping sectors) if xi=0.  Then I and 1I partition the sectors 
and 
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\ x , /  

with xr strictly positive and xtt zero. The last inequality becomes 

(p - p A  - w l ) i x l  + 0 > O, 

and by the constraint of the dual program, 

( p - p A - w l ) t = O  

o r  

Pt =(pA)/+ wll. 

We have now arrived at the value equations of input output analysis, 
previously indicated by (F), the financial balance. They are not standing by 
themselves, but follow from the same economic problem that was also used 
to establish the quantity equations or the material balance, (M). Once more, 
it is important to note the unification brought about by the neoclassical 
framework of profit maximization. The equations not only emerge as primal 
and dual constraints to a common problem, but the quantities and the value 
are determined jointly. In particular, the wage rate is the marginal producti- 
vity of labor and the prices are consistent with it through competitive cost 
equations. Only active sectors are relevant in the determination of value. 
This is a methodological point that would have been overlooked if the basic 
structure of input-output analyis had been taken for granted rather than 
derived. 

The various assumptions that I made in the course of the derivation were 
introduced to reveal the implicit role of standard input-output  analysis, but 
are not really necessary to the investigation of the economic problem. For 
example, the shadow prices of factor inputs are presented directly as the 
Lagrange multipliers to the program and are thus available without the 
necessity to set up value equations. 

4. Substitution 

Input-output economics was invented by Wassily Leontief and the so- 
called Leontief production function is defined by the absence of substitution. 
Many economists therefore think that in input-output analysis there is no 
substitution. Substitution will be analyzed as an issue of changing coeffi- 
cients, A. Let us investigate the thought that input output analysis excludes 
substitution. As before, we have input and output matrices, U and V, and 
observations Uo and Vo. We have seen that economic problems may be 
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expressed in terms of U and V and that in the course of analysis an 
input-output  matrix based on U 0 and V o may emerge. The latter dependence 
is denoted by writing A(Uo, Vo). Taken as a mapping, A is a model of 
construction, a device that tells you how to manipulate the arguments. 
Whatever the model of construction, if we change the data, (U o, Vo), then the 
coefficients, A(Uo, Vo) , change as well, except when the new observations, say 
U~ and V~, are collinear, with the collinearity given by the old coefficients: 
U~ =A(U0, Vo)V~. This change involves substitution of inputs if and only if 
components in a column of A move in opposite directions. In other words, 
the very fact that coefficients change with data changes indicates the presence 
of substitution in input-output  analysis. This is not what is meant by the 
neoclassical critics. Instead, they refer to the use of coefficients based on one 
observation. In scenario analysis the constructed coefficients matrix, 
A(U o, Vo), is applied to some hypothetical (U, V), and feasibility of the latter 
reads 

Ue= A(Uo, Vo) Vr e. 

This equation can be shown to be equivalent to the material balance, (M), 
using the change of variables, x= V%, The equation holds trivially for 
(U, V)=(U0, Vo), at least when model A is an established one. For example, 
if A is the commodity technology model, then A(Uo, Vo)=UoVo T and the 
above feasibility equation reads Ue= Uo Vo r vVe, which is true for (U, V)= 
(Uo, Vo). If this equation is required for all feasible (U,V), including 
hypothetical ones, then inputs and outputs must be proportional (with 
coefficients U o V o T) and, therefore, substitution is assumed away indeed. This 
methodology may make sense if there is only one observation, (U o, Vo), and 
even then merely reflects an extreme restriction of data availability. Other- 
wise the neoclassical critique becomes most relevant and substitution 
becomes unavoidable. 

Consider a second observation, (Uz,Vz). It would be a coincidence if 
A(U1, V1)=A(Uo, Vo). If, in scenario analysis, some weighted average of 
A(Uo, Vo) and A(U1, V1), say ,'], were applied to (U, V), then feasibility would 
read Ue=AVre  and substitution would still be absent. However common, 
this approach seems inconsistent to me, at least in a non-stochastic world. 
For example, the observations (U, V)=(Uo, Vo) and (U,V)=(UI,V~) need 
not be feasible under ,4, not even under standard technology assumptions 
like constant returns to scale and free disposability. A simple illustration is 
given by the following pair of observations, 

0 0 

Then 
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Hence 

o] [:: o] 
2/3 and A(U1, V1)-- 1/3 ' 

with 1/3<a, b<2/3.  (Uo, Vo) is feasible under A if and only if Uoe>AV~e 
(using free disposability of inputs) or 

2/3_1 

(U~, V~) is feasible under A if and only if 

1/3_1 

These two conditions cannot be met by a,b> 1/3. This completes the 
demonstration that a weighted average of the coefficients is inconsistent with 
feasibility of the observed flows. 

It seems more appropriate to declare (U, V) feasible if it can be decom- 
posed in two terms, say (U, V)=(U °, V°)+(U l, Vl), with (U °, V °) feasible 
with respect to A(Uo, Vo) and (U 1, V l) feasible with respect A(U1, VI). In 
input space isoquants no longer have the familiar L-shape of a Leontief 
production function, but look like k . . . . .  Such an isoquant features an 
interval of perfect substitution. 

A prime setting for this elementary type of substitution is a model of 
international trade between countries with different technologies, that is 
A(Uo, Vo)¢A(UI, VI), where 0 now represents the home country and 1 the 
foreign country. Although each country may be incapable of substituting 
inputs, reallocations of activity brings it about at a global level. Trade 
mitigates substitution and, when modeled properly, input-output thus loses 
its problematic features of excess supplies and zero prices for some inputs, at 
least when net output proportions are fixed, as we shall see in section 6. 
Neoclassical features are thus introduced without having to go all the way to 
the concept of a smooth production function. In my view, a Cobb-Douglas 
production function, or any other functon with smooth isoquants, is 
generated only in a world with infinitely many observations. The above 
shape of an isoquant is modified further by more kinks, and eventually 
becomes smooth. 
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Bert Steenge has pointed out that my discussion of two (or more) 
observations is unambiguous only in a non-stochastic setting. He also 
suggested that if (Uo, l~]j and (U1, VI) are viewed as realizations of a random 
variable, A can be interpreted as an approximation of the "true" input output 
matrix. In this case, infeasibiiities of observations under ,4 could be ascribed 
to errors. A discussion of the implications of allowing for a stochastic 
approach may be as follows. Input observations would be related to output 
observations through tile "true" matrix, say .c,/. and discrepancies are collected 
in error terms, say ;:: 

(Uo, U~) =.~J( V(J,, 1" [) -~ (;;o, ;:1 )- 

(The extension to more than two observations is obvious.) A would be an 
estimator of ,c£, and hence a function of (U o,/Jl)  and (l/o, I/1). It could be 
ordinary least squares, or restricted ordinary least squares, if the true matrix 
is non-negative. The framework is consistent with the axioms of Kop Jansen 
and ten Raa (1990t, as well as non-negativity requirements. Non-negativity is 
less likely to be rejected as in ten Raa (1988), since the variance covariance 
matrix is no longer known, but must be estimated from (Uo, UI) and 
(I/o, V~). If non-negativity continues to be rejected in the presence of many 
observations, my preferences would be to drop the notion of a common "true' 
matrix by admitting different coefficients, that is substitution, Moreover, 1 
would not enforce non-negativity on each realization. In fact, explicit 
ewduation of the coefficients is not necessary in economic analysis, not even 
when proportions are assumed to be constant. I refer to the analysis of 
ten Raa and Mohnen (this issue) for an illustration. 

A multitude of observations and underlying techniques is one source of 
substitution between factor inputs. Another source is the commodity compo- 
sition of final demand or. more precisely, its variability. Neoclassical 
economists exploit this source of substitution as well, but in a rather implicit 
manner, through the concept of an aggregated commodity. It is illuminating 
to establish the relationship a bit more clearly. It suffices to consider one 
observation, (Uo, Vo, L0, Ko), including sectoral labor and capital employ- 
ment row vectors. Turning to variables by dropping the zero subscripts and 
introducing, as before, technical coefficients A = U o V i  iI ,  / = L o l / o  ~ and 
k = K o V 0  r, the factor requirements of a bill of final goods, y, becomes 
l ( l - A )  13 ' and k(l A) ly, which clearly vary with the composition of 
vector y. ]'his simple source of substitution is sufficient to obtain full 
employment of resources (ten Raa and Mohnen, this issue). 

Most neoclassical economists think of a combination of the two sources of 
substitution when modeling a national production function. The effects of 
choice of techniques, and hence alternative technical coefficients, on the 
relationship between net outputs and factor inputs are envisaged. It should 
now be clear that methodologically this is a problem of the effects of 
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coefficients variation on ( I - A )  1, the Leontief inverse of A. Thus, the 
input-output counterpart of neoclassical substitution is variation of the 
Leontief inverse. This problem is analyzed in a stochastic setting by Kop 
Jansen and Steel (this issue). 

In a neoclassical framework, substitutability of inputs is determined by 
their marginal productivities. For factor inputs the commodity composition 
effect of final demand is, as mentioned, one source of substitution. If we 
denote the solution to the primal program, py, by Q, then, by the main 
theorem of linear programming, Q=wLo+rK o, where w and r are the 
Lagrange multipliers of the labor and capital constraints which fulfill w = ?Q/ 
?N and r=?Q/~K. So even though there may be no substitution of inputs 
within sectors, the possibility of varying components of the net output vector 
in solving the economic program yields substitutability of factor inputs. 

Conceptually, substitution is modeled by constructing the hybrid economy 
comprising all the observed techniques. The first application is in Carter 
(1970). In the solution, only one technique of the observed ones will be active 
and the others are worse as valued by the shadow prices of the material 
balance and factor input constraints, by the phenomenon of complimentary 
slackness. So all you know is such types of inequalities. When the techniques 
are not finite but constitute a continuum and can thus be parameterized, the 
superiority of the active techniques in terms of value can be assigned first- 
order conditions yielding the equality between relative prices and marginal 
rates of substitution. However, I dislike this idealization and, therefore, 
refrain from relating coefficients changes to the dual prices. 

5. Specialization 

When an economic problem is formulated mathematically as a linear 
program, bang-bang behavior is to be expected. Typically, the number of 
active variables is no more than the number of constraints. When the value 
of the national product is maximized subject to the material balance 
constraints and the primary factor constraints, the former are binding and 
can be used to express national product components in sectoral activity 
levels. This elimination procedure leaves only the primary factor constraints 
to bind the sectoral activity levels and, therefore, the number of active sectors 
will match the number of primary factors. For example, in section 3, where 
only labor was considered, an extreme form of specialization in only one 
sector results. 

The extreme behavior of input-output type models is believed to be caused 
by the assumption of non-substitutability of inputs of a technique. This belief 
is false. In fact, substitution makes things worse. My elaboration comes in 
three fold. First, I shall reproduce the argument of non-substitutability as a 
source of extreme behavior. Second, I shall discuss the consequences of the 
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introduction of substitution in the maximization problem of this paper. 
Third, ! shall comment on a neoclassical approach to the problem of 
specialization. 

A macro-economic production function relates net output of a national 
economy directly to its factor inputs. Gross outputs and intermediate inputs 
are implicitly eliminated by Leontief inversion. Although no one would argue 
that this procedure yields a Leontief production function for an aggregate 
measure of output, many applied input-output  studies exhibit this behavior. 
Whenever the proportions of the final bill of goods are fixed by consumption 
and trade coefficients, the fixed primary input proportions can be associated 
with components of the vector of final goods and be weighted. In this case 
the national economy is implicitly modeled by a Leontief macro-economic 
production function and bang-bang behavior emerges in the form of some 
zero shadow prices of factor inputs. These observations pertain to standard 
linear programming formulations of the input-output  model, such as 
Dorfman et al. (1958), but not to our approach. The proportions of final 
goods many vary freely and, therefore, the aggregate factor intensities also. 
Since the objective function is a linear valuation of net outputs, the latter are 
perfect substitutes and, since factor intensities vary across net outputs, there 
is some degree of substitution between factor inputs as well. So the extreme 
behavior of our model is not the usual phenomenon of Leontief-type models. 
As a matter of fact, the introduction of substitution makes things worse. The 
best way to understand this is to go back to the very first formulation of the 
economic problem in section 3. As we have seen in section 4, the introduc- 
tion of substitution merely increases the dimension of the activity space (or 
the vector of scales, s). The linear programming result that the active number 
of activities matches the number of primary inputs remains. The disaggrega- 
tion of a sectoral activity into a number of activity vectors that comes with 
the introduction of substitution cannot increase the number of active sectors, 
but has the possibility of concentrating activities in fewer sectors. By going to 
the limit of neoclassical production functions, one cannot escape this logic. A 
fine example is Diewert and Morrison (1986). To avoid specialization, they 
impose a translog structure not on the production function or inputs of the 
economy, but on the national product function, or outputs of the economy. 
This procedure eliminates specialization, but it is brute force for four reasons. 
First, a peculiar jointness of net output is implicitly assumed. Second, since 
the signs of the components cannot flip when a translog function is imposed, 
the pattern of trade must be considered given. Third, estimation at the net 
output side of the economy requires the assumption that the observed flows 
are consistent with perfect competition. Fourth, even when the previous 
point is taken for granted, the required concavity assumptions are inconsis- 
tent at the output level, as admitted in a footnote by Diewert (1982, p. 576). 

Specialization is a serous 'problem' that plagues input-output  as well as 
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neoclassical models of national product determination. In applications 
additional constraints are considered, such as the non-tradability of certain 
commodities, and the number of active sectors is increased accordingly. An 
intermediate device is to model imports as imperfect substitutes. Although 
such practices remedy the extreme nature of corner solutions, the economics 
of specialization must be accepted. The best objection against our linear 
programming approach is that the pattern of specialization is dependent on 
the coefficients of the objective functions, such as the world terms of trade, 
and that variations in the latter cannot be anticipated, so that diversification 
is a safe policy. However, without imposing a peculiar jointness on net 
outputs, Gilchrist and St. Louis (this issue) are able to address diversification 
by taking into account the fluctuations in the terms of trade. Their study is 
regional economic. Patterns of specialization, as predicted by international 
trade theories, are best tested in regional economics since impediments to 
trade are less prevalent between regions than between nations. 

6. Closing the model 

The possibility of importing commodities admits negative components to 
the net output vector of a national economy and, therefore, the specialization 
in a number of sectors. Under conditions of national product maximization 
and free trade, the structure of an economy thus degenerates into a number 
of columns and the usual input-output  multiplier effects evaporate from the 
national economy, It is only at the level of the world economy that the 
circularity of production and traditional input-output  results re-emerge. The 
international division of labor is a vehicle for substitution. Commodities can 
be produced in different national economies with varying input proportions. 
As noted in section 4, substitution is modeled by constructing the hybrid 
economy comprising all the observed techniques. The commodity × sector use 
tables are stacked next to each other and the sector ×commodi ty  make 
tables are stacked under each other. In other words, sectors in different 
countries are treated as separate sectors. Since the system of National 
Accounts makes a distinction between commodities and sectors anyway, 
identifying the latter with pairs of input columns and output rows, there is 
no need to classify sectors across countries. Their numbers and order may 
vary; we only have to put them next to each other. 

Thus let Uo, V0, and L o be the use, make, and employment tables of the 
world obtained by stacking the national ones. Let s be the column vector of 
sectoral activity levels. The number of components is the sum of the numbers 
of sectors in the various countries. The sign pattern of the economic variable 
s will reveal the pattern of specialization between countries in the different 
commodity markets. The net output of the world will be ( V ~ - U o ) s ,  
assuming constant returns to scale. The total labor requirements are Los. 
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For ease of exposition, I assume that labor is mobile, so that activities are 
constrained by Los < N, the world labor force. The alternative assumption of 
immobile labor could be accommodated by treating workers of different 
countries as different factor inputs. 

Unlike the national economic analysis expounded in section 3, it does not 
make sense to maximize world net output at given world prices. Components 
of net output would be negative. They might be forced to be positive by 
adding constraints, but those constraints would be binding and their 
specification would drive the allocation of activity in a direct, mechanical 
manner. The world economy is closed and all trades cancel out in its net 
output vector. The net output must be related to preferences rather than 
some exogenous price system. Thus, let the desired net output proportions be 
given by a vector a with a non-negative shares for the commodities, adding 
to unity. There is no objection against declaring the status quo net output 
proportions desirable. The level of the desired net output vector is variable in 
the economic analysis and, in fact, constitutes the objective function: 

max c 
s , c > O  

subject to 

(VXo-Uo)s>=ac, Los<=N. 

This program determines the pattern of specialization of countries. Net 
output is non-negative at the world level, by the constraint that imposes the 
desired proportions, but may have negative components for individual 
countries. Commodity prices are endogenous. In fact, they are the shadow 
prices associated with the net output constraints. The dual program reads 

rain wN 
p. -w_> O 

subject to 

pVVo < PUo + wLo, pa= l. 

Note that this dual program is basically the same as the dual program to the 
national product maximization program of section 3. The only essential 
difference is that the commodity price vector is now variable. The derivation 
of the value equations of input output analysis is unaffected. As before, the 
solutions to the primal and dual programs yield equal values: 

c=wN. 

This is the equality between the world product and income. By the 
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constraints of the primal program and the normalization of prices, 

(pVTo -- p U  o -- wLo)s  >-_ p a c - -  w N  = O. 

As before, partition sectors in active ones (si>O) and sleeping ones (si=O), 
constituting index sets I and I1, respectively. Then 

(pVTo - p U o  - wLo) ls t  + 0 > 0 ,  

and by the constraint of the dual program, 

(p VVo -- p U  o - wLo)  t = 0 

o r  

PV~t  = p U o t  + wLot, 

where I selects the active columns. It can be shown that the number of active 
comumns need not be greater than the number of commodities. Moreover, if 
the desired net output proportions (a) are not so extreme that some 
component  can be supplied as a by-product, the number of active sectors 
must be at least equal to the number of commodities. Thus, VoVt will be a 
square matrix. Moreover, if primary output is dominant, it is invertible and 
we obtain 

p-= p A t  + wit, 

where At = Uo1Vo) x and I t = L o l V o ~ ,  the input coefficients according to the 
commodity technology model as applied to the active sectors. Consequently, 

p = w i t ( l -  AI)  - I, 

the Marxian labor values as determined by the coefficients of the active 
sectors. Note that this general equilibrium price does not depend on the 
assumed desired net output proportions, a. As a matter  of fact, not even the 
selection of active sectors, I, depends on a. In the dual program, a only 
normalizes prices. It can be shown that the price vector that solves the dual 
program is independent of the normalization constants listed in the vector a. 
Consequently, a component  of the dual constraint is binding or not binding, 
whatever a. Thus, the classification of break-even and unprofitable sectors is 
independent of a. By the above analysis the break-even sectors are precisely 
the active sectors, and the profitable sectors are the sleeping sectors. This 
shows that the classification of sectors in active and sleeping ones is 
independent of the preferences. The application of the theory of linear 
programming thus provides a simple proof of the substitution theorem of 
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Samuelson (1951), by which an economy with a single factor input will not 
substitute techniques in response to changing demand conditions. 

Note that the dual variables (prices) are positive. In the same way that the 
dual constraints were shown to be binding when the primal variables 
(activity levels) are positive, we can now conclude that the primal constraints 
are binding, 

¢ V~o - Uo)s  : ae, 

and, therefore, 

I V  r -  Uo)~Sl = a c .  

By change of variable, V~s/= x, we now have 

x = A t x + a c ,  

the traditional input-output  equation, featuring circularity of production and 
the consequent multiplier effects: 

x = l l -  A t ) -  l ac. 

The technical coefficients are not determined by aggregation of sectors across 
countries and submission of the world use and make tables to the standard 
formula, but by the best practice techniques selected by the linear program. 
While the selection is robust in our simple world model with one factor 
input, the situation becomes more complicated when more factor inputs are 
introduced. The input-output  relations are maintained, but the set of active 
sectors may vary to accommodate  factor scarcities. 

Although the national product maximization program expounded in 
section 3 and the desired consumption level program for the world economy 
of this section would make no sense in each other's contexts (the national 
program entails negative net outputs and the world program excludes them), 
they are consistent. The general equilibrium model of this section subsumes 
the partial equilibrium model of section 3 if the prices which were considered 
there are the solution to the world model. Otherwise the extreme patterns of 
national net exports would yield excess supplies or demands in the world 
markets. 

7. Productivity growth 

One might argue that neoclassical economics provides a reduced form of 
the input-output  model. Leontief inversion is presumed implicitly in neo- 
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classical models and the value of net output attainable for given levels of 
resources is written by a simple function in lieu of the solution to a linear 
program as in section 3. Since the neoclassical production function is 
essentially the value function of a linear program, the marginal productivities 
of the resources are the Largrange multipliers to the linear program. To 
introduce productivity more precisely, recall the data of an economy: use and 
make tables, labor and capital employment row vectors, as well as total 
endowment stocks. As before, net output is y = ( V T - - U ) e ,  while factor inputs 
are stocks N and K. Roughly speaking, productivity is net output divided by 
factor input, hence profitability growth is the change of net output minus the 
change of factor input. The traditional measure of total factor productivity 
growth is 

(p d y -  w d N  - r d K  )/(py), 

where w is the wage rate and r the rental rate of capital. Input-output  
economists [Wolff (this issue)] consider w and r exogenous and commodity 
prices p endogenous, using the value equations of section 2, 

p = p A  + wl +rk. (F') 

The traditional measure of productivity growth is rather mechanical, but can 
provide a theoretical foundation by embedding the input-output  relation- 
ships in the neoclassical framework of profit maximization. Productivity is 
properly defined only if there is a criterion, or objective function, to measure 
the contributions of factor endowments. In my view, factor productivity is w 
or r, the shadow prices or Lagrange multipliers to a maximization problem. 
After all, shadow prices measure the contributions of factor inputs. Conse- 
quently, since factor productivity growth ought to be the growth of factor 
productivity, it must be dw or dr. Hence factor productivity growth rates are 
changes in shadow prices resulting from changes in the data 
(Uo, Vo,Lo, Ko, N , K  ). Since dw and dr are per unit of factor input, total 
factor productivity growth is N d w + K  dr, or, relative to national product or 
income, 

(N dw + K dr)/(py). 

This shadow-price-based measure of total factor productivity growth can be 
used as a foundation for the traditional measure through the main theorem 
of linear programmity of section 3: 

py = w N  + rK. 

Here w and r are endogenous marginal productivities associated with unit 
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increases in N and K, but p is the exogenous row vector specifying the 
criterion (national product of world prices, for example). Hence differentia- 
tion yields 

p d y = w d N  + N d w + r d K  + K dr. 

Substitution into my direct definition of total factor productivity growth, 
( N d w +  K dr)/(py), yields the traditional measure outlined at the beginning of 
this section. 

Note that in defining and deriving total factor productivity growth, I made 
no appeal to the traditional value equations, (F'), p is exogenous and w and 
r are the shadow prices associated with a maximization problem. It is an 
open question which value equations they fulfill. If there are no lower 
bounds to net output, they they fulfill the value equations restricted to the 
active sectors in the maximization problem, as defined in section 3. Typically, 
their number is the number of constraints, which is only two! This case is 
relevant to the measurement of productivity growth of an open economy 
under free trade. Under alternative regimes, commodity prices pick up tariffs 
and the consequent full prices observe a more compete system of traditional 
value equations. These tariffs are endogenous, see ten Raa and Mohnen (this 
issue). Input -output  economists, by using the full price vector in evaluating 
total factor productivity growth, implicitly take trade restrictions for granted. 
The precise relationship between trade regimes and the measurement of total 
factor productivity growth is an open issue and presently under investigation. 

8. Conclusion 

In this paper we have used the neoclassical concept of profit maximization 
as a framework for the input and output data of an economy. The basic 
elements of input-output  analysis, notably technical coefficients, and the 
quantity and value equations, emerged as intermediate constructs in the 
course of analysis. The technical coefficients construction methodology is 
forced by the quantity and value equations, and the latter are derived from 
the primal and dual constraints to the problem of profit maximization. 
Value-added coefficients are no longer exogenous but related to the quantity 
system as shadow prices. Their rates of change can be used to define factor 
productivity growth rates and the traditional input-output  measure of total 
factor productivity growth has thus been provided a neoclassical foundation. 
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