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Abstract. A simple derivation of the spectral decomposition of the covariance matrix for a general multi-way variance
components model is presented. So-called balanced data are assumed to be available. Spectral decomposition is exploited to
derive the information matrix and the first-order conditions for the maximum likelihood estimation of the variance

components parameters.
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1. Introduction

In this note we present a simple derivation of the
spectral decomposition of the covariance’ matrix
for a general multi-way variance components
model. Balanced data (to be defined below) are
assumed to be available. This problem has been
discussed before by Searle and Henderson (1979),
who present a longer derivation. To illustrate the
importance of the spectral decomposition, we ex-
ploit it to derive the information matrix and the
first-order conditions for the maximum likelihood
estimation of the variance components parameters.

* The views expressed in this paper are those of the authors
and do not necessarily reflect the policies of the Netherlands
Central Bureau of Statistics.

2. The model

Let there be a random vector ¥ which is normally
distributed with zero expectation and covariance
matrix ¥V of the following structure

V=YA,N,, (2.1)
d

where d is a k-vector of zeros and ones. The
summation runs over all such vectors (i.e. over 2*
elements). The A, are nonnegative parameters and
N, is a matrix consisting of a Kronecker product
of k separate matrices of order n, (i=1,...,k),
each of which is either a unit matrix (/,) or a
square matrix of ones (J, ). Furthermore, let d; be
the ith element of 4. A unit matrix occurs in the
ith position when d;=1 and a matrix of ones
when 4, =0. For example, if k=3, d=(0, 1, 1),
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then
Nopn=J, ®1I, ®1I, (2.2)

with matrices of order n,, n, and n;, respectively.
Whenever a covariance matrix has format (2.1), we
have balanced data.

3. The spectral decomposition

Assume it is possible to rewrite the covariance
matrix V in the format

V=2 é,M,, (3.1)
d

with the ¢, scalar parameters, and M, a Kronecker
product of k separate matrices; but here the ith
matrix in M, equals E, =1, —J, /n;ifd;=1 and
it equals J =1, /n;if d = 0. For example

My, =Jn. ®E, ®E,. (3.2)

Whenever V can be written as in (2.1), it can also
be writen as in (3.1) (and vice versa). An example
may suffice to show why

Non = n{ Mygo + Moo + Myo, + Myy,), (3.3)

as is easily verified. In general, the relation be-
tween N, and M, can be written as

Ny=n‘Y M, (3.4)

es<d

where the following shorthand notation is used:
d=1—d (1 a k-vector of ones) and

1= A_Y (3.5

the notation e < d means that the elements of e are
not greater than the corresponding elements of 4.
So,

V=Y A,N,= Z}\dnd Z M,
d

‘Z(ZA” )Md—Z% d> (3.6)
e>d

where the third equality sign can be checked by
writing out the third member. Now the M, can be
verified to have the following properties:
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~ they add up (over all d) to the unit matrix;

~ they are idempotent;

- MM, =0ford=e.

Thus (3.6) is exactly the spectral decomposition of

V. There are at most 2* different eigenvalues ¢,

(=L, qA.n°), with multiplicity equal to the

rank of the corresponding matrix M, which equals

n?, ’
The spectral decomposition of V greatly facili-

tates the computation of its powers since

=Y ¢3M, for any scalar a. (3.7)
d

4. Maximum likelihood estimation

Let V,=0v/dA, then the first-order condition for
max1mum likelihood estimation of A y is

(V=) =w(v=vy")u, (4.1)

where u was introduced at the beginning of Sec-
tion 2.

A typical element of the information matrix
(apart from a factor — 1) is (e.g. Searle (1970))

u(V,y-v ). (4.2)

Given the spectral decomposition it is easy to
calculate these quantities:

DI=Z EYN N,= N/ n’ Z M, (4'3)
d e<f
SO,
te(V,V 1)=nf_tr(z¢iMd)(ZMe)
d d e<f
oz
=n’tr —M,
e ¢e
=/ Y Z—n L -
exr®er X, A
- L (4.4)
e<f Zd%}\‘,n’“ e
WV Yu=n' Y izu’Meu, (4.5)
e<f ¢e
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(VW) =/ Y — t(M,)

E‘<f e

—n/*E Y n

o (f<g). (46)
e<f Pe

The last two expressions can be worked out fur-
ther by substituting for ¢, just as in (4.4).
5. Conclusion

The spectral decomposition of the covariance ma-
trix of balanced designs can be obtained in a
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simple way. The spectral decomposition, in turn,
greatly facilitates the derivation of the information
matrix and first-order conditions for maximum
likelihood estimation of the variance components
parameters.
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