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CONSISTENT SETS OF ESTIMATES FOR REGRESSIONS WITH CORRELATED
OR UNCORRELATED MEASUREMENT ERRORS IN ARBITRARY SUBSETS
OF ALL VARIABLES

BY PAUL BEKKER, ARIE KAPTEYN, AND TOM WANSBEEK'

1. INTRODUCTION

OVER THE LAST DECADE the problem of measurement errors in the independent variables
of a regression equation has attracted renewed interest among econometricians. In the
fifties and sixties, the problem was considered to be more or less hopeless due to its
inherent underidentification (e.g., Theil (1971)). Apart from instrumental variables, the
most frequently cited textbook solution was Wald’s method of grouping (Wald (1940)).
Recent insight into the properties of the method of grouping can be interpreted as making
this method worthless in most practical cases (Pakes (1982)). Since about 1970, new
approaches to the problem have been explored, basically along three lines, viz. embedding
the error-ridden equation into a set of multiple equations (e.g., Zellner (1970), Goldberger
(1972)), into a set of simultaneous equations (e.g., Hsiao (1976), Geraci (1976)), and using
the dynamics of the equation, if present (e.g., Maravall and Aigner (1977)). In view of
the underidentification of the basic model, it is clear that all these methods invoke additional
information of some kind. If this information takes the form of exact or stochastic
knowledge of certain parameters in the model, the construction of consistent estimators
is fairly straightforward (e.g. Fuller (1980), Kapteyn and Wansbeek (1984)). For an
overview of the state of the art, see Aigner et al. (1984).

An approach somewhat orthogonal to the ones described above has been to take the
model as it is and to use prior ideas about the size of the measurement errors to diagnose
how serious the probem is. Examples are Blomgvist {1972), Hodges and Moore (1972),
and Davies and Hutton (1975). Leamer (1983) starts from the opposite direction by asking
how serious the measurement error problem has to be in order to render the data useless
for inference, that is to say, when measurement error is large enough to make it impossible
to put bounds on regression parameters. In an empirical example, he shows that even
very small measurement errors in some explanatory variables would open up the possibility
of perfectly collinear explanatory variables and hence make the data useless for statistical
inference (at least without additional prior information).

The most systematic analysis of the information loss caused by measurement error is
due to Klepper and Leamer (1984). They start out by invoking a minimal amount of prior
information and then ask the question under what conditions it is still possible to make
some inferences regarding the vector of unknown regression parameters 8. In the special
case where the measurement errors are assumed uncorrelated and the k+1 estimates of
B, obtained by regressing each of the k+1 variables involved (i.e. the one dependent
variable and the k independent variables) on the remaining k variables, are all in the
same orthant, one can bound the ML estimates of 8. In that case, the convex hull of the
k+1 regressions contains all possible ML estimates and any point in the hull is a possible
ML estimate. If the k+ 1 regressions are not all in the same orthant then the set of ML
estimates is unbounded.

In that case Klepper and Leamer (1984) introduce extra prior information which allows
them to bound the set of maximum likelihood estimates. The prior information comes in
two forms. Firstly, a researcher is supposed to be able to specify a maximum value of R?
if all exogenous variables were measured accurately. It is shown that if this maximum is
low enough, one can again bound the set of ML estimates by a convex hull. Secondly, if

! Financial support by the Netherlands Organization for the Advancement of Pure Research (ZWO)
is gratefully acknowledged.

1223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1224 P. BEKKER, A. KAPTEYN, AND T. WANSBEEK

the R? bound does not help in bounding the estimates, a researcher is assumed to be able
to give upper and lower bounds for the measurement error variance. If the upper bound
is tight enough, so that the true explanatory variables cannot be perfectly collinear, the
set of maximum likelihood estimates is shown to be bounded by an ellipsoid. In the
derivation of the ellipsoid, based on a result in Leamer (1982), it is assumed that all
exogenous variables are measured with error. Obviously, this is restrictive.

Bekker, Kapteyn, and Wansbeek (1984) have generalized Klepper and Leamer’s result
to the case where the variance covariance matrix of the measurement errors may be
singular, but they still assumed, as did Klepper and Leamer, that the endogenous variable
is measured without error or that the measurement error in the endogenous variables is
uncorrelated with the errors in the exogenous variables. In this paper we relax this
assumption. Not only are there many cases where a nonzero correlation between errors
in the endogenous variable and in the explanatory variables is likely (for instance when
all variables in an equation are deflated by the same imperfect price index), but the
importance of the generalization also lies in the possibility to extend the analysis to more
complicated models than just the linear regression model. Section 2 presents this result.

Although Klepper and Leamer (1984) assume throughout their paper that all measure-
ment errors are uncorrelated, they do not exploit that information in the derivation of the
ellipsoid. For any point in the ellipsoid we can find an £ (the variance covariance matrix
of the errors in the explanatory variables) that yields this point as an ML estimate, but
such an {2 need not be diagonal. In Section 3 we investigate the consequences of the extra
requirement that 2 is diagonal. In that case the ML estimates are bounded by a polyhedron,
which need not be convex. Of course, the Polyhedron lies within the ellipsoid. The convex
hull of the polyhedron is determined by 2° vertex points that all lie on the ellipsoid, where
! is the number of nonzero measurement error variances. These points can be computed
easily and then used to find, for all elements of B, intervals that bound the ML estimates.
Generally, these intervals are tighter than the ones abtained from the ellipsoid.

Section 4 concludes by briefly discussing extensions to simultaneous equations models.

2. THE MODEL AND THE ELLIPSOID

Throughout we deal with the following model:
(2.1) n=EBy+e,
(2.2) y=7n+tu,
(2.3) =E+V;
equation (2.1) is the classical linear model, which relates the n-vector of dependent
variables 7 to the n X k-matrix of explanatory variables = and the n-vector of disturbances
€. We assume that the distribution of ¢ is independent of = and satisfies Ee =0, Eee’ = 031,
The k-vector of parameters 8, and o are unknown and have to be estimated.

Both 7 and = are unobservable. Instead, y and X are observed and u and V therefore
are the errors of measurement in y and X. We assume that ¥ and V are uncorrelated with

E, 7, and ¢ and that Eu =0, EV =0. Moreover, letting u, be the ith element of u and v}
the ith row of V, we assume that

" @u %]
E o)==
[U:] G, o= [4’21 o

for all i and that (u,, v}) is stochastically independent of (u, v}) for i 5.
Let @ be known and define 8 and o by

(2.4) B=(A-02)(Ab-dy),

1
(2.5) 025;}")’*‘1"”—3'(/4—9)5,
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where A= X'X/n, b=(X'X)"'X'y. Under normality of all variables involved, 8 and o*
are ML estimates. Under a vanety of alternative assumptions, (B, o®) will still be a
consnstent estlmate of (B, 03). Of course, if @ =0, (B, *) reduces to the OLS estimate
(b, s?), where s*>=y'y/n—b'Ab.

Although & will usually be unknown, it seems reasonable to assume that a researcher
will be able to specify bounds for &, i.e.,

o ‘P’."z]

* =
(2.6 O0sPs9P [d%"l o* |

where @* is specified by the researcher.? This bound on & will be used to derive bounds
on the estimates B8 defined by (2.4). We assume that @* is symmetric and that

1{yy y’X]
A s @P*<B=—
@n O=@7< n[X’y X'x)

thereby guaranteemg the existence of the esnmate B and also the positiveness of the
estimate o for any choice of @ satlsfylng (2.6).2 The latter can be shown easily by writing
the positive definite matrix (B— @)™ a

4|0 o ~2(=1\(_1 @’
(2.8) (B—9) '—[0 (A—-.Q)."]+0 *(z)(-1,8",
'so that
2.9) a?={e}(B~-P) 'e,} ' >0,

where e, is the first unit vector. Furthermore, if we denote the estimate (B, o) by (b*, s*?)
if @ = @*, it is readily established that, as a consequence of the boundedness of @, also
o? is bounded:

(2.10) =gz s¥2>0.

We may now ask the question whether we can also delimit the set of estimates 8 given
that & satisfies (2.6). The answer to that question is contained in Proposition 1. Define

(211)  F*=(A-0%7'-A"Y

then we have the following proposition.

PROPOSITION 1: The set of solutions B satisfying (2.4), with @ satisfying (2.6), is given
by:

(2.12)  (B=3b+b¥)YF*(B—3(b+b¥))<i(s*—5*?),
(2.13)  F*F*(B-}(b+b*)=B—3(b+b*),

where F*~ is an arbitrary g-inverse of F*. This bound is minimal, i‘e., for any B satisfying
(2.12) and (2.13) there exists a @ such that (2.4) and (2.6) hold true.

2 The notation C < D means that D—C is a positive semidefinite matrix; C <D means D~C is
positive definite.

3 Note that ¢* has to be stnctly less than B. Among other thmgs, this excludes the possibility that
the true explanatory variables in = are perfectly collinear. If = could have less than full column
rank, no bounds for B exist.
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FiGURE 1.—The ellipsoid when (2.16) holds,

The proof follows from results obtained in Bekker (1986).

Equation (2.12) describes a cyclinder and (2.13) presents a projection of the cylinder
onto the space spanned by F*. Thus (2.12) and (2.13) describe an ellipsoid in the space
spanned by F*. It is easy to show that

(2.14) 52~ 5*2=(b*~ b) F*~(b*— b) + &¥, — OHLO*~ ¥,

The nonnegative definiteness of ®* implies that

(2.15) DY = DL  PF,.

If (2.15) holds as an equality, i.e.,

(2.16) ‘pfl = OLN* OF,

then (2.12) and (2.14) imply that both b and b* lie on the surface of the ellipsoid and
th'e center of the ellipsoid is located at the midpoint of the segment joining b and b*. See
Flgl?'r(z.ll‘ﬁ) holds, the measurement error y; in y is linearly dependent upon the measure-

ment errors v; in the exogenous variables, in the sense that the mean square of their
difference is zero. To see this, define A = 2% @%,, so that (2.16) is equivalent to

(2.17) (-1, A)P*=0.

This implies, in conjunction with (2.6),

(218)  0=(-1,A)2()=(-1,A)P*(;") =0,

s0 that (—1, A’)@ =0, which is equivalent to E(u; —A'p,)*=0. That is, the measurement
error in y is a fixed linear combination of the measurement errors in X with probability
one. One particular case in which this holds is where @, =0 and &,,=0, i.e, no
measurement errors in y. '

If we let @F, increase, keeping all other elements of @* constant, so that (2.15) becomes
a strict inequality, s*— s*? increases according to (2.14). As b, b*, and F* do not depend
on @F, this means that the ellipsoid expands. In that case b and b* are no longer on the
surface on the ellipsoid, but the midpoint of the line joining b and b* is still the center
of the ellipsoid. See Figure 2.

The intuitive explanation for this is that if @¥; increases, we do not only allow more
measurement error in y (which is indistinguishable from errors in the equation anyway)
but also more covariance between the errors in y and X. Thus, the bound on ¢ becomes
less tight and the ellipsoid expands.

L

[+] €

FIGURE 2.—The ellipsoid when (2.15) is a strict inequality.
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If the number of regressors exceeds two, it will be hard in practice to represent the
ellipsoid given by (2.12) and (2.13) in a transparant way. For that reason it is useful to
derive bounds for linear functions of 8. Let ¢ be a known vector; then bounds for ¢’
are implied by the following proposition.

PROPOSITION 2: The maximum and minimum of ¢'B, with  fixed and B satisfying
(2.12) and (2.13), are given by

(219) WA =1W(b+bN) (P~ )W FHy) V2,
The proof follows from resuits in Bekker (1986).

3. UNCORRELATED MEASUREMENT ERRORS

In this section we assume that, in addition to the bounds on @ as given in (2.6), a
researcher is also willing to assume that ®* and & are diagonal. That is, measurement
errors in different variables are uncorrelated.

The first thing to notice is that in this case the measurement error in the regressand is
compietely indistinguishable from the error in the equation. Therefore it is of no con-
sequence for the set of estimates 8. Since @ is diagonal, ¢, =0 and the estimator g8 is
simply given by
(3.1) B=(A-Q2)7'Ab,
where £ is diagonal and bounded by
(3.2) 0sO=sO*<A
Clearly, the set of estimates is unchanged if we choose @% = &,, =0. Consequently the
ellipsoid (2.12)-(2.13) only depends on £2*. We will refer to (2.12)-(2.13), with &%, =0
and @¥; =0, as ‘‘the ellipsoid spawned by £2*". This ellipsoid is still a bound for the set

of estimators B, but it is no longer a minimal bound if 2 and £2* are restricted to be diagonal.
In order to derive 2 more satisfactory bound we define the following points:

(3.3) Bs=(A-Q%)"Ab,

where 0% = 2*A = AR* = AN*A, with A =diag(5) and § a vector with ones and zeros as
elements. If £* has I nonzero diagonal elements then there are 2! different matrices £2%,
which all satisfy (3.2). Clearly the 2! solutions s are bounded by the ellipsoid spawned
by 2*. We shall refer to the B; as “‘generated by 2*”.

PROPOSITION 3: All B; lie on the surface of the ellipsoid spawned by 0Q*.
PROOF: See the Appendix.

Having established that all B; lie on the surface of the ellipsoid spawned by £2*, we
next show that g lies in the convex hull of the 2’ points 8, that are generated by 2*.

PROPOSITION 4: If 2 and 2* are diaga;xal and satisrl'y (3.2), then the set of estimates
B satisfying (3.1) is contained in the convex hull of the 2' points B generated by 02*.

PROOF: See the Appendix.

Thus, the diagonality of £ further reduces the region where 8 may lie when measurement
error is present. In practical applications, the most obvious use of this result is to compute
all 2 points B; and to derive the interval in which each coefficient lies. These intervals
will in general be smaller than the ones obtained from Proposition 2 by choosing for
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the k unit vectors successively. It should be noted that the convex polyhedron need not
be a minimal bound. In fact, it can be shown by a counterexample (available upon request)
that the set of estimates 8 may not be convex. However, this does not affect the intervals
for the separate coefficients. Proposition 4 is similar to a result given by Chamberlain and
Leamer (1976) (employlng a result by Leamer and Chamberlain (1976)) that bounds the
posterior mean by 2* regressions if the prior covariance matrix is diagonal. In terms of
the present framework, their proof assumes that 2 is an unbounded diagonal negative
definite matrix. However, their result may be amended to allow for bounded diagonal
positive definite matrices £2. Still, for their proof it must be assumed that 2 is nonsingular
(so 1=k, among other things).

4. CONCLUSION

It is very simple to apply Propositions 2 and 4 to empirical problems, and the analysis
could easily be incorporated in regression packages. Since the propositions cover a wide
range of cases, the researcher has considerable freedom to express his prior ideas about
£2 as precisely or as vaguely as he wants. The result of the analysis will then summarize
succinctly the sensitivity of estimation outcomes to assumptions about the quality of the
data used.

It appears that the framework developed in this paper will allow for extensions to more
complicated models. Consider for example the jth structural equation in a linear simul-
taneous equations system:

(5.1) ¥ =Y+ Tyotg,

where Y; and E; are matrices of endogenous and exogenous variables, respectively,
included as explanatory variables in this equation y; is the vector of endogenous variables
to be explained by this equation and ¢; is a vector of errors. Let = be the matrix of all
exogenous variables in the system. Then 2SLS amounts to GLS applied to

(5.2) Ely=E'"Yjeo+ E' Epypt+ ey

If £ is measured with error, this model becomes similar to (2.1)-(2.3). Since = occurs
on both sides of the equation, the measurément errors in the left and right hand side
variables will in general be correlated. For the special case where y,=0, it is easy to show
that Proposition 1 can be applied directly to derive an ellipsoid for a consistent estimate
of a, defined analogously to B8 (cf. (2.4)). (Bekker, Kapteyn, and Wansbeek (1984) have
derived the same ellipsoid without reference to Proposition 1, assuming that all exogenous
variables are measured with error.) Proposition 1 is not applicable when v, # 0. For that
more general case further research is needed.
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Tilburg, The Netherlands
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APPENDIX

PROOF OF PROPOSITION 3
Clearly 2} = Q}Q2* 2% and Q¥ = Q*0* 0% If we define
Fi=(A-ap)~a,
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then
(A1) F3(A-Q%)0* AF¥
=(A-05)T'NFATHA-0NOFAATIRXHA-OHT
=F¥%.
So (A-02%)2*" Ais a g-inverse of F¥ for every 8; in particular it is a g-inverse of F*, As
(A2) F¥=FYA-Q%0* 0§ A-0¥H",
it follows that
(A3) FXF*F¥=F%
for any g-inverse F*~. As 285 b —b*=(2F¥— F*)Ab, and using (2.14) with ®¥ =0 and. &% =0,
it follows that (2.12) becomes an equality if we substitute 85 for 8. Q.E.D.
PROOF OF PROPOSITION 4
Before we present the proof we need some auxiliary results.

LEMMA 1: Let A be a positive definite matrix, k a vector, and p a scalar, 0<sp<1. Then
(A.4) (A+ukk') '=AA" "+ (1-A)NA+ kKD,
where

l_
(AS)  O=a= L

=—=],
1+uk’A™k

PROOF: Straightforward.

Without loss of generality, we assume that the first / diagonal elements of 2%, w¥, 0¥, ..., 0¥,
are nonzero (/<k) and the remaining k1 elements are zero. Let us index the 2! vectors & by a
subscript j, with j=1,...,2" A typical element of 8 is 8y, i=1,..., k. We order the §; in such a
way that, for j<2™ and 0Osm=<lI-1, §.,,m =8 ~€,4, With .., the (m+1)th unit vector. An
example of such an ordering, for k=4 and /=3, is

17 Jo]l o] I o] I 0
1 1] Jo! Jo 1 1] {ol| Jo
1 1 1 1 0 0 0 ol
ol lo] o] Lol lof 1ol lo] o

& 8 8 b, 8 8 & &

Define K, = A—):;_g,‘,w’,‘e,e; (this would be denoted as A— 2% in Section 3, with §=5,). Then we
have Kj.on = Kt oF18mi1mer-

LEMMA 2: Let p;, i=1,...,2", be scalars satisfying u,; =0, T, p1, =1; then there exist scalars A
j=1,...,2", satisfying A; =0, Zj A;=1, such that

2m -1 2m
(A6) {z ,L,K,} =% A(K)™, forall 0<m=<l.
i=] Jj=1

ProoOF: The proof is by induction. Assume (A.6) holds for m=1-1; then we show that it also
holds for m+1.

mat 2 2m 2m 2m
(A7) ,Z:l K =l§l “IKI+‘§l Bia2mKigm =1§| (ﬂl+ll-l+z'")Ks+{l)_:l I‘q+z"‘} Ot 1m 1€l 41
Lemma 1 implies
2m) -1 2am -1
(A.8) {El p'iKl} =A {lgl (I’-:“"l‘uz"‘)xl}
am -1
+(1-2) {El (Ill+llq+z”')(K1+w:+1fm+|92.+1)}

-t

2m -1 2m
=2 {El (Il-i'*'ll-wz”')Kl} +(1-2) {E’ (#:+F1+z”)Ki+z"’} s
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with 0=<< A = 1. Assuming that the proposition holds for m, (A.8) implies that it holds also for m 1.
Furthermore, (A.6) holds if m=0. Q.E.D.

We can now prove Proposition 4. Consider K = A— 2. Given that 0= £ < (J* and that 2 and 2*
are diagonal we can write K as
2'

(A.9) K =lZl K,
where p; =0, Zj #;=1. According to (3.1) and Lemma 2 we have
Py -1 2! 2!
(A.10) B=(A-0)"'Ab= K“Ab={ z u,K,} Ab= 3 AK'Ab= % ABsys
J=1 J=1 J=1

with A;=0, %, A, =1. Q.E.D.
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