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THE DISTRIBUTION APPROACH TO SPATIAL 
ECONOMICS 

Thijs ten Raa* 

1. INTRODUCTION 
This article exposes a new approach to spatial economics which is general yet 

operational. This idea is straightforward. The approach is essentially a modifica- 
tion, or more precisely a spatialization, applicable to any standard, nonspatial 
model. 

Standard models are usually comprised of structures and of activities, 
formally represented by elements of real vector spaces, such as scalars, vectors, or 
matrices. Basically, the structures and activities will now be represented by spatial 
distributions of those elements. In other words, the scalars, vectors, and matrices 
are spread out over geographical space. Formally, the real vector spaces are 
replaced by vector-valued distribution spaces. 

So far the notion of spatialization will not have excited the revolutionary zeal 
of the theorist for (s)he is already acquainted with studies in which structures and 
activities have spatial components. Moreover, such refinements merely seem to 
increase computational complexity without affecting the mechanics of the model 
at hand. It is at this junction that our approach deviates and is truly new. We shall 
not chop up structures and activities in spatial bits and then proceed as usual. 
Instead we will consider spatialized structures and activities as single elements in a 
distribution space. The novelty is that the manipulations will apply directly to the 
spatialized structures and activities, as if they are ordinary numbers, vectors, or 
matrices. For this purpose we shall draw on the theory of distributions developed 
in 1945 by Schwartz (1957). Economists who want to make creative use of the 
present article must definitely read Schwartz’ (1961) introduction to the theory, 
since in the present work the mathematics chapter “Theory of Distributions” is 
applied for the first time in economic science. 

Our distribution approach to spatial economics will prove to be powerful. 
First, spatial structures of economic models become much more transparent. 
Second, solutions are brought within reach. For example, the spatial equilibrium 
analysis of urban density by Beckmann (1977) can now be applied to two- 
dimensional cities, a noteworthy extension of the fictitious railroad town to real life 
cities. Other open problems in spatial economics will be tackled by the distribution 
approach. The main purpose of this article is, however, the exposition of a new 
method for spatial economic analysis. 
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Finally, let me note that the method is also useful when economic structures or 
activities are temporally distributed or even when they are distributed over space 
and time jointly, as in economic dynamics and econometric models with lags. Since 
these cases are more complicated (the distribution equations involve derivatives) 
they are less suitable for a basic exposition of the new approach and are left for 
future publications. 

2 .  BENCH MARK: KEYNES SPATIALIZED 

and then see how it is spatialized. We consider 

(1) y = c.y + x 

where y is national income which is divided into consumption cy and other 
expenditures x including investment, government outlays, and net exports. Coeffi- 
cient c is the propensity to consume. 

Although it looks simplistic, the model and its spatialization below contain all 
the essential ingredients of the spatial economic models analyzed in this article. 
The Keynesian model serves as a benchrnark for our approach to spatial econom- 
ics. 

( 2 )  

To fix ideas let us take the simplest model, a simple version of Keynes' model, 

The solution of the model is 

y = (1 - c)-'x 

or 

(3) 

This shows how a raise in exogenous expenditures x have a multiplier effect on 
national income y .  The total effect equals the exogenous expenditure itself, x, plus 
the direct effect, cx, plus the indirect effects, c2x + c3x + . . . . The total effect 
converges because of the economic fact of life that the propensity to consume lies 
between zero and one. Of every dollar earned, less than a dollar is spent on 
consumption. Formally 

(4) O i c t l  

Now let us spatialize. Exogenous expenditures and national income are 
reinterpreted as spatial distributions x and y.  (A formal definition will be given in 
the next section.) In principle, c may remain a scalar; however, that would 
represent the very special case in which people spend their income only at  the 
locations where they earn it. In general, the consumption part of one dollar earned 
at  some location, say the origin, will be allocated according to some spatial pattern. 
This pattern is the spatial distribution of the propensity to consume. Maintaining 
notation, this distribution is denoted c. For simplicity we assume that this 
consumption pattern is the same for all people irrespective of their locations of 
income. Note that the special case of exclusive local consumption is recaptured by 
the distribution c which is concentrated in the origin. 

How is the model affected? Let us begin with condition (4). Of course, still less 
than one dollar is spent on consumption out of every dollar earned. Now how much 
is spent on consumption (per dollar earned)? The distribution is c. The total 

y = (1 + c + c2 + c3  + . . .)x 
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amount is obtained by summing over space: Jc.  Thus we get 

(4') 0 5  J C < l  

Let us consider Equation (1) next. Consider income at  point r :  y ( r )  (heuristically). 
It is built up of two parts: consumption expenditures at  r and other expenditures at  
r :  x ( r ) .  How much are the consumption expenditures at  r? Of each dollar earned at  
some points, a fraction c(r  - s )  is spent at  point r.  Hence points contributes c(r  - 
s )y  (s). Total consumption expenditures at  point r are obtained by summation over 
all points s: J c ( r  - s )y ( s )ds .  This expression is known as the convolution of c and y 
(at r )  and denoted (c*y)(r)  (heuristically). In sum (dropping the arguments r )  the 
income equation becomes 

(1') y = c*y + x 

This completes the spatialization. Recapitulating, we reinterpreted all scalars as 
distributions and we replaced the direct product by the convolution. 

Keep in mind these two paradigms and the fact that the Dirac distribution or 
point mass at  the origin, 6, is the unit distribution for, heuristically, ( x * 6 ) ( r )  = j x ( r  
- s)b(s)ds = x ( r  - 0 )  = x ( r ) .  Then the standard solutions (2) and (3) suggest the 
solution of the spatial model, namely 

(2)') 

or 

(3') 

The * symbols are inserted to indicate that products and, hence, powers are in the 
sense of convolutions. (2') and (3') will be justified in the next section. Now let us 
discuss the economics of the solution. We see that a distributed increase of 
exogenous expenditures has a multiplier effect on national income, very much like 
before. The total effect now equals the exogenous distributed expenditure itself, x, 
plus the direct effect, the convolution c*x, plus the indirect effects, the further 
convolutions ( c * ~ ) * x  + (c*')*x + . . . . In other words, an exogenous distributed 
expenditure spreads through the spatial economy in convolution multiplier fash- 
ion. The total effect converges in the sense of distributions precisely because of the 
spatial economic condition (4'). This will be proved in the next section. 

Thus the theory of distributions enables us to handle the seemingly complex 
problem of spatialization without loss of operational results by reframing the 
economic variables and their algebraic relationships in a distribution space. A 
referee of this paper, Tony Smith, rightly noted that in measuring consumption 
fractions relative to the source of income, we assume spatial stationarity, and, in 
summing directly over all those sources, we assume spatial homogeneity. We may 
well analyze less regular spatial economies, but that would complicate the expres- 
sions and hamper the exposition of our new approach. 

y = [(6 - c)* - ' ] *x  

y = (6 + c + c * 2  + C * j  + . . .)*x 

3. ANALYSIS: SCALAR DISTRIBUTIONS 

technical section. The purpose of this section is an analysis of Equation (1'). 
Those who merely want to grasp the main thrust of this article should skip this 
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The classical approach is to confine oneself to locally summable coefficient c, 
known x, and unknown y .  Then (1') is an integral equation with kernel c. Through 
successive approximations a solution is arrived at under the premise that the 
surface between the horizontal axis and the graph of the kernel is contained in 
some rectangle of area less than one. 

The classical approach lacks in two respects. First, c need not be locally 
summable. The elementary case of exclusive local consumption falls short of this 
condition, since it involves a concentrated distribution. Second, the economic 
condition that the propensity to consume is less than one, i.e., (4), means that the 
surface between the horizontal axis and the graph of the kernel itself has area less 
than one without necessarily being contained in a rectangle. To overcome these 
shortcomings, we shall look at the equation afresh. 

c, x, and y are scalar distributions over space in the sense of Schwartz, i.e., 
continuous linear functionals from the test space of infinitely differentiable 
functions on geographical space with compact supports to the reals. c is assumed to 
be nonnegative. By Schwartz (1957), c is a Radon measure and can thus be 
extended to the larger test space of continuous and bounded functions. (Infinite 
values of the measure will be ruled out by an economic assumption on c which is 
seen to imply boundedness.) The enlarged test space contains the constants. ( c , l )  
is denoted by fc. f properly generalizes the Lebesgue-Stieltjes integral. c is 
assumed to fulfill the economic condition f c < 1. 

(1") 

Invoking the Dirac distribution, 6, Izquation (1') reads 

(6 - c)*y = x 

Consider the left-hand side operator. By convoluting through one sees that if 6 + c 
+ c*2 + c*3 + . . . exists, then it is the inverse of 6 - c. Thus, if Z,'C*~ exists, then, 
convoluting through (l"), one obtains the solution for y, namely (3'). In fact, we 
shall show that Z;C*~ converges and is continuous on the enlarged test space 
equipped with the sup-norm. [Then this holds a fortiori on the standard test space 
of Schwartz (1957).] For this purpose we first present: 

Lemma I :  / c * k  = (f c ) ~  (h  = 0,  1, 2,. . .). 

Proof: k = 0 and k = 1 are trival. For h = 2, Jc*' = (c*', 1) = (c*c, 1) = 

(c,(c, 1) ) = (c, f c )  = (c, 1) f c =- f c f c = ( J  c ) ~ .  For h > 2 one proceeds in the same 
way. Q.E.D. 

Corollary: j Z ; c * k  = X o ( f c ) k .  

Proof: f Z , ^ C * ~  = ( ,X;C*~, 1) = Z;(C*~, 1) = Z; f c * ~  = Z;( f c ) ~  by Lemma 1. 
Q.E.D. 

Now we obtain the inverse distribution. 

Proposition 1: c is nonnegative and fulfills the economic condition J c < 1. 
Then Z;C*~ exists and is continuous (on the enlarged test space). 

Proof: Z ~ C * ~  is nonnegative since c is. Consequently it is of order zero 
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[Schwartz (1957)] and we can estimate for any test function 6: (Z;;C*~, @) 5 ( Z;;C*~, 
I/ 4 / I y )  = ( % c * ~ ,  1 ) 11 @ / I L  = J Z , ' C * ~ ~ (  @ I / _  = Z % ( J C ) ~ I I  @ I [ _  by the corollary to 
Lemma 1. The coefficient on the right-hand side is finite by the assumption on c. 

Q.E.D. 
Next we will examine properties of the inverse operator. The unknown y is as 

regular as the known vector distribution x in terms of integrability and differentia- 
bility. 

Proposition 2: c is as in Proposition 1. Then Z.,"C*~ preserves the combination 
of nonnegativity and p-integrability, 1 5 p 5 CO. (That is, if x z 0 and 11 x / I p  5 m, 

then the same holds for y.) 

Proof: By nonnegativity of c, Z,"C*~ preserves nonnegativity. Moreover, choose 
L,',,, 3 f, t Z,'C*~ and define Yrn = fm*x .  Then Yrn t Y and 11 Y m  l i p  5 1 1  f m  1 1  1 1 1  x l i p  = 

(f,, 1) 1 1  x I (Z;C*~, 1) 11 x /I = JZ;c*k I /  x / I p  = Z ; ; ( J C ) ~ ) I  x l i p  by the corollary to 
Lemma 1. By the assumption on c and the principle of monotone convergence of 
integration theory, y, converges in the p-norm. In fact, 1 1  ym l i p  t 11 y / I p  for our 
y, 7 y. Taking the limit in our inequality, 11 y l i p  5 Z,(SC)~ 1 1  x I l p .  Q.E.D. 

Lemma 2: c is as in Proposition 1. Then Z ~ C * ~  preserves the combination of 
boundedness and uniform continuity. 

Proof: A bounded and uniform continuous x belongs to the (enlarged) test 
space. Thus it can be convoluted with Z;C*~ by direct application of this 
distribution on x(r - - . )  which is defined by s - x(r  - s). Now /I y(r  + h) - y ( r )  I (  = 

11 (Z;C*~, x ( r  + h-.)) - (Z;C*~, x ( r - . ) )  11 = I/  (Z;C*~, x(r  + h-.) - x ( r - , ) )  /I 5 

(Z;C*~, 1 1  x(r  + h-.) - x ( r - . )  11,) = J Z ; C * ~  1 1  x ( . + h )  - x(.) I [ _  = Z ; ( J C ) ~ ~ /  x(.+h) - 
x(.) (1 by the corollary to Lemma 2. Using the assumption on c, we see by unlimited 
variation of h that y is bounded when x is, and, by taking h sufficiently small, that y 
is uniformly continuous when x is. Q.E.D. 

Proposition 3: c is as in Proposition 1. Then Z,C*~ preserves p times bounded 
and continuous differentiability. 

Proof: Since Y ' ~ '  = ( Z , ' C * ~ * X ) ( ~ )  = Z.C*~*X(~) ,  0 it suffices to show that y is 
bounded and continuous when x is. Define Z, = Z;C*~. A, by (Z, "C*~.  A,,@) = 

( Z . ~ C * ~ ,  O.A,) where A,(r) = 1 on / I  r 1 1  I m, m + 1 - /I r 11 on m 5 1 1  r 11 5 m + 1 and 
0 elsewhere. By Proposition 1, Z,C*~ - Z, vanishes from above and, in particular, is 
of order zero. Define y, = Z,*x. Then y,(r) = (Z,, x ( r - . ) )  = (Z;C*~, (x . A,) 
( r  - .) ). But x is continuous, hence x . A, is uniformly continuous and bounded and 
so is ym by Lemma 2. Thus if we can show ym - y uniformly, then y is continuous. 
This is easy to demonstrate: 0 5 y ( r )  - y,(r) = (Z,'C*~, x ( r - . ) )  - (Z,, x ( r - . ) )  = 

( Z . ~ C * ~  - Z , , x ( r - . ) )  5 (Z;C*~ - Z,, 1 1  x ( r - . )  II,) = (Z;C*~ - Zm, 1) / I  x 1 Owhen 
x is bounded. Then y is bounded too by Proposition 2. Q.E.D. 

4. FIRST CASE STUDY: EXPENDITURE DIFFUSION 
The expenditure diffusion model of Paelinck (1982, p.5) is designed to assess 

the interregional effects of regional expenditure programs. Expenditures are 
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transmitted through people who spend their income not only locally, but also at  
adjacent regions. Consequently, demand in some region depends also on income in 
other regions. Total consumption in region p is specificed by Paelinck as 

(5) 
where we use strictly Greek symbols for regions, reserving Arabic letters for point 
locations. yp is income in region p, obtained by integrating the income density y ( r )  
over all points r in p 

QYp + a* lz Yu + a** c YT 

(6) Y 6 - W  

where I /  . 1) is the contiguity distance of Paelinck (1982, p. 44). Zyu is income in the 
regions cr contiguous to p 

(7) 

Xy, is income in further regions, contiguous to o 

where a is the propensity to consume locally and a* is the propensity to consume in 
some directly contiguous region. Therefore, the propensity to consume in the 
directly contiguous regions equals a* times the number of such regions, i.e., 4a* for 
a grid structure of regions. The propensity to consume in the second-degree 
contiguous regions then equals 8a**. If the propensity to consume decreases with 
contiguity, then a > 4a* > 8a**. Note that the propensity to consume adds up to a 
+ 4a* + 8a**. This figure must be less than one. (In the case of decreasing 
propensity, combination of the inequalities yields 8a* < a + 4a* < 1 or a* < 0.125, 
and 24a** < a + 4a* + 8a** < 1 or a** < 0.042.) 

The income balance of region p reads income y p  equals consumption (5) plus 
exogenous expenditures x,: 

YP = ffYP + a* y n  + a** y7 + x p  
The model clearly resembles "Keynes spatialized." In fact, we shall reveal the 
distribution structure of the present model and show that (9) can be obtained from 
(1') through the propensity to consume density, c(r ) ,  which equals = o  ds,  
~ * / J I I , _ , ~ I - ~  ds,  a**// ~ l ~ - ~ l l = ~  ds or 0 for 11 r 11 = 0, 1, 2 or 3 ,4 , .  . . , respectively. For 
then (1') becomes, evaluated at point r 

d s  + x ( r )  for p 3 r 
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by (6), (7), and (8). Integrating over all r in p, (9) emerges. It should be mentioned 
that Paelinck’s contiguity distance is only a pseudo-distance between points, for 
distinct points may be at zero distance from each other, namely, when they belong 
to a common region. This complication may be overcome by taking a Minkowski 
distance instead. In fact, when the regional classification becomes finer and finer, 
the contiguity pseudo-distance tends to the sup distance. However, I would prefer 
a more realistic Minkowski distance. For these metric matters I refer to my earlier 
paper [ten Raa (1983)l. 

Having laid down the distribution structure of the model, we are now 
prepared to address Paelinck’s problem of assessing interregional expenditure 
effects. The consequent income distribution is given by (3’), as has been justified 
by Proposition 1. The effects of a unit expenditure impulse are found by 
substituting x = 6, the Dirac distribution. Thus these effects are distributed like 

Paelinck (1982, p. 9) hypothesizes that “the effect of an impulse will probably 
decrease; however the effects may undulate across the area, and the peak of a wave 
quite far. . . may well get a larger amplitude than one nearer. . . .” We shall argue, 
however, that the model does not generate such a wave pattern. For this purpose 
we may make Paelinck’s assumptions that the direct consumption effect (c) is 
symmetric with respect to directions, diminishing, and limited to some finite area. 
Then c can be interpreted as a distribution on the one-dimensional space of 
distances, with bounded support and nonpositive derivative. (This is done by 
projection; purists would introduce a new symbol for this c. The derivative is in the 
sense of distributions.) We shall derive that the total effects (Z;C*~) are damped 
and even diminishing, which clearly settles the issue. 

In fact, the damped behavior is due to the boundedness of c’s support alone, 
irrespective of c’s diminishing behavior. For by appropriate choice of a distance 
unit, supp c C [O, 11 and therefore supp c * ~  C [0, h] .  To investigate Z,”C*~ at  r we 
must apply it to a test function with support in a small neighborhood of r. The 
terms c * ~  with h 5 r, the floor of r, have no impact. Consequently, the total effect at 
r is like Z;C*~. But this vanishes as r tends to infinity since Z;C*~ converges by 
Proposition 1. Thus the total effects are damped. Next we shall demonstrate that 
the transition from the direct effect to the total effects generates no wave pattern. 
The crux is: 

X . ; ; C * k .  

Proposition 4: b and c are nonnegative distributions over n-dimensional 
Euclidian space, depend on distance only, and in weakly decreasing fashion. Then 
the same holds for b*c. 

Proof: By method of descent, i.e., induction on n. Since nonnegativity and 
exclusive distance dependence hold trivially, it remains to be shown that b*c is 
weakly decreasing in distance. By the technique in the proof of Proposition 2 we 
may confine ourselves to locally summable b and c. For n = 1, r t R and dld 11 r 11 
(b*c) ( r )  
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1 = sgn (r) [ $' b ( r  - s) C ( s )  d s  + /' b (r  - s) C (s) d s  
-z 

= sgn(r)J [b(r ~ s) - b ( r  + s ) ] i ( s ) d s  
0 

by symmetry of c(.) (which depends on distance only). By weak decreasingness of b, 
u s i n g s r 0 , r r O -  / I  r - s I/ 5 11 r + s ll-b(r - s )  z b ( r  + s ) a n d r i O -  11 r - s 11 
2 I/ r + s 11 - b(r - s )  5 b(r + s); inshort,sgn(r)[b(r - s )  - b(r + s)]  2 0. But, by 
weak decreasingness of c, i (s) 5 0 on [0, m). Substitution of these inequalities in the 
expression for d /d / /  r 11 (b*c) (r) yields that b*c is weakly decreasing in distance for 
n = 1. Now suppose the proposition is true for dimension n. Then we shall prove it 
for dimension n + 1. By exclusive distance dependence, it suffices to consider b*c 
at points in R"+l with last component zero, i.e. (r, 0) with r E R". By Fubini's 
theorem 

= J: [La b(r -- S , S n + I ) C ( S , S n + l ) d S  dsn+l 1 
by symmetry of b (r,.) ( b  depending on distance only). For all s,,~, define bsn4,: R" - 
R + by bSnJr) = b(r, sn+J ,  and similarly. Then our expression becomes 

Here, by the induction hypothesis [.I is weakly decreasing in / I  r I / ,  for all s,+~. 

Hence, (b*c) (r, 0) = 1 [.Ids,, is weakly decreasing in / /  r / /  or / /  (r, 0) /I. Q.E.D. 

Corollary: c is as in Proposition 4. Then the same holds for Z,"C*~. 

Proof: By induction on k, c * ~  is as in Proposition 4. Summation over k yields 
the result. Q.E.D. 

That is, the total effects are diminishing. I am grateful to referee Tony Smith for 
exposing a shortcoming in my original argument. 

5. SECOND CASE STUDY: URBAN DENSITY 
The urban density model of Beckmann (1977) is a spatial equilibrium model 

designed to explain observed patterns of density distributions of economic activi- 
ties in cities. To  reveal basic density patterns Beckmann assumes away all 
incidental nonspatial causes. All households are equal as regards a utility function, 



TEN R A A  THE DISTRIBUTIONAL APPROACH TO SPATIAL ECONOMICS 113 

income, consumption of nonspatial goods, and attractiveness for other households. 
Then in equilibrium households must be equally satisfied in all locations. All 
households' utility levels are the same, u,,. Utility consists of two terms. One 
represents the net utility of housing, corrected for the disutility of housing density. 
The other represents the net utility of interaction, taking into account transporta- 
tion economies of density. Housing density trades off these two utilities: that is the 
crux of the equilibrium model. 

The net utility of housing is written as an indirect utility term of housing 
density a t  point r, m(r),  and assuming linearity it becomes a - Pm(r). The net 
utility of interactions is also written as such an indirect utility term and is based on 
the entropy function: Je  'I m (x) dx. Thus the equation of spatial equilibrium 
is 

uo = a - Pm(r) + Se-11' ' i lm(x )dx  

or 

(10) 

This is Equation (2) of Beckmann (1977, p. 126). His careful theorizing has been 
insulted by my hasty derivation. 

Observe that when the city extends over the whole real line or plane, circle or 
ball, then the solution consists of a uniform housing density. Therefore, the model 
is not so rich that it can explain location and size of the city. To be fair, such an 
objective would require a nonhomogeneity assumption on geographical space such 
as favorable conditions around the origin, possibly reflected through space- 
dependent parameters in the utility function. Otherwise, any solution would be 
arbitrary in that it could be translated or rotated. Beckmann circumvents all this 
by fixing the location and size of the city on 3 = [ - R, R].  Thus the integrations are 
performed over R. 

Beckmann's equation of equilibrium requires integrability. Densities concen- 
trated at single points such as the Empire State Building are ruled out a priori. 
This condition is relaxed by going to the distribution of housing, m. Then Equation 
(10) becomes 

(10') 

To solve for the housing distribution, let us check the economic assumption of 
Proposition 1. By nonnegativity it is necessary and sufficient that J (  l/P)e-Il. l 1  < I 
or > Je-  I / . " .  For 3 = [-R,  R] this yields B =. 2(1 - e -R)  which is precisely the 
condition of Beckmann (1977, p. 127). The condition on @ enables us to solve (lo') 
through the existence and regularity propositions. By Proposition 1, 
m = z;(l/Pe-II I')*k*a-uo//3 and m is as regular as (a  - uo)/P in the sense of 
Propositions 2 and 3, that is m-integrable on 3 and co times bounded and 
continuous differentiable on 3. Moreover, m = 2;;. * (Y - u0/P is unique since 2; is 
unique, for if T were another inverse of 6 - 1/p e-ll l l .  then T = T* 6 = T* (6 - 
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le//3-11 Il)*Z; = S*Z; = 2;. This observation is added to cover the further result of 
Beckman (1977, p. 127). 

Our distribution analysis of housing equilibrium is very powerful, for it does 
not hinge on L! = [ -R, R].  In fact, the space may be of any dimension. Beckmann 
(1977, p. 129) reports that, unfortunately, his analysis of the two-dimensional city 
is impeded by some difficult partial differential equations except in some singular 
cases. We have surmounted this problem by direct inversion of the interaction 
distribution. This approach extends the theory of urban density to two- 
dimensional cities. 

6. ANALYSIS: VECTOR DISTRIBUTIONS 
To pave the way for the third and last case study we must extend the analysis 

to vector-valued distributions. As before, followers of just the main thrust of the 
article should skip this material. Nothwithstanding, the extension is straightfor- 
ward. 

The roles of coefficient c, known x and unknown y, are now assumed by an (n 
x n)-dimensional nonnegative coefficients matrix distribution A and known and 
unknown n-dimensional vector distributions f and q, respectively. The equation to 
be analyzed, parallel to (l'), becomes 

q = A*q + f 
The convolution product is defined by (A*q), = X~,n-lall*ql where * stands for 
familiar scalar convolution. 

The crux is the generalization of the economic condition f c  < 1. JA is now 
defined by (f A), = fa,. Note that f A is an ordinary n x n matrix. What about the 
bound? Recall that it was used for the convergence of the inverse distribution 
X , ' C * ~  through fZ,"c*k = Xi( f c ) k  (the corollary to Lemma 1). The latter equality is 
seen to hold for A by considering it component by component. Thus we now want 
convergence of Z; (f A)k. By nonnegativity, the necessary and sufficient conditions 
therefore are those of Hawkins and Simon (1949). In short, f A is assumed to fulfill 
the Hawkins-Simon conditions. Indeed, these conditions properly generalize the 
economic condition f c  < 1. 

exists, then it is the 
inverse distribution and one obtains the solution of Equation (12), in the following 
section, 

Precisely as in the scalar case, one sees that if 

q = x A * k * f  
0 

Here the following observations are pertinent. Lemma 1 and its corollary hold for 
A. Propositions 1, 2, and 3-with the economic condition generalized by the 
Hawkins-Simon condition-also apply to A. The proof of this extension proceeds 
in straightforward and uncomplicated component-by-component fashion and is 
therefore omitted. 

7. THIRD CASE STUDY: WORLD MODEL 
The United Nations world model of Leontief, Carter, and Petri (1977) is a 

multiregional input-output model, specified as follows: q, f, m, e, A, and p denote, 



TEN RAA: THE DISTRIBUTIONAL APPROACH TO SPATIAL ECONOMICS 115 

respectively, a supply and a final demand vector, an import and an export vector, 
an input-output coefficients matrix, and an import coefficients vector. All these 
entities are functions of the regions r ( r  = 1, . . . , 15, the number of regions in the 
world model). Furthermore, 8(r, s) denotes region r’s export shares vector in 
market region s. For region r the equations are 

q(r) = Ao(r)[q(r) - d r ) l  + f(r) + ek), m(r) 

b(r)q(r) and e(r) = 8(r ,  s)m(s) 
S 

where 

(12a) 

Here we subscribe to the aqalytically satisfactory model as opposed to the 
computationally convenient one of Leontief, Carter, and Petri (1977, p. 22). (In 
fact, the analytically satisfactory model turns out to be more tractable!) The strict 
inequality excludes from consideration the banal possibility that some good is 
completely imported everywhere, i.e., produced nowhere. (In fact, for indecompos- 
able technologies Ao(r), this would be the case of all supply and final demand equal 
to zero.) It should be noted that Leontief, Carter, and Petri (1977) assume that 
export shares are the same for all markets s: 8(r,  s) = 8(r). However, we shall 
maintain the refined picture of trade, 8(r, s) .  (In Paelinck’s terminology, we use full 
information input-output, whereas Leontief, Carter, and Petri (1979) work with 
limited information input-output.) 

To highlight the basic structure of the model, consider the case in which 
technology and import structure are uniform and export patterns are also basically 
the same in that only the relative location of a markets matters: A,(r) = A,, p ( r )  = 

p and 8(r,  s )  = 8( 1) r - s 11). Here 11 r - s 1) is a symbol for the distance between regions 
r and s, e.g., in the contiguity sense of Paelinck (1982). By substitution and 
simplification, (12) and (12a) reduce to 

(13) 

where 

0 i p ( r )  I i = (1 . . . l), p ( r )  < 15i, 8(r, s )  2 0 and 6(r, s) = i 
r r 

q(r) = A o G l s ( r )  + c 6(11r - sll)CLq(s) + f(r) 
S 

A region r is an elemeilt of space. Space can remain an index set as in the world 
model or can now be structured, e.g., into the Euclidian plane. Both interpretations 
are consistent with the subsequent argument. 

We redefine export shares as a nonnegative vector distribution 8 across space. 
Of a one unit impulse of imports at the origin, region r supplies, heuristically, O(r). 
Since summing over r we must recapture the unit of imports, we assume f 8= i. 
Then the middle term on the right-hand side of (13) becomes, heuristically, 
6*bq(r). Dropping the arguments r we capture the basics of the world model in a 
nutshell 



116 JOURNAL OF REGIONAL SCIENCE, VOL. 24, NO. 1, 1984 

(14) q = A*q + f 
with 

(144 A = A,[i - p]6  + 83, 0 5 p < i, 0 2 0, and f d  = i 

Note that A 2 0 and f A  = A,,[i - p] t iji. As always, A, is assumed to fulfill the 
Hawkins-Simon conditions. It follows that /A is a convex combination of a matrix 
(A,,) with spectral radius less than one and a matrix ( 9 )  with spectral radius one 
where the weight of the latter (3) is strictly less than I. Intuitively, then, the 
spectral radius off A itself must. also be less than one. This fact can be established 
rigorously for A, indecomposable: then f A  is a convex combination of two 
nonnegative and indecomposable matrices and, consequently, it is nonnegative 
and indecomposable. By Froebenius' theorem, p( fA)  = X with (JA)x = Ax for 
some positive x s s t i t u t i n g  j A  = A,[] - p] + IF = I - (I - A,); - p we obtain 
x - (I - A,)[i - p]x = Ax, (1 - Xlx = (I - A,)[-x or (1 - A)  [i - p]  
(I - A,)-' x = x. Since x is positive, 1 -- X is nonzero and we may divide through 
(I - A,) '[i - p]-'x = (1 - A) 'x. Since (I - A,,) ' = XGAt 2 I, -1 > 0 and 
x > 0, the left-hand side is posil,ive. Thus the right-hand side is positive and since 
x > 0, (1 - A) > 0. Consequently, 1 - X > 0 or p(JA) < 1. A more general proof, 
without an appeal to indecomposability, would be more closely along the intuitive 
line which led to the statement on A or complete by a limiting argument. The 
result means that /A fulfills the Hawkins-Simon conditions. 

We thus have proved that the Hawkins-Simon conditions on a local scale (A,) 
carry over to the global operator (A); this enables us to apply the existence and 
regularity propositions as extended for the vector case. By Proposition 1, the 
solution q of (14) is given by (11), and q is as regular as f in the sense of 
Propositions 2 and 3. 

8. CONCLUSION 
A new method for spatial economic analysis consists of four steps. First, 

standard, nonspatial models are taken as points of departure. Second, structures 
and activities are no longer considered point scalars or vectors, but distributions 
over space. Third, the ordinary product is replaced by the convolution product. 
Fourth, the consequent spatialized models are subjected to the Schwartz calculus 
of distributions. 

The approach offers a unifying framework for spatial economic models as 
varied as the spatial Keynesian model, the expenditure diffusion model of Paelinck 
(1982), the spatial equilibrium model of urban density of Beckmann (1977), and 
the United Nations world model of Leontief, Carter, and Petri (1977). 

The application of the theory of distributions of Schwartz (1957) seems 
promising for economic science. Our analysis of the various spatial economic 
models features the following results: 

1. uncovering of the distribution structure; the transmission of mathematical 
properties from the exogenous to the endogenous variables; 

2. description of the spatial pattern of expenditure diffusion; 
3. determination of two-dimensional urban density; and 

e 
n 

- - 
- 
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4. a concise account and analysis of the United Nations world model and some 
extensions. 
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