A Note on Spectral Decomposition and Maximum Likelihood Estimation in ANOVA Models with Balanced Data

Tom Wansbeek
Netherlands Central Bureau of Statistics, Voorburg, The Netherlands

Arie Kapteyn
Department of Econometrics, Tilburg University, Tilburg, The Netherlands

Received July 1982

Abstract

A simple derivation of the spectral decomposition of the covariance matrix for a general multi-way variance components model is presented. So-called balanced data are assumed to be available. Spectral decomposition is exploited to derive the information matrix and the first-order conditions for the maximum likelihood estimation of the variance components parameters.

Keywords. ANOVA, spectral decomposition.

1. Introduction

In this note we present a simple derivation of the spectral decomposition of the covariance matrix for a general multi-way variance components model. Balanced data (to be defined below) are assumed to be available. This problem has been discussed before by Searle and Henderson (1979), who present a longer derivation. To illustrate the importance of the spectral decomposition, we exploit it to derive the information matrix and the first-order conditions for the maximum likelihood estimation of the variance components parameters.

[^0]
2. The model

Let there be a random vector u which is normally distributed with zero expectation and covariance matrix V of the following structure

$$
\begin{equation*}
V=\sum_{d} \lambda_{d} N_{d} \tag{2.1}
\end{equation*}
$$

where d is a k-vector of zeros and ones. The summation runs over all such vectors (i.e. over 2^{k} elements). The λ_{d} are nonnegative parameters and N_{d} is a matrix consisting of a Kronecker product of k separate matrices of order $n_{i}(i=1, \ldots, k)$, each of which is either a unit matrix ($I_{n_{i}}$) or a square matrix of ones ($J_{n_{i}}$). Furthermore, let d_{i} be the i th element of d. A unit matrix occurs in the i th position when $d_{i}=1$ and a matrix of ones when $d_{i}=0$. For example, if $k=3, d=(0,1,1)$,
then
$N_{011}=J_{n_{1}} \otimes I_{n_{2}} \otimes I_{n_{3}}$,
with matrices of order n_{1}, n_{2} and n_{3}, respectively. Whenever a covariance matrix has format (2.1), we have balanced data.

3. The spectral decomposition

Assume it is possible to rewrite the covariance matrix V in the format
$V=\sum_{d} \phi_{d} M_{d}$,
with the ϕ_{d} scalar parameters, and M_{d} a Kronecker product of k separate matrices; but here the i th matrix in M_{d} equals $E_{n_{i}} \equiv I_{n_{i}}-J_{n_{i}} / n_{i}$ if $d_{i}=1$ and it equals $\bar{J}_{n_{i}}=\mathrm{J}_{\mathrm{n}_{i}} / n_{i}$ if $\mathrm{d}_{\mathrm{i}}=0$. For example
$M_{011}=\bar{J}_{n_{1}} \otimes E_{n_{2}} \otimes E_{n_{3}}$.
Whenever V can be written as in (2.1), it can also be writen as in (3.1) (and vice versa). An example may suffice to show why
$N_{011}=n_{1}\left(M_{000}+M_{010}+M_{001}+M_{011}\right)$,
as is easily verified. In general, the relation between N_{d} and M_{d} can be written as
$N_{d}=n^{\bar{d}} \sum_{e \leqslant d} M_{e}$,
where the following shorthand notation is used: $\bar{d}=\iota-d$ ($\iota \mathrm{a} k$-vector of ones) and
$n^{\bar{d}}=n^{i-d} \equiv \sum_{i=1}^{k} n_{i}^{1-d_{i}} ;$
the notation $e \leqslant d$ means that the elements of e are not greater than the corresponding elements of d. So,

$$
\begin{align*}
V & =\sum_{d} \lambda_{d} N_{d}=\sum_{d} \lambda_{d} n^{\bar{d}} \sum_{e \leqslant d} M_{e} \\
& =\sum_{d}\left(\sum_{e \geqslant d} \lambda_{e} n^{\bar{e}}\right) M_{d} \equiv \sum_{d} \phi_{d} M_{d}, \tag{3.6}
\end{align*}
$$

where the third equality sign can be checked by writing out the third member. Now the M_{d} can be verified to have the following properties:

- they add up (over all d) to the unit matrix;
- they are idempotent;
- $M_{d} M_{e}=0$ for $d \neq e$.

Thus (3.6) is exactly the spectral decomposition of V. There are at most 2^{k} different eigenvalues ϕ_{d} ($\phi_{d}=\sum_{e \geqslant d} \lambda_{e} n^{\bar{c}}$), with multiplicity equal to the rank of the corresponding matrix M_{d}, which equals n^{d}.

The spectral decomposition of V greatly facilitates the computation of its powers since
$V^{\alpha}=\sum_{d} \phi_{d}^{\alpha} M_{d}$ for any scalar α.

4. Maximum likelihood estimation

Let $V_{f}=\partial v / \partial \lambda_{f}$, then the first-order condition for maximum likelihood estimation of λ_{f} is
$\operatorname{tr}\left(V_{f} V^{-1}\right)=u^{\prime}\left(V^{-1} V_{f} V^{-1}\right) u$,
where u was introduced at the beginning of Section 2.

A typical element of the information matrix (apart from a factor $-\frac{1}{2}$) is (e.g. Searle (1970))
$\operatorname{tr}\left(V_{f} V^{-1} V_{g} V^{-1}\right)$.
Given the spectral decomposition it is easy to calculate these quantities:
$v_{f}=\sum_{d} \frac{\partial \lambda_{d}}{\partial \lambda_{f}} N_{d} \equiv N_{f}=n^{\bar{f}} \sum_{e \leqslant f} M_{e} ;$
so,

$$
\begin{align*}
& \operatorname{tr}\left(V_{f} V^{-1}\right)=n^{\bar{f}} \operatorname{tr}\left(\sum_{d} \frac{1}{\phi_{d}} M_{d}\right)\left(\sum_{e \leqslant f} M_{e}\right) \\
&=n^{\bar{f}} \operatorname{tr}\left(\sum_{e \leqslant f} \frac{1}{\phi_{e}} M_{e}\right) \\
&=n^{j} \sum_{e \leqslant f} \frac{n^{e}}{\phi_{e}}=n^{\bar{f}} \sum_{e \leqslant f} \frac{n^{e}}{\sum_{d \geqslant e} \lambda_{d} n^{\bar{d}}} \\
&=\sum_{e \leqslant f} \frac{1}{\sum_{d \geqslant e} \lambda_{d} n^{\bar{d}-\overline{f-e}}} ; \tag{4.4}\\
& u^{\prime}\left(V^{-1} V_{f} V^{-1}\right) u=n^{\bar{j}} \sum_{e \leqslant f} \frac{1}{\phi_{e}^{2}} u^{\prime} M_{e} u ; \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
\operatorname{tr}\left(V_{f} V^{-1} V_{g} V^{-1}\right) & =n^{\bar{f}+\bar{g}} \sum_{e \leqslant f} \frac{1}{\phi_{e}^{2}} \operatorname{tr}\left(M_{e}\right) \\
& =n^{\bar{f}+\bar{g}} \sum_{e \leqslant f} \frac{n^{e}}{\phi_{e}^{2}} \quad(f \leqslant g) . \tag{4.6}
\end{align*}
$$

The last two expressions can be worked out further by substituting for ϕ_{e}, just as in (4.4).

5. Conclusion

The spectral decomposition of the covariance matrix of balanced designs can be obtained in a
simple way. The spectral decomposition, in turn, greatly facilitates the derivation of the information matrix and first-order conditions for maximum likelihood estimation of the variance components parameters.

References

Searle, S.R. (1970), Large sample variances of maximum likelihood estimators of variance components, Biometrics 26, 505-524.
Searle, S.R. and H.V. Henderson (1979), Dispersion matrices for variance components models, J. Amer. Statist. Assoc. 74, 465-470.

[^0]: * The views expressed in this paper are those of the authors and do not necessarily reflect the policies of the Netherlands Central Bureau of Statistics.

