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Abstract. A simple derivation of the spectral decomposition of the covariance matrix for a general multi-way variance 
components model is presented. So-called balanced data are assumed to be available. Spectral decomposition is exploited to 
derive the information matrix and the first-order conditions for the maximum likelihood estimation of the variance 
components parameters. 
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I. Introduction 2. The model 

In  this note we present a simple derivat ion of the 
spectral decomposi t ion of the covariance ~ matrix 
for a general mult i -way variance components  
model.  Balanced data (to be defined below) are 
assumed to be available. This problem has been 
discussed before by Searle and Henderson  (1979), 
who present a longer derivation. To illustrate the 
impor tance  of the spectral decomposit ion,  we ex- 
ploit  it to derive the in format ion  matrix and the 
first-order condi t ions  for the m a x i m u m  likelihood 
est imat ion of the variance components  parameters.  

* The views expressed in this paper are those of the authors 
and do not necessarily reflect the policies of the Netherlands 
Central Bureau of Statistics. 

Let there be a random vector u which is normal ly  
dis tr ibuted with zero expectat ion and  covariance 

matrix V of the following structure 

V = ~ . . X d N  d, (2.1) 
d 

where d is a k-vector of zeros and ones. The 
summat ion  runs over all such vectors (i.e. over 2 k 
elements). The X d are nonnegat ive  parameters  and 
N d is a matrix consist ing of a Kronecker  product  
of k separate matrices of order n, ( i =  1 . . . . .  k), 

each of which is either a unit  matrix ( I , , )  or a 
square matrix of ones (Jn,). Furthermore,  let d i be 
the i th  element of d. A uni t  matrix occurs in the 

i th  posi t ion when d i =  1 and a matrix of ones 
when d i = 0. For example, if k = 3, d =  (0, l, l), 
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then 

Non =J, ,  ® I,~ ® I , , ,  (2.2) 

with matrices of order hi, n 2 and n 3, respectively. 
Whenever a covariance matrix has format (2.1), we 
have balanced data. 

3 .  T h e  s p e c t r a l  d e c o m p o s i t i o n  

Assume it is possible to rewrite the covariance 
matrix V in the format 

V= ~ M d ,  (3.1) 
d 

with the q~a scalar parameters, and M d a Kronecker 
product of k separate matrices; but here the ith 
matrix in M d equals E., - I., - J . , /n  i if dj = 1 and 
it equals ~ ,  = J~,/n i if d i = O. For example 

m011 = L ,  ~ In  2 ~ En 3" (3 .2 )  

Whenever V can be written as in (2.1), it can also 
be writen as in (3.1) (and vice versa). An example 
may suffice to show why 

N01 ! = HI( Mooo + Molo + Moo I + Mo,,) ,  (3 .3 )  

as is easily verified. In general, the relation be- 
tween N a and M a can be written as 

U a = n J Y'. Me, (3.4) 
e~d 

where the following shorthand notation is used: 
= t - d (L a k-vector of ones) and 

k 
H s =  E (3.5) 

i = l  

the notation e ~< d means that the elements of e are 
not greater than the corresponding elements of d. 
So, 

V =  E X a g a  = E)~dn '~ E Me 
d d e<-.<d 

= ~ (  Y~ h~n~)Ma-~ . , ,~aMa,  (3.6) 
d e>~d d 

where the third equality sign can be checked by 
writing out the third member. Now the M a can be 
verified to have the following properties: 

- they add up (over all d)  to the unit matrix; 
- they are idempotent; 
_ M a M e = O f o r d - - x e .  
Thus (3.6) is exactly the spectral decomposition of 
V. There are at most 2 k different eigenvalues 'Pa 
(q,a=Y'.¢>dXene), with multiplicity equal to the 
rank of the corresponding matrix M a, which equals 
H d. ~' 

The spectral decomposition of V greatly facili- 
tates the computation of its powers since 

V" = Y'~eo~M a for any scalar a. (3.7) 
d 

4 .  M a x i m u m  l i k e l i h o o d  e s t i m a t i o n  

Let V/= ~v /~X / ,  then the first-order condition for 
maximum likelihood estimation of ?,f is 

tr( VfV- l ) = u'( V -  'VfV-  t ) u, (4.1) 

where u was introduced at the beginning of Sec- 
tion 2. 

A typical element of the information matrix 
(apart from a factor -½)  is (e.g. Searle (1970)) 

tr( V /V- IVgV- '  ). (4.2) 

Given the spectral decomposition it is easy to 
calculate these quantities: 

OXd v/= ~ - ~ f N ,  - hi'/= n i ~ Me; (4.3) 
d e~f 

SO, 

1 M e < f  " 
t r(V/V-')  = n f  t r ( ~  ~ a)(  ~ M~) 

= n / t r (  y ,  1 M e l  
e<~f q~e ] 

= ne = He 
HI E - -  Hi E 

e~f d~e e~f ~.d>~ Xdn" 
1 

= • _ _ • ( 4 . 4 )  

e<f Ed>~e~kd n d - f - e  ' 

u t ( V - 1 5 V - 1 )  u=r l f i  E l u t m e  u, (4 .5 )  

e<~f q)e 
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1 tr(Me) tr( V f V - 1 V g V - 1 )  = nf+g E --~ 
~ f  ~ 

rt e 
= nT+g ~ 7 (f~< g)" (4.6) 

The last two expressions can be worked out fur- 
ther by substituting for %, just as in (4.4). 

simple way. The spectral decomposition, in turn, 
greatly facilitates the derivation of the information 
matrix and first-order conditions for maximum 
likelihood estimation of the variance components 
parameters. 
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