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SPATIAL INTERACTION ANALYSIS* 

Thijs ten Raat 

This paper formulates equilibrium problems of spatial interaction theory 
without appealing to vector force fields at all, and determines equilibrium densities 
for non-Newtonian distance response functions. The first section reviews Amson’s 
“plasma” model which is considered a general paradigm in the field. Here “species” 
are subject to local repulsion and global attraction effects. In equilibrium these 
effects are balanced. 

Section 2 replaces Amson’s mechanical equilibrium notion by a more utilitar- 
ian one. Section 3 analyzes equilibrium for general interaction functions, including 
exponential ones. In view of Smith’s “cost-efficiency” principle of spatial interac- 
tion behavior, this extension fills a gap. In Section 4, an application of the general 
analysis contributes to the modality issue for equilibrium densities. Conclusions 
are summed up in the last section. 

1. SPATIAL INTERACTION THEORY: DIGRESSION 
Spatial interaction theory concerns the interplay between global attraction 

effects and local repulsion effects. Smith (1976, p. 97) identifies Amson’s plasma 
model as a general paradigm that unifies a remarkable number of spatial theories 
(urban economics, traffic engineering, sociology of social and ethnic groups, to 
mention a few). A plasma is a system of gravitational species subject to self- 
attractions and to mutual attractions, and also to local pressure forces which 
depend on the local densities of the species [Amson (1972, p. 430)]. Definitions 2 
and 3 of Amson (1972, p. 431-432) comprise a formal description. They are 
recapitulated here in reduced form and without subscripts, or, more precisely, for 
the single species-single pressure case. While reflecting my distaste for subscripts, 
this simplification does not infringe upon the generality of the argument. 

Definition (Amson): An abstract city is a system (7, iz, d’, s) where T is a civic 
mass density on civic space R2 (the Euclidian plane), k is a coercion strength 
coefficient, d’ is a distance response function, and s is a state function which 
associates satisfaction pressure with local density. 

Definition (Amson): The civic coercion experienced by the species at the point 
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In equilibrium civic coercion in response to all y (summed over the plane) is 
balanced by the negative gradient of the satisfaction pressure jl c ( x , y )  dy = 

-grad S [ T ( X ) ] .  Let me explain the definitions. c ( x ,  y )  is an interaction vector for the 
body of species at  x in response to the same at  y, so that Jj c ( x ,  y) dy is, typically, a 
total attraction vector at  x. A typical dissatisfaction pressure, -s,  is total rent. In 
equilibrium, the attraction vector is equal to the rent gradient. Note that if we 
divide through by ~ ( x )  we obtain the per capita attraction vector and satisfaction 
pressure. Thus, the equilibrium condition is that the per capita attraction vector is 
equal to the per capita rent gradient. Any individual is subject to global attraction 
and local pressure. The former is a positive force and the latter a negative one. In 
equilibrium they cancel out. Per capita rent density is typically an increasing 
function of civic density, such as -s/r = KrY-l with rental constant K > 0 and 
rental exponent y > 1. This agrees with Equation (7) of Amson (1972, p. 437-438) 
except for the minus sign. [Initially, Amson (1972, p. 433) correctly identifies 
housing rental as a dissatisfaction level, but gradually Amson (1972, pp. 433 and 
437) begins to wrongly call it a satisfaction pressure.] 

Following Amson (1972,1973), this preliminary investigation focuses on y = 2. 
This is the case in which the per capita dissatisfaction pressure is a linear function 
of civic density, a good first-order approximation. The distance response function 
serves as a kernel in the interaction term of the equilibrium equation. Amson 
(1972, p. 434) observes that most gravity models use an inverse power kernel 
d’(lly - xl l )  = IIy - x I I  --(I (a > 0) having a pole wherever y = x, while others use an 
exponential decay kernel d+( IIy - X I / )  = A exp( -plly - X I / ) .  

Although Amson is aware of the theoretical superiority of the exponential 
function in the sense of Wilson (1970, pp. 16-19), he assumes an inverse power 
form with exponent a = 1 in order to exploit Newtonian potential theory. This 
focus is natural in light of the state of affairs in attraction theory, including the 
foundation of Wilson’s theory, at the time. However, Smith (1978) provided a 
strong behavioral foundation for the exponential interaction kernel, the so-called 
cost-efficiency principle. In view of this, it is now pressing to develop an equilib- 
rium analysis that can handle non-Newtonian interaction kernels. This paper 
seeks to initiate such a line of research. 

2. EQUILIBRIUM 
Essentially, Amson transforms coercion strength and distance response, as 

well as pressure, into forces-namely, the attraction vectors and the satisfaction 
gradient, which subsequently are required to cancel out in a vectorial sense. This is 
an extremely dubious notion of spatial interaction equilibrium. As Amson (1972, p. 
434) himself notes, 

for example, it seems very unlikely that a citizen, say, exposed to two simultaneous coercions 
to relocate in two different directions, will in fact relocate in a direction determined by an 
application of the “parallelogram law of resultant forces” from mechanics. From probabilis- 
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tic considerations alone, such a citizen is much more likely to accept relocation in the 
direction of the stronger of the two competing coercions. But however difficult this feature 
of the vector additivity of coercions is to accommodate within a general study of urban 
systems, it presents no serious obstacle in the restricted study of models of urban systems 
possessing circular symmetry. AH that is then required is a postulate of a “principle of 
symmetry”: (1) all civic coercions that arise through the circularly symmetric distribution of 
civic matter act in a radial direction (being calculated as if the vector law of addition were 
applicable to coercions), and (2) the resultant of any two co-radial coercions is their vector 
sum. 

Unfortunately, the “principle of symmetry,” part (2) in particular, is still dubious, 
as I shall discuss first. Then, more significantly, I shall show how an appropriate 
revision of the spatial interaction equilibrium definition avoids vectorial force 
addition entirely. 

Consider a civic point mass in the origin and a civic line mass uniformly 
distributed over the unit circle. Consider the resultant coercion at a point in 
between, say (0,lh). By symmetry considerations, the unit circle may be repre- 
sented by a single point on the axis through (0, I/?), and, by appropriate choice of 
mass, this point may be located in either the origin, or (0, lh) itself, or (0,l). (These 
cases correspond to a < 1, a = 1, or a > 1 when the distance response function has 
inverse power form; see the previous section.) The latter case is the most 
interesting, as it holds for exponential decay interaction kernels. The mass in (0 , l )  
depends on the parameters in the interaction kernel and the original circular 
distributed mass, but is set equal to unity by choice of that original mass. 

Now we have an abstract city meeting Amson’s restriction of circular symme- 
try, represented by two unit point masses, one in the origin and one in (0, 1). 
Species a t  the point under consideration, (0, %), experience two equal civic 
coercions in opposite directions. By Amson’s definition, abstracting from satisfac- 
tion pressure, they are in equilibrium. Now this may be true for physical particles, 
but, in my opinion, not for civic species. When a civic species feels attracted by two 
points which lie in opposite directions, it does not remain undecided, but flips a 
coin and will move either to the left or to the right attractor. While Amson 
postulates that such species will remain at  rest, I claim it will divide up and move to 
the left and right. An example will illustrate the issue at  hand. 

During the last decade much public effort has been made in the creation of a 
port in the Dutch province of Groningen. Proponents such as Professor Pen of the 
University of Groningen are now puzzled that the finished port attracts no 
investment, arguing that the location of the port is ideal: just half-way between the 
industrial centers of Rotterdam and Hamburg. Indeed, Amson’s equilibrium 
theory would predict equilibrium civic species at  the Groningen port, balanced by 
the Rotterdam and Hamburg coercions. Nonetheless, the port is now a good fishing 
pond at  best. Why? Because firms do not care about attraction vectors, let alone 
their cancelling out. They are interested in attraction levels, and those levels are 
higher in Rotterdam or Hamburg. Therefore, firms would rather invest in 
Rotterdam and Hamburg themselves. Moral: Drop the transformation into attrac- 
tion vectors and pressure gradients, and stick with coercion and pressure levels 
themselves. Then the per capita levels of attraction and satisfaction pressure 
should not cancel but add to a constant across space in equilibrium, in order not to 
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induce individual species to relocate to a place with a higher perceived utility 
level. 

To see the formalities of the revision, recall Amson’s equilibrium equation 
JJ k~(x)7Cy)d+(lly - X I ] )  [y - x//ly - x(l]ds  + grad S [ T ( X ) ]  = 0. We drop the 
vector operators y - x/lly - x 11 and grad, and after division through by 7 ( x )  we let 
them add to uo: JJ k ~ ( y ) d + ( l ( y  - xll)dy + s [ ~ ( x ) ] / T ( x )  = uo. The latter revision 
seems appropriate for spatial interaction modeling, since it retains attraction and 
satisfaction pressure levels, now considered utility components, without analogy to 
the mechanical law of resultant forces. 

Invoking Amson’s functional pressure form as discussed in Section 1, -s/7 = 

K:-’, the equilibrium equation becomes, dividing through by the rental constant 
K,  JJ (k/K) d’ (IIy - x)))~(y) d y  - 7 ( x )  = uo/K. In sum, this equation is essentially 
Amson’s “plasma balance,” stripped of vectorial forces, featuring his functional 
pressure form but not his Newtonian distance response function. Instead, the 
model remains general with respect to the interaction kernel. 

3. ANALYSIS 
The spatial interaction equilibrium equation just derived happens to be 

another instance of the fundamental Equation (1’) of my recent paper [ten Raa 
1984)j. Therefore, we can solve for the equilibrium density 7 by inverting the 
interaction kernel in the sense of Proposition 1 of that paper. This procedure is a 
departure from established practice as exemplified by Amson (1972, 1976) and 
Beckmann (1977). 

First, Amson (1972, p. 437) and Beckmann (1977, p. 129) differentiate through 
to arrive at differential equations which, however, are generally unsolvable, while 
the direct inversion works. More precisely, Amson (1976, p. 104) and Beckmann 
(1977, p. 129) can solve for equilibrium only in singular cases, while the solution 
presented below holds for regular cases, in parameter space. Second, the present 
approach is valid irrespective of the functional form of the interaction kernel. 
Third, civic space need no longer be circular symmetric [see ten Raa (1984)l. 

The only assumption of Proposition 1 of ten Raa (1984) is that the total mass 
of the whole kernel is less than one: 0 (k/K) d+ (.) < 1. For example, if d+ is the 

exponential decay kernel (see Section l), the condition is JJ ( k / K ) A  
exp (-pr)rdrd$ < 1, using polar coordinates; 0 s r < co and 0 5 $ < 27r. Simple 
evaluation yields 27rkAP-’ < K. Since kA and p-’ are parameters which put weight 
on the global interaction effect, while K puts weight on the local repulsion effect, 
the condition is that the local pressure effect must outweigh the global interaction 
effect. Then the solution is as in Proposition 1 of ten Raa (1984) with its a = 

( k / K )  d’ and x = -uJK,  and its properties are discussed there. Otherwise, the 
abstract city is torn apart by the global effects and zones of negative density 
emerge. Amson (1976, p. 99) provides an interpretation for such a phenomenon. To 
avoid heavy mathematics this paper restricts itself to the above implicit presenta- 
tion of the equilibrium density 7 .  
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4. UNIMODALITY 
Tony Smith has told me that the modality of equilibrium densities in social 

interaction theory is an open issue. This can be dealt with now for the case under 
consideration, y = 2. The equilibrium density is given by Proposition 1 of ten Raa 
(1984) which is, in fact, a sum of so-called convolution products of the interaction 
kernel with itself, a t  least under the condition of the previous section. The 
interaction kernel itself, i.e., the distance response function, is always assumed to 
be unimodd-weakly decreasing in distance. But Proposition 4 of ten Raa (1984) 
proves that this property is preserved under the convolution products, and its 
corollary is that the sum of those convolution products is also unimodal. Therefore, 
if the total mass of the whole interaction kernel is less than one, as in the previous 
section, then the equilibrium civic mass is unimodal. Note that this result has been 
derived under the condition y = 2 in which the per capita dissatisfaction pressure is 
a linear function of civic density. The modality issue for the nonlinear case remains 
open. 

5. CONCLUSIONS 
(a) Equilibrium for Amson’s plasma system can be formulated without 

recourse to the mathematical law of resultant forces. 
(b) Equilibrium densities can be determined for spatial interaction models 

with non-Newtonian distance response functions, such as the exponential decay 
kernel whose theoretical superiority has recently been demonstrated by Smith. 

(c) The solution is unimodal when per capita local repulsion is a linear 
function of density. 
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