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INTERNATIONAL ECONOMIC REVIEW 
Vol. Zti, No. 2 ,  June, 1985 

ESTIMATION IN A LINEAR MODEL WITH SERIALLY 

CORRELATED ERRORS WHEN OBSERVATIONS 


ARE MISSING* 


1. INTRODUCTION 

There exists an extensive literature on estimation and testing in linear regression 
models with first-order serially correlated errors. For the case where a string of 
consecutive observations is missing there have appeared a number of recent articles 
dealing \with various tests of autocorrelation (cf. Savin and White [1978], 
Richardson and White [1979], Honohan and McCarthy [1982]). Obviously, 
many time series suffer from missing observations, like long annual series from 
which observations on war years are missing, or daily series that are not observed 
during weekends. 

The purpose of this paper is to develop the ML estimator for a linear regression 
model with serially correlated errors when observations are missing. The results 
derived are generalizations of those by Beach and MacKinnon [1978]. Using 
both actual and simulated data we compare computational and statistical aspects 
of the ML estimator to those of some 'intuitive' estimators based on adaptations 
of suggestions by Cochrane and Orcutt 1119491, Prais and Winsten [I9541 and 
Maeshiro [1976, 19791. 

In section 2, we present the model. In section 3, we present some results on 
the structure of the error covariaiice matrix and develop a convenient matrix nota- 
tion which facilitates the algebraic derivations. Section 4 presents the ML esti-
mator and the information matrix. In section 5, some alternative two-stage 
estimators are defined. In section 6, we present results of experiments designed 
to compare the computational and statistical properties of the ML and two-stage 
estimators. Section 7 concludes. 

2. THE MODEL 

Consider the single-equation regression model 

(1) y = xp + E ,  

" Manuscript received March, 1981 ; revised August, 1984. 
We are grateful to the editor and the referees for their constructive comments, to H. van 

Terheijden, D. Bijlsma and C. Mijderwijk for extensive programming support and to A, ten Cate 
for comments and discussion. A first version was written while Kapteyn was with the University 
of Southern California, 1,os Angeles. Throughout the writing of the various versions, Wansbeek 
was with the Netherlands Central Bureau of Statistics (CBS). The views expressed in this paper 
are those of the authors and do not necessarily reflect the policies of the CBS. 
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where E is an n x 1-vector of disturbances E, ( t=1,..., n) ,  X is an n x k-matrix of 
explanatory variables, P is a k x 1-vector of parameters to be estimated, and y is 
an n x 1-vector of dependent variables. With respect to E the following assump- 
tions are made 

where the vector u =(u  ,,..., u,,)' is distributed as 

Moreover, we postulate 

i.e., the process is stationary. 
So far, the model is standard. In this paper, we consider the case where 

observations are missing. This may arise for instance when the data on y and X 
are gathered at irregular time-intervals. Let there be m actual observations out 
of the n possible observations ( m <  n). So ( n -  m )  observations are missing. 
We identify the m actual observations in terms of the n possible observations as 
follows. Let the rank number of the i-th actual observation in the original set 
of observations be n,. By assumption, n ,  =1 and n,=n. We then define the 
m x n deletion matrix D as the matrix that is obtained by deleting from the unit 
matrix of order n those rows that correspond to the missing observations. Hence, 
the ( i ,  n,) elements of D are unity, the remaining elements being zero. 

The model with missing observations can be written in terms of the original 
model (1) as 

We call equation (5)  the missing observations model. Model (1)  will be referred 
to as the 'standard model'. In the sequel, we shall denote vectors and matrices 
that only refer to non-missing observations by a star subscript. For example, 
equation (5)  can be rewritten as 

(6) J1* = X*B + E,.  

3. SOME PROPERTIES OF THE MISSING OBSERVATIONS MODEL 

It is well-known that the disturbances in the model (1)  follow a multivariate 
normal distribution 

(7) E - N(O, a: V ), 

with 
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See, e.g., Theil [1971, p. 2.521. I t  follows immediately that 

(10) E* = DE N(0, o?DVD1).  

The m x m-matrix V ,  =DVD' has the following structure: 

For what follows, it is useful to introduce some more notation. Let ti= 
n,-ni-,(i=2,. .., m), so when no observations are missing, all tiare equal to one. 
Then we define 

(13) A diag ( 1 ,  1-p2'2,. . . ,1-pZtln). 
Hence, 

A = Q' -k Q - QQ' 


V* = Q-I + (Q-1)' - I,,, 
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as is easily verified. As a result of (15) and (16): 

(17) V ,  = Q-I + (Q-I)' - I, = Q-l(Q1+ Q -QQ') (Qt)-I = Q-lA(Q1)-I 

So 

and 

1 

where the matrix A-"Q has the structure 

When p is known, applying OLS to the transformed model 

amounts to applying GLS to (6). The transformation leaves the first observation 
as it is. The other observations (i =2,. .., rn) are transformed as follows: 

in obvious notation. For the case of a single gap in the data, this transformation 
(apart from a minor error) is also given by Dhrymes [1978]. If there are no 
missing observations (all t i  are equal to one), (21) and (22) reduce to the familiar 
transformation due to Prais and Winsten [I9541 (see, e.g., Park and Mitchell 
[1980]). 
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'There is a interesting interpretation of (22).2 An error in the set of' actual 
observations satisfies 

Transformation (22) accomplishes two 'djustments: autocorrelation adjustment 
and heterosl~edasticity adjustment. The autocorrelation adjustment is 

(24) C*:i  - - p " ~ , , ~ - ~= +-...+tJIli,p " ~ , ; ~ - ~ = = & , ~ ~  p t ' - l ~ , , i - l + l  

The heteroskedasticity adj~justment stems from the fact that 

So, dividing the i-th observntio~i by ( I  -p2tc)+, for all i 22, yields homoskedastic 
error terms with variance ot/(l -p2).  This is also the variance of 8,. 

4. ME ESTIMATION 

The bog-likelihood corresponding to the model given in section 2 is given by 

with E+: -- y,;:-X,B (cf. (6)). Using resuits obtained by Magnus [1978], we show 
in appendix A that the first order conditions for a lnaxitnum of In L with respect 
to f i ,  0: and p are given by: 

(27) j- (xgV, lX, ; ) - lXl ,  V,ly 

where carets denote ME-estimates and e -y ,  -x,B. (Consistent notation would 
have e,; rather than e,  but this would unnecessarily complicate the various expres- 
sions.) If (27)-(29) yield multiple roots, the roots that maximize In & ha.ve lo be 
chosen. For  values of p, f l  and 0.: satisfying the first-order conditions, the last 
term of (26) becomes a constant. 

Due to a referee. 
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The information matrix I, of D, j3 and 6;is derived in appendix B as 

As usual, the inverse of this matrix can be taken as an approximation of the 
covariance matrix of the ML-estimators of the parameters p, p and 0;. 

5 .  DISCUSSION 

In this section, we make some general comments on the structure of the first- 
order conditions and their usefulness for computing a maximum of the likelihood. 
We also define some alternative 'intuitive' estimators. In section 6, we will 
compare the statistical and computational properties of these estimators. 

To obtain some more insight into the structure of (29) we rewrite it somewhat. 
Define 

(31) T = max ( t i ) .
i 


Denote the set (2< i s m l t i = j) by I j ,  and p j ,  q j  and r j  by 

where n j  is the number of elements of I j .  Obviously, p j ,  q j  and r j  are sample 
moments of residuals corresponding to equal values of ti. Using the definitions, 
(29) can be written as 

As an example, consider daily data that are collected on all days except Saturdays 
and Sundays. Let the first observation be made on a Monday. Then we have 
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t ,  = t ,  =t ,  = t ,  = 1, t ,  =3,  t ,  = t ,  = t ,  = t , ,  =1, t , ,  =3, etc. (It is implicitly assumed 
here that the data generation process does work on Saturdays and Sundays, but 
that the data are not observed.) If we collect data for 52 weeks, (36) becomes 
( n l = 4 x  52=208, n3=51):  

After multiplication by (1- fi2),(1 -b6) ,  this becomes a polynomial equation of 
degree 15. If, for instance, data are only collected on Mondays, Tuesdays, 
Thursdays and Fridays, the degree of the polynomial is 23. 

In general, the degree of (36) is at  most equal to 2T(T+ 1)-  1. For given 
8:, f l ,  it is a polynomial equation in a single variable. If one has a computer 
program available which generates all roots in the (- 1 , l )  interval, the following 
iterative procedure can be used to find a maximum of the likelihood. For given 
starting values of f l  and 82 calculate the roots of (36) in the ( - 1, 1)  interval. If 
there are multiple roots, pick the one that gives the highest value of the likelihood 
(cf. (26)). Use this value of p to calculate a new f l  and 82 from (27) and (28) 
and solve (36) again, and so forth until convergence. As in the standard model 
without missing observations, the value of the likelihood increases a t  each step, 
so eventually it will come arbitrarily close to a maximum (cf. Oberhofer and 
Kmenta C19741, Sargan [1964]. This maximum need not be a global maximum, 
however. 

I t  appears that a computer program which generates all roots of a polynomial 
in a given interval is not generally available. Programs that calculate all roots of 
a polynomial are more widely available. This, of course, may lead to function 
evaluations outside the ( - 1, 1)  interval. If the degree of (36) is high, overflow 
in the computer may be the result. 

Still another possibility is to use a general purpose computer program to find a 
maximum of a function in a given interval. This, of course, ignores the infor- 
mation contained in the first order conditions (27)-(29). As an alternative, one 
can d o  a grid search for p in the ( - 1, 1)  interval and compute f l ,  82 and the value 
of the likelihood for each p value. If the grid is fine enough, one can be almost 
certain that a global maximum of the lil<elihood is obtained. Finally, one can 
solve (29) by using a general purpose computer program to find a root of nonlinear 
equations in a given interval. Computing this root for given values of f l  and 8: 
and next updating f l  and 8; gives an  iterative procedure which, upon convergence, 
provides a solution of (27)-(29). In section 6 ,  we report our computational 
experience with the various procedures described here, except the first one since 
we d o  not have a n  adequate computer program to find roots of a polynomial in 
a given interval. 

Although the favorable asymptotic properties of M L  are well enough known, 
it is important to compare its finite sample properties to those of other estimators. 
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To the extent that ML does better in finite samples than other estimators, it is 
important to know whether the difference is worth the extra computational 
complexity of ME. In section 6, we shall compare ML to seven twc-step esti- 
mators. For each of the seven estimators, the first step consists of OLS in model 
(6). Next, an estimate of p is obtained from these residuals. Finally, this p is 
used to transform the model so that OLS is appropriate. Some more details 
follow : 
I. 	 p is estimated as the OLS-estimate of the coefficient of the regression of 

Zi 011 Zi-, for those i r2where ti= 1 (i.e. there is 110gap between observations 
i and i - I), and where Pi, Pi-, are OLS-residuals. This is a straightforward 
generalization of the Cochrane-Orcutt procedure. Using the estimate of p, 
the data is transformed according to (22), but only those observations for 
which fi- 1. The other observations, the first one and the first observation 
after each gap, are omitted. Then P and o2 are estimated by OLS on tlie 
transformed data. This is: once again: a straightforward generalization of the 
Cochrane-Orcutt procedure. We call this estimator COCO. 

2 .  	 The second estimation method uses the same estimate of p, but transforms 
all data, except the first observation, according to (22). Then p and o{ are 
estimated by OLS on the transformed data (including the first observation). 
Since the transformation (21)-(22) is a generalization of tlie Prais-Winsten 
procedure we denote this estimator as COPW. 

3, 	 p is estimated analogous to the procedure in 1 but in the denominator of the 
least squares formula we omit the first term. This estimation method gener- 
alizes Prais-Winsten (cf. Park and Mitchell L1980, eq. (9b)l). This estimate 
s f  p is used to transform the data as with the first estimator. We call tlie 
estimator PWCO. 

4. 	 p is estimated as under 3 and the data is transformed as with the second 
estimator. This estimator is denoted by PWPW. 

5 .  	 A two-step ML method: First, p is set at zero and is estimated by OLS. 
Next, o: is estimated from (23) with p=O and (29) is used to estimate p. 
With this estimate o fp ,  in (27) and g 2  in (28) are reestimated. This method, 
which produces asymptotically efficient estimators for p and 02, is denoted 
as ML2. 

6. 	 As the CBCO-method, but the first observation is retained when estimating 
p and 02. SO only the first observation after a gap is omitted. Since this 
method focuses on the importance of retaining the first observation, a point 
made repeatedly by Maeshiro [1976, 19791, we denote this method by COMA. 

7. 	 Analogously we also employed the PWMA method, whose description is clear 
from its name. 

6. THE EXPERIMENTS AND THE RESULTS 

Three sets of experiments have been performed. Within each set, experiments 
have been performed 27 times: both on a 'complete' data set (i.e. with no missing 
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Rank number of deleted observations 

Z 0.0.0.0.0.0.0.0.0.0. 


FIGURE1 
PATTERNS OF DELETED OBSERVATIONS 

observations), and on data that are obtained from the complete set by deleting 
observations according to 26 different patterns. These patterns are defined in 
Figure 1. 

The first set of experiments deals with real-life data, consisting of ten sets of 
time-series for twenty years. This set has been mainly used to assess the computa- 
tional burden of the various methods for the different patterns of missing obser- 
vations. The second set deals with simulated data. Here we pay explicit 
attention to the differences in results between trended and non-trended data. The 
third set further explores properties of estimators in the context of trended data, 
employing a real-life trended independent variable and a simulated dependent 
variable. 

10 
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6.1. Computational burden. The first set of experiments concerns the so-
called Grunfeld data (Maddala [1977, table 10-41). These data consist of annual 
observations from 1935 through 1954 for 10 large U. S. companies of the following 
variables: Gross investment (I,),Value of the firm (F,) and Stock of plant and 
equipment (C,). Annual investment of a firm is explained by the following model: 

We allow for serial correlatioil in the E ,  according to equation (2). Model (38) 
is estimated for each of the ten companies by means of ML and the two-step 
estimation methods defined at  the end of section 5. The estimations were repeated 
for 26 different patterns of missing observations, apart from COMA and PWMA.3 

Table 1 gives an overview of the computational burden of the various methods 
for the different patterns. Comparing the methods, the five two-step methods are 
about four times faster than the cheapest ML-method, optimization using the 
first-order conditions. As to ML, using the first-order conditions saves roughly 
a third in computer time compared to direct optimization. Grid search is many 
times more expensive, although it can be sped up by requiring less than the four- 
decimal accuracy used here. 

Over the patterns, the two-step estimators become gradually somewhat cheaper 
as the number of 'holes' increases, i.e. as the amount of data to be processed 
decreases. The same holds for grid search ML. ML2 tends to become somewhat 
more expensive as the polynomial equation becomes more complicated. The 
cost of the remaining two ML approaches does not show a clear relation with the 
patterns. 

6.2. Simulated data. To provide more insight into the finite sample statistical 
properties of the estimators, we present results of simulations, which are variations 
on the simulations carried out by Beach and MacKinnoil [1978]. The model 
considered is the following 

(39) JJt= PI + P2xt+ E,,E, = PE,- + u,, u, -NID (0, 0.0036). 

Two kinds of +series are generated. One is a trending series generated according 
to 

(40) x, = exp (0.04t) + tv,, w,- NID (0, 0.0009). 

The second one is a non-trending series generated according to 

(41) x, - NID (0, 0.0625) 

We consider three values of p : 0.8, 0.6 and -0.8, and two sample sizes : 20 and 60. 
For sample size 20, we delete observations according to the patterns defined in 

These estimators were added later on suggestion of a referee. To save computer costs, we 
did not repeat all simulations with these estimators. For the present experiment, for example, 
it is clear that the computational burdens of COMA and PWMA will be similar to these of COCO 
and PWPW. 
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TABLE 1 


COMPARISON OF METHODS 

Computational burden') 
Pattern 

MLb) MLc) MLd' COCO COPW PWCO PWPW ML2 

complete 690 74 49 15 15 


Y 442 43 3 1 e) e) 

z 41 5 - - e) e) 


A 653 63 45 14 14 

B 655 64 45 14 15 

C 658 65 47 14 14 

D 656 70 49 14 15 

E 625 62 45 13 14 

E' 629 61 47 13 14 

G 621 70 49 13 14 

H 621 68 49 14 14 

I 634 54 3 9 13 14 

J 634 58 42 13 14 

K 631 67 45 13 14 

L 600 62 45 13 13 

M 600 69 49 13 14 

N 603 62 45 13 14 

0 608 5 6 40 12 14 

P 604 63 45 12 13 

Q 581 59 43 12 13 

R 577 69 48 12 13 

S 576 59 46 12 13 

T 577 91 64 12 13 

U 550 66 49 12 13 

V 550 7 1 49 12 12 

W 538 54 42 11 12 

X 527 147 101 11 12 


a) Measured in tens of milli-seconds on an ICL 2966. All programs are written in 
ALGOL 68. The entries are averages over the 10 companies. 

b) Grid search method; ,o is increased in steps of 0.1 from -0.95 to 0.95 and for each 
value of p the value of the likelihood is computed. Let r be the value which gives the 
highest likelihood, a new search is then started in the interval [r-0.10, r+0.10] etc. 
until an accuracy of 4 decimal places is obtained. 

e) Direct maximization of the likelihood. We used the E04 ABF routine from NAG, 
adapted for use in ALGOL 68, which employs the 'safeguarded quadratic-interpola- 
tion method' of Gill and Murray [1973]. 

d) Maximization of the likelihood using first-order conditions. The C05 ADF routine 
from NAG (adapted for use in ALGOL 68) was used to find a solution for (36) in the 
interval (-1, 1). This routine is based on a procedure due to Bus and Dekker [1975]. 

e) These estimation methods are not defined for pattern Z. PWCO and PWPW are not 
defined for pattern Y either, whereas COCO and COPW would estimate p on the basis 
of one observation. Thus, we do not report results for any of these four methods for 
patterns Y and Z. 

http:[r-0.10
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TABLE 2 

RMSE'S AND MEANS OF ESTIMATORS 

Trending 

Pattern ML COCO 
COPW 

PWCO 
PWPW 

ML2 

COMA PWMA 
mean RMSE mean RMSE mean RMSE mean RMSE 

complete 

C 

G 

J 
p=0.8 M 

P 

Q 
T 

v 
W 

complete 
C 

G 

J 
p=0.6 M 

P 

Q 
T 

V 

W 

complete 
C 

G 

J 

p=-0.8 M 
P 

Q 
T 
v 
W 

table 1. For sample size 60, we consider two cases. In the first case, the patterns 
defined in table 1 are repeated three times. In the second case, the patterns of 
table 1 are 'stretched' by a factor of 3. So a gap of two becomes a gap of six, 
a string of 5 consecutive observations becomes a string of 15 consecutive obser- 
vations, etc. 
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MI, COCO PWCO ML2 Number of 
COPW PWPW observations 
COMA PWMA rnissing 

mean RMSE mean RMSE mean RMSE mean RMSE 
- -- .---

60 27 


59 29 


60 29 

57 30 

58 31 

54 36 

55 34 


57 31 

57 32 

55 35 


45 24 

45 25 


45 26 

43 26 


44 27 

40 33 


40 32 

42 29 


42 29 

40 32 


6 6  21 

-66 21 

-67 21 

-65 22 


-67 21 

-61 26 


-65 24 

-66 23 


-66 24 

-64 25 


Some results for N=20 are given in table 2 for p ,  and in table 3 for P,. To 
save space, we present only some selected patterns, and only means and RMSE's4 

A full set of tables with simulation results is available on request. 
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TABLE 3 

RMSE'S OF ESTIMATORS 

Trending
Pattern 

ML COCO COPW COMA PWCO PWPW PWMA ML2 

complete 108 136 109 109 147 109 109 109 

C 108 133 109 110 142 109 111 109 

p=0.8 M 109 134 110 111 146 110 112 110 
W 110 187 114 113 196 115 112 112 

complete 77 93 77 77 97 47 74 77 
C 77 9 1 77 77 94 77 73 77 

p=0.6 M 77 9 1 77 78 95 77 78 77 

W 78 116 79 80 118 79 81 78 

complete 25 25 25 25 25 25 25 25 
C 25 25 25 25 25 25 25 25 

p=-0.8 M 25 25 25 25 25 25 25 25 
W 29 29 28 29 29 29 30 28 

a) Since all estimators are unbiased, the RMSE's are also standard errors. Given that the 
errors by the square root of 2~(s.e.)~/100,if s.e. is the entry we are concerned with. 
108, the associated standard error ( x 1000)= 1000 x 0.14 x (0.108)2= 1.6; for the south- 

Each number presented is based on 100 replication^.^ The main impression from 
table 2 is that the different estimators for p have very similar small sample 
properties. Generally, ML exhibits the smallest RMSE very closely followed 
by the PW-estimator. Next comes ML2 and finally CO. All estimators are 
biased towards zero, especially for positive p and trending xi,with the PW-
estimator usually showing the smallest bias and CO the largest one. The smaller 
bias of PW is due to the omission of the first term in the denominator of the least 
squares formula (see the description of the PW-estimator in the preceding section), 
which increases its magnitude in absolute value. At the same time, this also 
increases its variance. As a result, ML tends to have a slightly smaller RMSE. 

Bias and RMSE are largest for positive p and trending xi. The case of a negative 
p and a non-trending x,is the only instance where ML is markedly better than the 
other estimators. There is no discernable relation between the relative perfor- 
mance of the estimators and the pattern of missing observations. Of course, 
both bias and RMSE tend to increase when the number of observations left 
decreases. 

The results for N =  60 are very similar to the ones reported here and will there- 

Since the means reported here are based on the rather small number of 100 replications, the 
reported means are subject to some sample variability. The standard error associated with the 
means in table 2 are 0.02 or less. For the standard errors associated with the entries in table 2, 
see the footnote of that table. 
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Non-trending Number of 
observations 

ML COCO COPW COMA PWCO PWPW PWMA ML2 missing 

entries of the table are based on 100 replications, we can approximate their standard 
This equals 1/2/10 times (~.e . )~=0.14 x (s.e.)'. For example, for the north-west entry 
west entry 29 it is 0.1. 

fore not be presented. Naturally, for N=60 RMSE and bias are substantially 
smaller. For example, for the patterns considered in table 2, the bias in p is now 
generally 0.10 or less. 

Table 3 makes it clear that fcr trended data and positive p it is very important 
to exploit the first observation, confirming Maeshiro's findings. The reason is 
that the first observation is treated differently from the other observations, which 
stretches the scatter of points through which the regression line is fitted. This is 
especially important when x, is trending because the autoregressive transformation 
tends to reduce the variability of the other x, (cf. Maeshiro [1980]). Maintaining 
the first observation is more important in this case than maintaining the first 
observation after each gap, so that for trending x, and p=0.8 or p=0.6, ML, 
COPW, PWPW, PWMA, ML2 have a similar performance. For p= -0.8 and 
trending data, the data are stretched very thinly after the autoregressive transfor- 
mation so that all estimators of p2 are quite accurate (cf. Maeshiro [1976]). 

For non-trending data, it is not the transformation that is very important but 
rather the number of observations used. The performance of COCO, PWCO, 
COMA and PWMA relative to the other estimators gets worse with an increase 
in the number of gaps, because these estimators neglect the information contained 
in the observation after each gap. 

Some further insight can be gained by considering table 4, where RMSE's of 
estimators of p2 are given of four selected estimators for p=0.8 and all patterns 
of missing observations. Notice that PWCO, PWPW and PWMA all use the same 
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TABLE 4 

RMSE'S OF SELECTED ESTIMATORS OF 1 3 ~(X 1000) ( 1 ~ 0 . 8 ,  N=20 


Trending Non-trending Number Number 
Pattern of of 

ML PWCO PWPW PWMA ML PWCO PWPW PWMA observ, gaps 
missing 

complete 108 147 109 109 37 38 37 37 0 

A 110 154 111 109 43 44 43 44 1 

B 109 151 109 110 37 39 38 39 1 


C 108 142 109 111 39 39 40 39 1 


D 108 148 110 116 37 37 37 37 1 

E 109 176 110 110 51 55 51 55 ?


i 

F 108 151 108 110 39 39 39 40 2 

G 109 143 109 113 39 40 39 40 2 

N 108 150 108 122 37 38 38 38 2 

I 110 150 109 110 43 49 45 49 2 

J 110 150 111 110 46 47 47 46 2 

IC 111 160 112 116 44 45 44 45 2. 

L 108 I84 110 107 62 62 65 63 3 


M 109 146 110 112 40 40 41 40 3 

N 108 147 109 129 38 39 39 39 3 


0 111 150 115 114 47 46 48 46 3 

P 111 157 111 118 46 48 47 48 3 


Q 110 196 114 112 59 67 60 68 4 


R 109 150 108 129 40 41 40 41 4 


S 107 180 108 109 61 60 64 62 4 


T 109 147 109 112 41 42 41 42 4 


U 106 200 108 110 61 62 64 64 5 

V 109 148 111 114 42 42 42 42 5 

W 110 196 115 112 61 69 61 69 5 

X 110 153 110 113 45 46 45 45 6 


estimator for p ;  ML has been added as a bench-mark. 
Let us first consider the case of trending x,. Obviously, PWCO is inferior to 

the other estimators, but its efficiency loss varies over patterns. For patterns 
A, B, C, D (one observation missing) the loss is smallest for C, where the tenth 
observation is missing. The reason why gaps at the end of the data series cause 
a greater efficiency loss for PWCO than gaps in the middle can be seen as follows. 
Let the data be trended according to x, = exp (at). Then transformation (22) 

carries x, over into x,(l -p/exp (a))/(l -p2) t  if there is no gap between x, and 

x,- , ; if there is a gap of one, then x, becomes x,(l -p2/exp (2a))/(l- p4)3. The 

ratio of these two expressions equals (1+p/exp (a))/(l +p2)+ or, for p close to 
1 and small a, roughly 42. When, for instance for pattern D (a gap at t =  19), 
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PWCO and PWPW are compared, an observation is neglected that is -after 
transformation -sizeably larger than the neighboring ones. This leads to a 
loss in efficiency. Of course, the same reasoning applies to a gap at t =2, but then 
we have in addition that ML, PWPW and PWMA treat the first observation diKer- 
ently, so that it moves even further away from the other observations. 

This intuitive argument makes it also easier to understand why, of the patterns 
E, F, G and H, the efficiency loss of PWCO is large for E and H and smaller for 
6;why of I, J, K, the loss is largest for K ;  of L, M ,  N the smallest loss is for M ;  
of 0,P the largest loss is for P; of Q, R,  S, Tthe smallest loss is for T; of U ,  V, W 
the smallest loss is for V. 

Regarding PWMA, the preceding argument makes it clear that it will perform 
relatively bad if there are gaps at the end, i.e. for patterns D, H, K ,  N,P, R. 

The case of non-trending x,does not show much variation across estimators 
although the estimators that use all observations (ML, PWPW) have a slight edge 
over the estimators that ignore one or more observations. For the case of 
trending x,, it is noteworthy that the RMSE's of the efficient methods (NIL, PWPW) 
do not vary appreciably with the number of observations that remain. Evidently, 
it is not the number of data point that matters most, but rather their dispersion. 

From the results so far it appears that ML and PWPW are performing very well 
in all cases, with ML2 and COPW following closely behind. For all other 
estimators (COCO, PWCO, COMA, PWMA) there are certain cases in which 
they are doing rather badly (COCO, PWCO) or not so good (COMA, PWMA). 
The COCO and PWCO estimators suffer from an extra problem. Sometimes the 
estimate of p does not lie in the interval ( - 1, 1). The standard approach taken 
for that event is to set p equal to -0.99999 or 0.99999. In the case where p is 
equal to 0.99999, the Cochrane-Orcutt transformation turns the ones correspond- 
ing to the constant term practically into zeros. Consequently, PI is (almost) 
unidentified and its estimate may be (almost) any real number. As a result, the 
RMSE's of the COCO and PWCO estimates of PI are very large (between lo2 
and lo3) for some patterns. In practice, this does not have to be too serious a 
problem as long as one is not interested in PI, since one can simply apply the 
first difference transformation. 

Finally, it is of importance to know whether the information matrix provides a 
useful approximation of the true standard errors of the estimates. It turns out 
that the approximation of the standard error of the estimates of p is generally 
very good: the means (over 100 replications) of the standard errors computed from 
the information matrix usually differ no more than 10% from the true standard 
errors. Of course, this is not too helpful, because the estimators of p are heavily 
biased. The approximations of the standard errors of P, are substantially worse: 
computed and true standard error may differ as much as 100%. Of course, this 
is a consequence of the often poor estimates of p, which are used to compute Q. 

6.3. Combined real life-simu luted data.  Given the importance of trending 
variables, a third set of experiments has been performed focusing on this type of 
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data. The model is 

(42) Y t  = f lo  -I- f l l x t  + E,, E~ = p ~ , - ,+ u,, u, -- NID(0, 0.0036). 

For x,, the U. S. GNP data are taken, as in Maeshiro [1976, 19791 and in Park 
and Mitchell [I9801 ( t= 1950,.. ., 1969). Again, 100 experiments were performed 
for all patterns and p=0.8, 0.6 and -0.8. The results turn out to be very similar 
to those obtained with the simulated x, where x i  is trending. 

7. CONCLUSIONS 

Of the eight estimators considered here (ML and the seven two-step estimators 
defined at the end of section 5 ) ,  ML is the most complicated one, but also the most 
efficient one. However, the performance of PWPW is so close to that of ML 
that this simple two-step estimator will presumably be the preferred estimator for 
practical work. 

As is shown most clearly in table 4, in the common situation where exogenous 
variables are trending and errors are positively correlated, missing data generally 
have a very minor effect on the efficiency of estimators. The information matrix 
appears to give a good approximation of the standard error of the estimate of p 
(but not of its RMSE) and a rather poor one of the standard error of the slope 
coefficient. These findings apply equally well to complete data as to data with 
some observations missing. 

In conclusion, missing observations in a linear model with serially correlated 
errors do not create any great difficulties in addition to those already present in 
models for a complete set of observations. 

Groningen University, The Netherlands 
Tilburg University, The Netherlands 

APPENDIX A 

First Order Conditions for ML 
We derive (27)-(29). A general treatment of ML estimation of the GLS model 

was given by Magnus [1978]. From his results, it follows that the first-order 
conditions for ML are: 

as2-I i3,c-I
(A.3) tr  (F " )p= ,  = (T)p=, e3  

with e - y , - ~ , f l  and Q-a,2V,. Of course, (27) follows immediately from 
(A.1). 
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First consider (A.2). Since 

(A.2) reduces to 

(A.5) tr (-be4v;le: v*) = el(- by4V;l)e. 

Using 

we can rewrite (AS) as 

1 m 
= p i e : +  C (1 -pZt<)-l(ei  -pt'ei-1)2>, 

111 i=2 

which is (28). 
Now consider (A.3). As 

as2-1 Q = a,2- a vzl
(A.8) aP aP 

a: v*, 
(A.3) reduces to 

(A.9) 
a v;ltr -( ap 

= (q)e.  
p = a  

In view of (19), there holds 

a v;l -- - aQt
- ad-' - as2(A.10) A-'Q + Q' Q + QIA-I -

aP aP aP aP 

(A.11) t r ( d Y ; l  v*) = t r ( d Y I I Q - l A ( ~ ' ) - l )aP aP 

The first of these two terms equals zero, because Q-I is lower triangular, and 
dQ/ap has a zero diagonal and a zero upper triangle. The second term is 
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Putting p=f i  in this expression gives the LHS of (A.9) and hence of (A.3). 
We next evaluate the RHS of (A.3)and (A.9). There holds, in view of ( A .  10) : 

( A ,  13) e = 2 e t Q ' ~ - '  e + elQt-dA-' 
aP aP a p  

Qe 

Since 

( A .14) 

(A.15) 

(A.13)can be further written as 

Putting p = f i  in this expression gives the RHS of (A.9)and hence of (A.3), apart 
from the factor Bf .  Combining (A.3), (A.9), (A.12) and (A.16) gives (29). 

APPENDIX B 

The Information Matrix 

Let 6 ,=p and 4, E of, and let Y ( 2x 2) be a matrix with typical element 

The information matrix I corresponding with the likelihood function is 

(Magnus [1978, p. 2881). It remains to evaluate Y. First, let i =  j=2. Then 
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= t r ( a i 4  V,' x a f  V,  x ai4V;' x of V,) = ma;4. 

Next, let i =2, j =1. Then 

using ( A .11) and ( A .  12). Finally, consider the case i =j =1 : 

Insertion of dV;l/ap as given in (A.lO) into (B.5) yields an  expression which is 
the trace of a sum of nine matrices. Using the well-known properties tr (P)= 
tr (P') and tr ( A B )=tr (BA) , one easily obtains 

Of these four terms, the first two vanish since all elements of dQ/dp are zero apart 
from those directly below its main diagonal, and since Q-l is lower-triangular; 
hence their product is lower-triangular with zero elements on the main diagonal. 

It remains to evaluate the third and fourth term. Let ei denote an  m x l-
vector with a unit element in position i, the other elements being zero. Denote 
an  m x 1-vector of zero elements by Om. Then 

and so 

for i =2,. ..,m ; for i =1 the expression evidently vanishes. So the third term on 
the RHS of (B.6) equals: 

The fourth term equals 
m 

(B. 10) 4 C (1 -p2ti)-2ttp4ti-Z, 
i=2  
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because dAli3p is a diagonal matrix with i-th diagonal element equal to -2 t ipZt i - I  

for i=2,  ..., m (and equal to zero for i =  1). Collecting (B.9) and (B.lO) one gets: 

(B. 1 1 )  1 1  -- 2 cm (1-p2ti)-2t?p2ti-2 {(I  -p 2 ' i )  +2 p Z f i )  
i=2  

Together, (B.3), (B.4) and (B. l l )  give the elements of Y ,  the lower right part of 
the information matrix. 
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