
The Choice of Model in the Construction of Input-Output Coefficients Matrices

Pieter Kop Jansen; Thijs Ten Raa

International Economic Review, Vol. 31, No. 1. (Feb., 1990), pp. 213-227.

Stable URL:

http://links.jstor.org/sici?sici=0020-6598%28199002%2931%3A1%3C213%3ATCOMIT%3E2.0.CO%3B2-H

International Economic Review is currently published by Economics Department of the University of Pennsylvania.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ier_pub.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Thu Apr 3 05:47:54 2008

http://links.jstor.org/sici?sici=0020-6598%28199002%2931%3A1%3C213%3ATCOMIT%3E2.0.CO%3B2-H
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ier_pub.html


INTERNATIONAL ECONOMIC REVIEW 
Vol. 31, No. 1, February 1990 

THE CHOICE OF MODEL IN THE CONSTRUCTION OF 
INPUT-OUTPUT COEFFICIENTS MATRICES 

The construction of input-output coefficients on the basis of flow data is 
complicated by the presence of secondary outputs. Seven methods to deal 
with this problem coexist. For example, U.S. input-output requirement tables 
are based on the so-called industry technology model, Japan adopts the 
so-called Stone method, while West-German tables are based on the so-called 
commodity technology model. This paper settles the issue on the ground of 
theory. 

It postulates invariance and balance axioms and proceeds to characterize 
one of the methods to construct input-output coefficients. The commodity 
technology model is singled out. 

1. INTRODUCTION 

Many applied economic models are built around a so-called input-output matrix, 
A = ,] ,,J= ,.. , .,of technical coefficients, a i j , representing the direct require- (a , . ) ,. 
ments of commodity i needed for the production of one physical unit of commodity 
j. Here n is the total number of commodities. Now, if sectors consume an arbitrary 
number of inputs but produce only a single output, then the construction of their 
technical coefficients is standard. One simply takes input i of sector j and divides by 
output of sector j to obtain the unit requirement, ac.  In practice, however, the 
situation is more complicated. Sectors do not only consume many inputs, but also 
produce a multitude of outputs. Although output flow tables reported by statistical 
offices are heavily diagonal, meaning that sectors' own or primary output is 
dominant, there are also some other or secondary outputs on the off-diagonal parts 
of the tables. Thus, we have an input or "use" table U = .., , of( u ~ ) ~ , ~ = ~ ,  
commodities i consumed by industries j and also an output or "make" table V = 

( u ~ ) ~ , ~ = ~ ,... , of industries i producing commodities j (U.N. 1967; or ten Raa, 
Chakraborty and Small 1984). Note that, for simplicity, we assume the same 
number of industries as of commodities. The problem, then, is to derive an  
input-output coefficients or "requirements" table A = (aij) i , j=l,... , of commodi- 
ties i needed for commodities j .  (Industry tables and mixed tables are not 
considered.) Since values of input-output coefficients clearly depend on the data, 
we write A ( U ,  V ) .  

In the just mentioned textbook case, V is diagonal and one simply puts a i j (U ,  V )  
= u,../u.. i,J' =., 1, ... , n. Otherwise we must somehow deal with the off-diagonal 
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entries of V. There are many established methods which will be reviewed in the 
next section. Each method is known to have advantages and disadvantages. The 
choice of construct seems a matter ofjudgment or taste. Different statistical offices 
employ different methods. As far as we know, a systematic theoretical investigation 
of the alternatives has not been carried out in the literature. Although ten Raa, 
Chakraborty and Small (1984) criticize some methods on theoretical grounds, arid 
present and implement an alternative, it is not clear if their construct is, in some 
sense, the best solution to the problem. Fukui and Seneta (1985) approach 
alternative treatments of joint products theoretically, but only to the extent of a 
quantitative comparison. More precisely, they demonstrate that total output 
requirement vectors based on alternative input-output coefficients matrices can be 
ordered, if a certain condition holds. This paper undertakes a qualitative compar- 
ison of input-output coefficients constructs. Models will be sorted out axiomati- 
cally. The purpose is to single out one method through characterization. 

2. THE ESTABLISHED CONSTRUCTS 

There are many methods to construct an input-output coefficients matrix, A(U, 
V), from input and output data, U and V, respectively. We will index A by method. 
For example, AL is the construction of a requirements table based on the lump-sum 
method (L), to be defined below. 

In what follows, e denotes the column vector with all entries equal to one. 
denotes transposition and -' inversion. Since the latter two operations commute, 

their composition may be denoted -T without confusion. denotes diagonalization A 

either by suppression of the off-diagonal entries of a square matrix or by placement 
of the entries of a vector. ' denotes off-diagonalization by suppression of the 
diagonal elements of a square matrix. (For example, V = + v. )  

It is standard to derive input-output constructs from alternative assumptions. 
However, since we will subject them to an axiomatic analysis anyway, we present 
the formulas directly, referring the reader to sources for motivation and deriva- 
tions. A good general overview is obtained by consulting ten Raa, Chakraborty and 
Small (1984) and Viet (1986). Altogether there are seven methods. 

Three methods are basically statistical tricks designed to remove secondary 
products from the make table. Thus, the problem of constructing input-output 
coefficients is reduced to the standard case mentioned in the introduction. 

Model (L). The lump-sum method (Office of Statistical Standards 1974, p. 116; or 
Fukui and Seneta 1985, p. 177) specifies 

A-I 
AL(U, V) = UVe 

Model (E). The European System of Integrated Economic Accounts (EURO- 
STAT 1979; or Viet 1986, pp. 18-19) recommends 
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Model (T). The transfer method (Stone 1961, pp. 39-41; Fukui and Seneta 1985, 
p. 178; or Viet 1986, pp. 16-18) specifies 

The four remaining methods for the construction of input-output coefficients are 
based on economic assumptions given in the references. Since we will subject the 
constructs to an axiomatic analysis anyway, we are not interested in the plausibility 
or even the specification of the assumptions. 

Model (C). The commodity technology model (U.N. 1967; van Rijckeghem 1967; 
ten Raa, Chakraborty and Small 1984, p. 88; or Viet 1986, p. 20) yields 

Model (B). The Stone method or by-product technology model (Stone 1961, pp. 
39-41 ; ten Raa, Chakraborty and Small 1984, p. 88; Fukui and Seneta 1985, p. 178; 
or Viet 1986, pp. 15-16) yields 

Model (I). The industry technology model (U.N. 1967; or ten Raa, Chakraborty 
and Small 1984, pp. 88-89) yields 

Fukui and Seneta's (1985 p. 178) reference to AI by "redefinition" method is 
confusing since the common denotation of that term is broader and, in particular, 
meant to cover empirical methods for the removal of secondary outputs and the 
associated inputs (Viet 1986, pp. 19-20). 

Model (CB). The mixed technology model was originally presented implicitly by 
Gigantes (1970) as a mixture of the industry technology and commodity technology 
models. Ten Raa, Chakraborty and Small (1984, Sections I11 and IV) replaced the 
industry technology component by the by-product technology model and derived a 
closed form expression: 

where "make table V is split into a table V1 of primary products and ordinary 
secondary products and a table V2 of by-products" and the classification is done 
empirically. This mixed technology model does generalize others, namely the 
commodity and by-product technology models, (C) and (B), respectively, as can be 
verified by appropriate choices of V1 and V2. If V1 = V and V2 = 0, then 
AcB(U, V) = U V - ~= Ac(U, V). While if V1 = Q and V2 = v ,  the AcB(U, V) = 

( U  - vT)Q-I = AB(U, V). 
Different countries employ different methods of the just completed list. For 

example, the Federal Republic of Germany uses the commodity technology model 
(C), Japan adopts the Stone method (B), whereas the U.S. uses the industry 
technology model (I). See Stahmer (1982), Office of Statistical Standards (1974) and 
U.S. Department of Commerce (1980). Viet (1986) surveys more comprehensively. 
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In practice, statisticians and economists fish after each other's recommendations. 
This paper aims to provide a way out of the dilemma. 

3. DESIRABLE PROPERTIES 

So far methods of constructing input-output requirements tables have been 
judged on the basis of the plausibility of the assumptions from which they are 
derived. This approach is not very fruitful. We hope to turn around conventional 
thinking about the subject by starting at the other end. What are desirable 
properties of A(U, V)? Which construct do  they pin down? We hope that our 
deduction will be a fresh substitute for the more inductive inquiries which have 
been carried out so far. 

Some desirable properties are implicit in the literature. For example, input- 
output matrices are typically used in the Leontief equations, "total output = 

input-output coefficients * total output f final demand." So, fulfillment of this 
material balance by the data and the derived input-output coefficients constitutes a 
practical axiom. Also, ten Raa, Chakraborty and Small (1984, section 11) have 
rejected the industry technology model on the ground that the choice of base year 
prices affects the results in more than a scaling fashion. This suggests an axiom of 
base year price invariance. 

We will now list reasonable properties of input-output coefficients and deduce 
their axiomatic context in terms of construct A which maps data (U, V) to square 
matrices of coefficients. 

Axiom (M). Leontief s material balance is familiar in the form 

where x is commodity output, a matrix of input-output coefficients and y surplus. 
Formally, in terms of our data-construct framework, they are defined by 

a = A(U, V),  

y = VTe - Ue. 

By substitution the material balance is reduced to 

(M) A(U, v ) v T e  = Ue. 

In words, the input requirements of total output must match observed total input. 
This is the axiomatic content of Leontief s material balance in terms of mapping A.  

Axiom (F). Dual to the material balance is the financial balance. It is familiar in 
the form 

where p is the price vector, containing the revenues for each unit of the various 
commodities, a the matrix of input-output coefficients and v value added by 
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commodity. pTa  is the cost row vector; the i-th component is the material cost of 
a unit of commodity i. Thus, the financial balance states that for each commodity 
unit, revenue equals material cost plus value added. The reduction of the financial 
balance into our data-construct framework is a bit more delicate than of the 
material balance, since, unlike surplus, value added is reported by sector rather 
than commodity, as we shall see now. The account of sector j is obtained by 
considering an arbitrary output of this sector, ujk. Revenues are pkvjk. Costs are 
( p T a+ v ~ ) ~ v ; ~ .Summing over commodities we obtain total revenue of sectorj, Z k  
pkvjk = p T v j ,  and total cost of sector j ,  z k ( p T a + vTlkvjk= ( p T a  + v T ) v j . .  
Equation of these two financial items yields the account of sector j ,  

In words, revenues equals material costs plus value added by sector. Formally, in 
terms of our data-construct framework, the constituent parts of the account of 
sector j are defined by 

a = A ( U ,  V ) ,  

The second relationship is as before, the other two are classified now. Without loss 
of generality, in a sense that will be made precise below, data are assumed to be 
reported in current prices, so that the physical unit of any commodity is the amount 
that costs one dollar and, therefore, the price vector is e ,  which explains the first 
relationship. Consequently, the value of net output of sector j is eT(Vj. - U j ) ,  
which explains the third relationship. By substitution into the account of sector j 
and subtraction of e T V j  from the left- and right-hand sides, we obtain 

In words, the input cost of output must match the observed value of input. Since 
this must hold for all sectors j ,  we can line up the accounts in the row vector 
equation, 

This completes the reduction of the financial balance to the axiomatic content in 
terms of mapping A .  Note that the financial balance (F) is dual to the material 
balance (M), in accord with Leontief's (1966, chapter 7) price and quantity 
equations. 

Axiom (P). The above assumption that data are reported in current prices was 
claimed not to inflict generality. This is made precise as follows. In the general case, 
data are reported in some arbitrary base year money terms. If the base year is 
pegged at the current year, we are in the situation considered so far, with prices 
equal to e .  Otherwise p remains the vector of price levels relative to the base year. 
For example, i f p i  = 2,  then good i has become twice as expensive and, therefore, 
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TABLE1 

INPUT-OUTPUT COEFFICIENTS CONSTRUCTS AND THE PROPERTIES THEY FULFILL 

Material Financial Scale Price 
Model Axiom: Balance Balance Invariance Invariance 

Lump-sum J 
European System J J 
Transfer 

Commodity Technology J J J J 
By-product Technology J J 
Industry Technology J 
CB-mixed Technology J J 

the current money based physical unit is one half of the base year physical unit. 
Revalued at the new prices, flows of good i are doubled. For example, input i of 
sector j revalued at the new prices is piuij.All inputs revalued at  the new prices are 
given by BU. Similarly, primary output of sec tor j  becomes vjjpjand all output data 
revalued at the new prices are given by VB. Thus, in the textbook case mentioned 
in the introduction, where V is diagonal and ai j (U,  V )  = uijlvjj,we want that the 
new input-output coefficient is ai j (pU,  V p )  = (p iu i j ) / ( v j jp j )= piaij(U, V ) / p j .  
Letting i and j run through all sectors, Stone (1961, formula VIII.37) obtains 

(p) A ( p  U ,  V p )  = pA(U,  V ) p  -' for all p > 0 

Here positivity is defined in the strict way, that is for each and every component. 
The price invariance is equally desirable for the general case where V is not 
necessarily diagonal. So we postulate (P)for all U and V .  

Axiom (S). Dual to the price invariance axiom is a scale axiom in the sense of 
activity analysis. The price invariance axiom considers multiplication of commod- 
ities by factors. Now we consider multiplication of sectors by factors. So we 
multiply all inputs and outputs of sector 1 by a common factor, say sl,and similarly 
for the other sectors. In other words, we imagine a constant returns to scale 
economy. Then we expect input-output coefficients to remain the same. Formally, 

A ( U i ,  j V )  = A(U,  V )  for all s > 0. 

This axiom is not a constant returns to scale assumption. It merely postulates that 
if input-output proportions are constant for each sector, then input-output coeffi- 
cients must be fixed. The logical negation of this implication is that input-output 
coefficients changes must be ascribable to technical change in some sectors. 

Mathematically, the four axioms are independent in a sense that will be made 
precise in Section 5 .  Economically however, we wish to postulate the financial 
balance axiom in conjunction with price invariance, as has been motivated above. 

4. PERFORMANCE 

Now that we have listed all the established input-output constructs in Section 2 
and the desirable properties in Section 3, it is interesting to test how well the 
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various methods perform. Table 1 summarizes the results. Proofs are relegated to 
the Appendix, except for the commodity technology model. 

Let  us discuss the results. The statistical methods, (L), (E) and (T), are crude 
from the theorist's point of view. Each of them violates both a balance and an 
invariance axiom, although the European System model does not perform too 
badly. 

Of the economic methods, the commodity technology model fulfills all proper- 
ties. 

THEOREM 1. The commodity technology model fuljills all axioms: material 
balance, financial balance, scale invuriance and price invariance. 

PROOF. Under the commodity technology model, the left-hand side of the 
material balance, (M), becomes 

which is the right-hand side. The left-hand side of the financial balance, (F), 
becomes 

which is the right-hand side. The left-hand side of the scale invariance axiom, (S), 
becomes 

which is the right-hand side. The left-hand side of the price invariance axiom, (P), 
becomes 

which is the right-hand side. Q.E.D. 

The industry technology model is not price invariant (ten Raa, Chakraborty and 
Small 1984, section 11). Table 1 reveals that it is neither scale invariant. This defect 
is due to the fixed market share property of the industry technology model. When 
some sector is blown up more than others, its market shares increase and, 
therefore, the structure of such a sector gets more impact on the input-ouiput 
coefficients. Thus industry technology coefficients may vary without change in 
technique. Ten Raa, Chakraborty and Small's (1984) alternative constitutes an 
improvement in both respects. However, slightly to the dismay of at least one of the 
present authors, it violates the balance axioms. This observation, due to Fred 
Muller, motivated our theoretical inquiry. The source of the complication is the 
by-product or Stone component of the ten Raa, Chakraborty and Small construct. 
Implications will be discussed later on. 
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5.  CHARACTERIZATION 

True, the results of the preceding section favor the commodity technology model 
over all other established constructs. However, this is not enough. The construc- 
tion of input-output matrices has become a sort of an industry and, at  least a priori, 
some establishment may turn out yet another construct that performs as good as the 
commodity technology model in the above aspects, but better in unforeseen ones. 
Our objective is to settle the issue more definitely. This will be done by starting with 
some desirable properties and deriving the commodity technology model. To 
understand the definitive nature of this approach, it is illuminating to address two 
questions. First, what about other performance criteria? Second, do not similar 
characterization results hold for the other models? As regards other performance 
criteria, we ourselves have considered a bunch of them. For example, it is natural 
to require that the standard model with no secondary products is generalized. 
Another criterion is that nonnegative data yield nonnegative coefficients, and so on. 
We have applied Oscam's razor however, to obtain a minimal set of properties that 
characterizes the method that fulfills most properties. The minimal set contains 
weak properties which are generally accepted. Since they characterize, other 
performance criteria are either implied by the properties we have identified, or 
inconsistent with them. Now we see the full sway of an axiomatic approach. The 
next theorems and remarks demonstrate that other performance criteria, which 
constitute axioms independent of the ones we have considered so far, do  not exist. 
For example, the requirement that the standard model is generalized can be seen to 
be implied by our desirable properties and the nonnegativity property is inconsis- 
tent with our properties. This brings us to the second question, the possibility of 
similar characterization results for the other models. In principle, this is possible. 
However, our results continue to have an enormous impact. For example, the 
industry technology model fulfills the nonnegativity property and it is conceivable 
that yet another property yields a characterization result. By our settlement, 
however, it cannot be a balance and invariance property. 

As far as we know, this is the first paper that provides a characterization result 
pertaining to the construction of input-output coefficients. This amounts to a more 
definite debate settlement than the previous literature which is confined to partial 
comparison of alternative methods. 

This section presents the main results. They imply that the commodity technol- 
ogy model is the only construct that fulfills the desirable properties listed in Section 
3. In fact, two axioms are redundant. If we accept one balance and one invariance 
axiom, either both in the real sphere or both in the nominal one, then we must 
impose the commodity technology model. 

The first theorem concerns the real sphere. 

THEOREM2. (Real sphere.) The material balance and scale invariance axioms 
characterize the commodity technology model. 

PROOF. The commodity technology model implies that the material balance and 
scale invariance are met by Theorem 1. 



THE CHOICE OF INPUT-OUTPUT MODEL 221 

Conversely, let the material balance (M)and scale invariance (S) axioms hold. By 
(MI, 

for all (U ,  V ) .  Substitute (U i ,  i V ) .  Then 

A(UB, ~ v ) ( B v ) ~ ~= UBe. 

By (S) and the fact Be = s, 

Since this is true for all s > 0 and hence for a basis, the matrices acting on them 
must be equal: 

Hence 

A(U, V )  = UV-' 

A = A c .  Q.E.D. 

The next theorem concerns the nominal sphere. It neatly combines the two axioms 
that have been introduced in conjunction with each other in Section 3. 

THEOREM3. (Nominal sphere.) The financial balance and price invariance 
axioms characterize the commodity technology model. 

PROOF. Necessity has been proved in Theorem 1. Sufficiency is proved as 
follows. By the financial balance (F), 

for all (U ,  V ) .  Substitute ( p U ,  V@). Then 

e T ~ ( p u ,v ~ ) ( v @ ) ~eTbu.= 

By price invariance (P) and the fact e T@ = p T ,  

Since this is true for all p > 0, we may proceed as in the proof of Theorem 2 to 
obtain 

A = A c .  Q.E.D. 

REMARKS. 1. Singularity of the make table, V ,  renders the commodity tech- 
nology model nonexistent and voids the statements and proofs of the theorems. In 
practice V is heavily diagonal so that this problem does not occur. 
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2 .  Theorems 2 and 3 are as sharp as possible. Table 1 demonstrates this for 
Theorem 2. Scale invariance cannot be dispensed with, since it may lead us to the 
European System or industry technology models, and neither can the material 
balance, since it may lead us to the lump-sum, by-product technology or mixed 
technology model. It also shows that in Theorem 3 the financial balance cannot be 
dispensed with. (Check the European System, by-product technology or mixed 
technology model in Table 1 . K h a t  price invariance is necessary is shown by the 
counterexample A(U, V) = This construct is easily seen to fulfill the e T ~ ~ - T .  
financial balance, but it is not price invariant. For example, if V = I, then A(@U, 

I\ I\ 

Vfi) = p T ~ @ - l  and @A(U, v)@-' = j ? e T ~ @ - ' .  If p tends to the first unit vector, 
then we get ul and u 1 + - *  + unl, respectively, which are clearly different. This 
remark demonstrates that the axioms are independent, both in Theorem 2 and in 
Theorem 3. 

3. Theorem 2 uses the real balance and invariance axioms and Theorem 3 the 
nominal balance and invariance axioms. It is natural to ponder other combinations. 
In other words, can we combine the material balance with price invariance, or the 
financial balance with scale invariance, to characterize the commodity technology 
model? The answer is no. The material balance and price invariance axioms are 
fulfilled not only by the commodity technology model, but also by the European 
System model AE, as Table 1 reveals. As regards the other combination, the 
financial balance and scale invariance axioms are fulfilled not only by the commod- 
ity technology model, but also by the counterexample presented in the previous 
remark. (Fulfillment of the financial balance was noted there, while scale invariance 
is trivial too.) In short, it is not possible to cross the balance and invariance axioms 
of Theorems 2 and 3. 

As a corollary, note that it is no coincidence that none of the established 
constructs is second best in that three axioms of Table 1 are fulfilled. In such a 
second best case, either Theorem 2 or Theorem 3 must apply and, therefore, the 
construct must be the commodity technology model and hence fulfill the remaining 
axiom as well. 

6. CONCLUSION 

Either of the characterizations (Theorem 2 or Theorem 3) constitutes a pure 
theoretical solution to the model selection problem in input-output analysis, leading 
to the commodity technology model. Yet we do not expect applied economists to 
be convinced fully, as we will discuss now. 

In environmental repercussion analysis, pollution should be treated as a by- 
product, no matter fine points of pure theory. Inclusion of by-products in the 
commodity technology model, yields the mixed technology model of ten Raa, 
Chakraborty and Small (1984) instead of the commodity technology model itself. 
So? Well, the theorems remain valid. By Theorem 2, the material balance or scale 
invariance must be violated and, by Table 1, we know it is the former. Conse- 
quently, the Leontief equation may not be used to calculate, for example, total 
output requirements of a given bill of final goods. It must be modified. In fact, it can 

mailto:j?eT~@-'
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be shown that the Leontief equation remains valid not in the sense of outputs, but 
of Koopman's (1951) activity levels. The calculated "total output" levels are valid 
sectoral activity levels where the activity level is measured by primary output or 
independent secondary output in the sense of ten Raa, Chakraborty and Small 
(1984). This is implicit in Fukui and Seneta (1985). 

Another example is productivity decomposition analysis. Wolff (1985) employs 
standard U.S. Bureau of Economic Analysis input-output matrices to study the 
slowdown. But, by Theorem 3, the financial balance or price invariance must be 
violated and, by Table 1, we know both are. The violation of price invariance does 
not cause much trouble, since macro productivity measures have this defect 
anyway. However, the financial balance is a standard tool in relating the national 
product to national income and the factor composition of the latter. The Leontief 
equation of this balance must be modified. In fact, productivity decompositions as 
of Wolff are biased and the bias can be determined along the lines of this paper. 

A final problem of the commodity technology model is that in practice some 
technical coefficients turn out as negatives. In another paper we have tested the 
hypothesis that this problem is due to errors in measurement, see ten Raa and van 
der Ploeg (1989). 

The intricacies of the modifications of applied input-output analysis fall, how- 
ever, outside the scope of the present paper. If one does not want to deal with 
delicate modifications of the basic input-output model, but prefers to stick to the 
textbook Leontief equations, then theory forces the commodity technology model. 
For example, use of the mixed technology model requires a tedious modification of 
Leontief's material balance equation and use of the industry technology model 
requires a similar adjustment of the value equations. If one does not want to bother 
the trouble, then one must use the commodity technology model. Convenience 
limits the choice of model in input-output analysis. 

Tilburg University, The Netherlands 

APPENDIX 

The Appendix proves that the established input-output constructs fulfill the 
properties as indicated in Table 1 of Section 4. It also provides counterexamples to 
the fulfillment of properties that are not checked in Table 1. The commodity 
technology model is not treated here, but in Section 4. To  generate counterexam- 
ples, define 

112 0 
o 1 1 2 ) , V ~ = ( k  t) and P O = S O =  

A straightforward computation now shows: 
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Model (L) .  

and, therefore, 

Now 

and 

e T A o v ;  f (312 1/2), 

so axioms (M) and (F)do not hold. Axiom (S) is easily verified: 

A - I  A - I  , - - I  
AL(U.?, JnV) = (UJn)(JnVe ) = U?Ve 8-' = u.?B-'v~= A L ( U ,  V ) .  

Axiom (P) is violated as 

Model (E) .  Axiom (M) is easily verified: 

A-I 
A(U,  V ) V T e  = UVTe VTe= Ue. 

Axiom (F) is not fulfilled, since 

and, therefore, 

Axiom (P) is easily verified: 
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Axiom (S) is violated by 

Model ( T ) .  Neither axiom (M) nor axiom (F) is fulfilled, since 

and, therefore, 

which yields the same inequalities as in model (L). 
Axiom (S) is violated because 

Axiom (P) is violated, as 

1 ) ( I 1 3  0 ) = ( " 3  112)
A ~ ( f i o U o ,Vofio)= 113 , whereas 

Model (B) .  Axioms (M) and (F)are violated, since 

and, therefore, 

which yields the same inequalities as in model (L). 
See the more general model (CB) for proof of fulfillment of axioms (S) and (P). 

Model ( I ) .  Axiom (M) is easily verified: 

, - . - I  --I A - 1  
A I ( U ,  v ) v T e  = UVe v V T e  v T e = UVe V e  = Ue.  

Axiom (F) is violated, since 
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and, therefore: 

so that 

Axiom (S) is violated because 

Axiom (P) is disproved by ten Raa, Chakraborty and Small (1984, section 11). 

Model (CB). First we demonstrate that each of axioms (M) and (F) holds if and 
only if model (CB) reduces to model (C). 

As for axiom (M): 

if and only if ( u v ~ ~ v :  - V: - v:v;~v:)~ = 0 for all U. 
This implies v ; ~ v ~ ~ ~0, SO v:e = 0, so (because V 2 O)V2 = 0, which reduces = 

the model to model (C). 
Similarly for axiom (F): 

if and only if e T ( ~ ~ , T ~ t  v ~ v ~ ~ v ~ ~ )e T ~ = e~T~ T - V; - = 0 for all U. 

This holds if and only if V2 = 0, that is model (CB) reduces to model (C) again. 
Axiom (S) is easily verified: 

Axiom (P) is demonstrated analogously: 

ACB(@U, V@) = ( @ U- = @ ( U  v ~ T ) v I ~ @ - ~  =@ACB(U, V1B-l. ( v ~ @ ) ~ ) ( v ~ @ ) - ~-
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