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Abstract

We define an extensive-form analogue of iterated admissibility, called Prudent
Rationalizability (PR). In each round of the procedure, for each information set
of a player a surviving strategy of hers is required to be rational vis-a-vis a belief
system with a full-support belief on the opponents’ previously surviving strategies
that reach that information set. Somewhat surprisingly, prudent rationalizable
strategies may not refine the set of Extensive-Form Rationalizable (EFR) strategies
(Pearce 1984). However, we prove that the paths induced by PR strategy-profiles
(weakly) refine the set of paths induced by EFR strategies.

PR applies also to generalized extensive-form games which model mutual un-
awareness of actions (Heifetz, Meier and Schipper, 2011a). We demonstrate the
applicability of PR in the analysis of verifiable communication, and show that it
yields the same, full information unraveling prediction as does the unique sequen-
tial equilibrium singled out by Milgrom and Roberts (1986); yet, we also show that
under unawareness full unraveling might fail.
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1 Introduction

In normal-form games, iterated admissibility (IA) is a refinement of rationalizability. In

the latter solution concept, at every round of elimination a player’s strategy survives

only if it is a best-reply to some belief over the opponents’ strategies which survived

the previous rounds, while in the former a strategy survives only if it is a best reply

to such a full-support belief, which doesn’t completely exclude any strategy of the other

players that has not been thus far eliminated. In this paper we investigate the connection

between the counterparts of these two notions in dynamic games.

The prominent analogue for rationalizability in dynamic games is Extensive-Form Ra-

tionalizability (EFR) (Pearce, 1984, Battigalli, 1997). EFR is particularly interesting be-

cause it may be used to refine the notion of sequential equilibrium (Pearce, 1984). More-

over, in generic perfect-information games EFR induces the unique backward-induction

path (Reny, 1992, Battigalli, 1997, Robles, 2006, Perea, forthcoming), even though the

EFR strategies may be distinct from the backward-induction strategies (Reny, 1992).

EFR is a notion that captures forward induction: at every information set, the active

player looks for a best rationalization for the way this information set has been reached (in

terms of her opponents’ rationality, their belief in their opponents’ rationality etc.), and

replies optimally to a belief on these best-rationalizable strategies. In this paper we define

Prudent Rationalizability (PR) in a likewise fashion by additionally requiring this belief

to have full-support on the opponents’ (recursively defined) prudently-best-rationalizable

strategies. In Theorem 1 we prove that PR strategies exist in every dynamic game,

including generalized extensive-form games (Heifetz, Meier and Schipper 2011a) which

allow for the modeling of mutual unawareness of actions.

In normal-form games every IA strategy is also rationalizable. Somewhat surprisingly,

we show that a similar inclusion does not obtain in dynamic games: in Section 4 we

bring an example of a game in which a player’s PR strategies is not a subset of her

EFR strategies but is rather disjoint from it. Nevertheless, in Theorem 2 we prove that

inclusion does obtain in terms of outcomes : The set of paths induced by PR strategy

profiles is always contained in the set of paths induced by EFR strategy profiles.

In Section 5 we exemplify the attractiveness of PR in the Milgrom-Roberts (1986)

model of verifiable communication. They proved that the model has a unique sequential

equilibrium, and that in this unique equilibrium all the asymmetric information gets

unraveled. We show that prudent rationalizability is sufficient to entail the same result
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– the unique sequential equilibrium outcome is also the unique PR outcome.

Full unraveling of information is somewhat unrealistic, though. In Section 6 we show

that when unawareness is introduced into the model, PR need not necessarily entail

full information unraveling. We also analyze a sender-receiver game with unawareness

introduced by Ozbay (2007), and show that PR delivers the same prediction as does his

equilibrium notion which incorporates forward-induction reasoning.

These two applications demonstrate the attractiveness of PR in dynamic games with

unawareness. Indeed, in many games with unawareness PR rules out implausible EFR

strategies, with which a player makes an opponent aware of an action which the player

would actually like the opponent to avoid, just because the player has a firm belief that

the opponent wouldn’t take it (even if the opponent is indifferent between the revealed

action and another one, of which she was aware also before); PR rules out such imprudent

behavior.

PR is equivalent to iterated admissibility on the tree as defined by Brandenburger and

Friedenberg (2007). Iterated admissibility on the tree is analogous to iterated dominance

conditional on normal-form information sets à la Shimoji and Watson (1994), in which

strict dominance is replaced by weak dominance. Brandenburger and Friedenberg (2007)

show that iterated admissibility on the tree is equivalent to IA of the strategic form of

the game. IA does not require conditioning on normal-form information sets. In Heifetz,

Meier and Schipper (2011b) we show, however, that such an analogous equivalence for

dynamic games with unawareness still requires normal-form information sets since they

encode also the awareness of players.

Some readers may be interested in PR independently of unawareness, and to this

effect we first introduce the concept in Sections 2 and 3 within standard finite extensive-

form games with perfect recall, finite horizon, and possibly simultaneous moves. In this

standard setting we also demonstrate some of the refining power of prudent rational-

izability in Sections 4 and 5. In Section 5, we apply prudent rationalizability to the

Milgrom-Roberts (1986) communication game. Only in Section 6 do we introduce gener-

alized extensive-form games that allow for unawareness and develop the general results

on prudent rationalizability.
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2 Extensive-form Games

We consider finite extensive-form games with finite horizon, perfect recall and possibly

simultaneous moves (for standard properties see Dubey and Kaneko, 1984, and Osborne

and Rubinstein, 1994). To fix notation, denote by I the finite set of players, by N the

finite set of decision nodes, by In the active players at node n, by Ai
n the finite action set

of player i ∈ In (for n ∈ N), by C the chance nodes, and by Z the terminal nodes with

a payoff vector (pz
i )i∈I ∈ RI for the players for every z ∈ Z. The nodes N̄ = N ∪ C ∪ Z

shall constitute a tree. We denote by Ni the set of nodes in which player i ∈ I is active.

The information set of player i at node n is denoted by πi(n). Let Hi be the set of i’s

information sets. For two information sets hi, h
′
i, we say that hi precedes h′i (or that h′i

succeeds hi) if for every n′ ∈ h′i there is a path n, ..., n′ such that n ∈ hi. We denote

it by hi  h′i. Standard properties on information sets imply that if n′, n′′ ∈ hi then

Ai
n′ = Ai

n′′ . Thus, if n ∈ hi we write also Ahi
for Ai

n.

A (pure) strategy

si ∈ Si ≡
∏

hi∈Hi

Ahi

for player i specifies an action of player i at each of her information sets hi ∈ Hi. Denote

by

S =
∏
j∈I

Sj

the set of strategy profiles in the game.

If si = (ahi
)hi∈Hi

∈ Si, we denote by

si (hi) = ahi

the player’s action at the information set hi. If player i is active at node n, we say that

at node n the strategy prescribes to her the action si (πi (n)).

We say that a strategy profile s ∈ S reaches the information set hi ∈ Hi if the players’

actions and nature’s moves (if there are any) lead to hi with a positive probability. We

say that the strategy si ∈ Si reaches the information set hi if there is a strategy profile

s−i ∈ S−i of the other players such that the strategy profile (si, s−i) reaches hi. Otherwise,

we say that the information set hi is excluded by the strategy si. Similarly, we say that

the strategy profile s−i ∈ S−i reaches the information set hi if there exists a strategy

si ∈ Si such that the strategy profile (si, s−i) reaches hi. A strategy profile (sj)j∈I
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reaches a node n if the players’ actions sj (πj (n′))j∈I and nature’s moves in the nodes n′

lead to n with a positive probability. Since we consider only finite trees, (sj)j∈I reaches

an information set hi ∈ Hi if and if there is a node n ∈ hi such that (sj)j∈I reaches n.

For an information set hi, let si/s̃
hi
i denote the strategy that is obtained by replacing

actions prescribed by si at the information set hi and its successors by actions prescribed

by s̃i. The strategy si/s̃
hi
i is called an hi-replacement of si.

The set of behavioral strategies is ∏
hi∈Hi

∆ (Ahi
) .

3 Prudent Rationalizability

A belief system of player i

bi = (bi (hi))hi∈Hi
∈
∏

hi∈Hi

∆ (S−i)

is a profile of beliefs - a belief bi (hi) ∈ ∆ (S−i) on the other players’ strategies, for each

information set hi ∈ Hi , with the following properties

• bi (hi) reaches hi, i.e. bi (hi) assigns probability 1 to the set of strategy profiles of

the other players that reach hi.

• If hi precedes h′i (hi  h′i) then bi (h′i) is derived from bi (hi) by Bayes rule whenever

possible.

Denote by Bi the set of player i’s belief systems.

For a belief system bi ∈ Bi, a strategy si ∈ Si and an information set hi ∈ Hi, define

player i’s expected payoff at hi to be the expected payoff for player i given bi (hi), the

actions prescribed by si at hi and its successors, and conditional on the fact that hi has

been reached.1

1Even if this condition is counterfactual due to the fact that the strategy si does not reach hi. The
conditioning is thus on the event that nature’s moves, if there are any, have led to the information set
hi, and assuming that player i’s past actions (in the information sets preceding hi) have led to hi even
if these actions are distinct than those prescribed by si.
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We say that with the belief system bi and the strategy si player i is rational at the

information set hi ∈ Hi if there exists no action a′hi
∈ Ahi

such that only replacing the

action si (hi) by a′hi
results in a new strategy s′i which yields player i a higher expected

payoff at hi given the belief bi (hi) on the other players’ strategies S−i.

Definition 1 (Prudent rationalizability) Let

S̄0
i = Si

For k ≥ 1 define inductively

B̄k
i =

bi ∈ Bi :

for every information set hi, if there exists some profile

s−i ∈ S̄k−1
−i =

∏
j 6=i S̄

k−1
j of the other players’ strategies

such that s−i reaches hi, then the support

of bi (hi) is the set of strategy profiles s−i ∈ S̄k−1
−i that reach hi



S̄k
i =

{
si ∈ S̄k−1

i :
there exists bi ∈ B̄k

i such that for all hi ∈ Hi player i

is rational at hi

}
The set of prudent rationalizable strategies of player i is

S̄∞i =
∞⋂

k=1

S̄k
i

At each level each player and each information set of the player, she forms full support

beliefs over the opponents’ strategies remaining from the previous level and reaching this

information set. The player retains any of her previous level strategies for which there

exists such a belief such that the strategy is rational at all information sets.

Theorem 1 below implies that every player’s set of prudent rationalizable strategies

is non-empty.
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4 Extensive-Form Rationalizability versus Prudent

Rationalizability

4.1 Extensive-Form Rationalizability

Pearce (1984) defined extensive-form (correlated) rationalizable strategies by a procedure

of an iterative elimination of strategies. The inductive definition below is essentially the

version in Battigalli (1997).2

Definition 2 (Extensive-form rationalizable strategies) Define, inductively, the fol-

lowing sequence of belief systems and strategies of player i.

B1
i = Bi

S1
i = {si ∈ Si: there exists a belief system bi ∈ B1

i with which for every information set

hi ∈ Hi player i is rational at hi}
...

Bk
i = {bi ∈ Bk−1

i : for every information set hi, if there exists some profile of the other

players’ strategies s−i ∈ Sk−1
−i =

∏
j 6=i S

k−1
j such that s−i reaches hi, then bi (hi) assigns

probability 1 to Sk−1
−i }

Sk
i = {si ∈ Si: there exists a belief system bi ∈ Bk

i with which for every information set

hi ∈ Hi player i is rational at hi}

The set of player i’s extensive-form rationalizable strategies is

S∞i =
∞⋂

k=1

Sk
i .

The set of extensive-form rationalizable strategies (Pearce 1984, Battigalli 1997) is

nonempty.

2Battigalli’s (1997) definition differs from Pearce’s (1984) in at least two respects. First, Battigalli
allows for correlated beliefs over opponents’ strategies. Second, Battigalli’s definition defines a procedure
of an iterative elimination of beliefs. This allows for a more intuitive interpretation as a reasoning
procedure. Nevertheless, Battigalli shows that when one allows for correlation in Pearce’s original
definition, then both procedures are equivalent. Definition 2 differs in one respect from Battigalli (1997)
as he uses optimization over replacements of strategies whereas we optimize over actions. See Heifetz,
Meier and Schipper (2011b) for further discussions and results.
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Some normal-form games have Nash equilibria in weakly dominated strategies. Simi-

larly, the game in Figure 1.3 is an example of a perfect-information extensive-form game

with a subgame-perfect equilibrium involving a strategy which is EFR but not PR. To

wit, this is the subgame-perfect equilibrium (af, dg). The strategy af is EFR for player

1 – it is supported by the belief system which starts at the root with the belief that

player 2 will play dg, revised completely at 1’s second decision node by the belief that

2 is playing cg; the strategy dg is EFR for player 2 with the belief system with which

player 2 is initially certain that 1 is playing af , revised completely at 2’s second decision

node to the belief that 1 played ac. However, af is rational for player 1 at the root for

no full-support belief on 2’s entire strategy set {dg, dh, cg, ch}, and hence af is not PR.

Figure 1:

1
a b

2
a b

c d 10 5
1

2
e f

10, 5

10 102
g h

10, 10

5, ‐10,

20, 200, 20

4.2 PR refines EFR outcomes, but not EFR strategies

In normal-form games, iterated admissibility is a refinement of rationalizability. Some-

what surprisingly, in extensive-form games prudent rationalizability is not a refinement

of extensive-form rationalizability, as the following example (Figure 2) demonstrates.

Figure 2:

I

a b c

II6 6 II6, 6

d     e          f      d       e          f
0 05 5 6 610 03 4 4 3 0, 05, 5 6, 610, 03, 4 4, 3

3This example is from recent of work by one of the authors with Ronen Gradwohl.
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In this example, player 1 can guarantee herself the payoff 6 by choosing a and ending

the game. If player 2 is called to play, should he believe that player 1 chose b or c? If

player 1 is certain that player 2 is rational, she is certain that player 2 will not choose f .

Hence, if player 2 is certain that player 1 is certain that he (player 2) is rational, then at

his information set player 2 is certain that player 1 chose c. The reason is that among

player 1’s actions leading to 2’s information set, c is the only action which, assuming

2 believes c was chosen and that 2 is rational and will hence choose e, yields player 1

the payoff 6, which is just as high as the payoff she could guarantee herself with the

outside option a. Hence (a, e) and (c, e) are the profiles of extensive-form (correlated)

rationalizable strategies (as well as extensive-form rationalizable strategies) in this game.

The notion of prudence, in contrast, embodies the idea that being prudently rational,

player 1 shouldn’t rule out completely any of 2’s possible choices, and hence that c is

strictly inferior for player 1 relative to her outside option a. Hence, if 2’s information set

is ever reached, the only way for 2 to rationalize this is to believe that 1 chose b, based on

a belief ascribing a high probability to the event that 2 will foolishly choose f. Player 2’s

best reply to b is d; and player 1’s best reply to d is a. Thus, the only profile of prudent

rationalizable strategies in this game is (a, d).

This example demonstrates that in dynamic interactions the notions of rationalization

and prudence might involve a tension. Extensive-form rationalizability embodies a best-

rationalization principle (Battigalli 1997, Battigalli and Siniscalchi 2002); it is driven by

the assumption that in each of his information sets, a player assesses the other players’

future behavior by attributing to them the ‘highest’ level of rationality and mutual cer-

tainty of rationality consistent with the fact that the information set has indeed been

reached. But, with the additional criterion of ‘prudence’, what should a player believe

about the behavior of his opponent if, as in the example, the opponent’s only action

which is compatible with common certainty of rationality is imprudent on the part of the

opponent?

The definition of prudent rationalizability resolves this tension unequivocally in fa-

vor of the prudence consideration. It remains open whether and how a more balanced

and elaborate definition could resolve the tension in less an extreme fashion. We plan

to address this challenge in future work. However, any definition would have to cut

the Gordian knot in the above example in one particular way, choosing either d or e,

and indeed both potential resolutions are backed by sensible intuitions. This suggests

that for dynamic interactions we need not necessarily expect one ultimate definition of
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rationalizability taking into account both rationalization and prudence.

Remark 1 The definition of prudent rationalizability employs extensive-form rational-

ity. For standard extensive-form games, Brandenburger and Friedenberg (2007) studied

the connection between extensive-form iteratively admissible strategies (defined on the

basis of rationality rather than extensive-form rationality) and extensive-form rational-

izability. They showed that under a “no relevant convexities” condition, extensive-form

rationalizability and extensive-form iterated admissibility coincide. However, the exam-

ple in Figure 2 does not satisfy this condition, and hence demonstrates that in general

extensive-form iterated admissibility is not a refinement of extensive-form rationalizabil-

ity.

Nevertheless, as far as paths of play are concerned, in the above example the set of

paths induced by prudent rationalizability (the path a) is a subset of the paths induced

by extensive-form rationalizability (the paths a and (c, e)). This is an instance of a

general phenomenon as we show in Theorem 2 below.

4.3 Forward Induction: the tension between EFR and PR

In Figure 2 we demonstrated the tension between the considerations of rationalization

and prudence when a player tries to divine his opponent’s past actions. A related but

distinct tension arises when a player tries to deduce the opponent’s future behavior from

past actions of that opponent. Consider the following example in Figure 3.

Figure 3:

I

out
in

II

m

10, 0

I

rm

10 5 0 0I

L R
10, 5 0, 0

10, 0 0, 10

In this example, in is imprudent for player 1 (since by going out she can guarantee

a payoff of 10, while by moving in she risks getting 0 if player 2 would rather foolishly

choose r). This means that if player 1 does move in and player 2 gets to play, no prudent
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strategy in S̄1
1 reaches 2’s information set. Hence, the beliefs B̄2

2 of player 2 about player

1’s future actions are not restricted. In particular, it contains beliefs by which if player

2 chooses m, player 1 will foolishly choose R (with a high probability). That’s why both

m and ` are prudent rationalizable for player 2.

However, it is not very sensible on the part of player 2 to believe that following m

player 1 may choose R. After all, when player 2 has to move, player 1 has already proved

to be imprudent, but not irrational. Indeed, player 1’s rationalizable (though imprudent)

strategy (in, L) yields her the payoff 10 in conjunction with 2’s only (extensive-form) ra-

tionalizable strategy `, as well as in conjunction with 2’s prudent rationalizable strategy

m; and this payoff is the same as the payoff player 1 gets from her only prudent ratio-

nalizable strategy (out, L).

Thus, as long as player 1 has been rational (even if imprudent) thus far, it makes more

sense for player 2 to believe that player 1 will continue to be rational (though possibly

imprudent) in the future. Restricting player 2’s beliefs according to this logic would cross

out the nonsensical choice m.

Already Pearce (1984) was well aware of this tension, which motivated his definition of

cautious extensive-form rationalizability. That definition involves refining the set of

rationalizable strategies by another round of strategy elimination with full support beliefs

about the other players’ surviving strategies; and then repeating this entire procedure –

the standard iterative elimination process as in the definition of rationalizability, followed

by one round assuming full-support beliefs –ad infinitum. In the above example, cautious

extensive-form rationalizability does indeed rule out the strategy m for player 2.

However, as Pearce (1984) himself admits, the definition of cautious extensive-form

rationalizability is not really satisfactory, as the following simple example of his shows.

Figure 4:

1

a b
2

5, 5 c d

0, 05, 5

In this example, the strategy d is irrational for player 2. Once d is crossed out, both

a and b are extensive-form rationalizable for player 1, and are actually also cautious
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extensive-form rationalizable. Notice that in contrast, b does get crossed out byprudent

rationalizability, and the only prudent rationalizable strategy for player 1 is a.

4.4 Discussion of the PR definition

Definition 2 of extensive-form rationalizable strategies involves, as in Battigalli (1997),

an iterative reduction procedure of belief systems (that is, by definition Bk
i ⊆ Bk−1

i ),

and this definition implies that strategies get iteratively eliminated (Sk
i ⊆ Sk−1

i ); and the

same is true also for extensive-form correlated rationalizable strategies – by definition

B̂k
i ⊆ B̂k−1

i and hence Ŝk
i ⊆ Ŝk−1

i . In contrast, the inductive definition of prudent ratio-

nalizable strategies involves an iterative elimination of strategies (that is, by definition

S̄k
i ⊆ S̄k−1

i , in analogy with the original formulation of Pearce (1984) for extensive-form

rationalizability by an iterative elimination procedure), but in the case of prudence it is

not generally the case that B̄k
i ⊆ B̄k−1

i . Indeed, when S̄k
−i ( S̄k−1

−i :

• If the set of strategy profiles in S̄k
−i reaching some information set hi ∈ Hi is a

proper, non-empty subset of the strategy profiles in S̄k−1
−i that reach hi, then the

support of each belief b̄k−1
i (hi) in each belief system b̄k−1

i ∈ B̄k−1
i is strictly larger

than the support of any belief b̄ki (hi) for b̄ki ∈ B̄k
i .

• For information sets hi not reached by S̄k
−i, there is no restriction (beyond Bayes

rule) on b̄ki (hi) for b̄ki ∈ B̄k
i . No such restriction is needed, because if we define

mk
hi

= max
{
m < k : there exists s−i ∈ S̄m

−i that reaches hi

}
then for sk

i ∈ S̄k
i the restrictions on i’s actions sk

i (hi) at hi were already determined

at stage mk
hi
, since by definition sk

i ∈ S̄k
i ⊆ S̄

mk
hi

i .

Is it nevertheless feasible to define prudent rationalizability via a reduction process of

belief systems? Asheim and Perea (2005) proposed to look at systems of conditional

lexicographic probabilities – belief systems in which each belief at an information

set is itself a lexicographic probability system (Blume, Brandenburger and Dekel

1991) about the other players’ strategy profiles. Using belief systems which are condi-

tional lexicographic probabilities we could, in the spirit of Stahl (1995), put forward an

equivalent definition of prudent rationalizable strategies involving an iterative reduction

procedure of belief systems rather than an iterative elimination procedure of strategies.
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In each round of the procedure, the surviving belief systems would be those in which at

each information set, ruled-out strategy profiles of the other players (i.e. strategy profiles

outside S̄
mk

hi
−i ) would be deemed infinitely less likely than the surviving strategy profiles,

but infinitely more likely than strategy profiles which had already been eliminated in

previous rounds. We leave the precise formulation of such an equivalent definition to

future work.

In their paper, Asheim and Perea (2005) proposed the notion of quasi-perfect ra-

tionalizability, which also involves the idea of cautious beliefs. Quasi-perfect rational-

izability is distinct from our notion of prudent rationalizability. The difference is that

with prudent rationalizability (as with extensive-form rationalizability), a player need

not believe that another player’s future behavior must be rationalizable to a higher order

than that exhibited by that other player in the past; in contrast, with the quasi-perfect

rationalizable strategies of Asheim and Perea (2005), a player should ascribe to her op-

ponent the highest possible level of rationality in the future even if this opponent has

already proved to be less rational in the past. That’s why quasi-perfect rationalizability

implies backward induction in generic perfect information games, while our prudent ra-

tionalizable strategies need not coincide with the backward induction strategies in such

games (though they do generically lead to the backward induction path – the argument

is the same as in Reny 1992 and Battigalli 1997, since in generic perfect information

games prudent rationalizability coincides with extensive-form rationalizability in terms

of realized paths).

5 An Application to Verifiable Information

In this section we provide an application of prudent rationalizability to the problem

of relying on information of interested parties, which was introduced by Milgrom and

Roberts (1986).

Consider a merchandise whose quality qi ∈ {q1, . . . , qn} is known to its seller, while

a buyer knows only the prior probability distribution (p1, . . . , pn) of the qualities, where

pi > 0 for all i = 1, . . . , n. For each quality level qi the seller is better off the larger the

quantity that she sells, while the utility of the buyer from the merchandise is strictly

concave in the quantity purchases with a single peak at β (qi). Furthermore,

β (q1) < · · · < β (qn) .
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Before sale takes place, the seller has the option of providing the buyer with a certified

signal about the quality of her merchandise, proving to the seller that the quality is within

some range {qmin, . . . , qmax} containing the actual quality qi.

Milgrom and Roberts (1986) proved that if the buyer’s utility is strictly concave then

there is a unique sequential equilibrium, in which when the quality is qi the seller certifies

to the buyer a range (possibly a singleton) {qmin, . . . , qmax} in which qmin = qi, while the

buyer is skeptical and always buys β (qmin). Thus, in this unique sequential equilibrium

the quality qi is fully revealed to the seller, who buys the optimal quantity β (qi) for him.

We proceed with the caveat that the quantities which can be demanded by the buyer

belong to a finite, fine grid (recall that, formally, in our formulation each player has finitely

many available actions in each information set). For simplicity, we assume further that

the quantities β (qi) , i = 1, . . . , n belong to this grid. For 1 ≤ m < n we denote by

[β (qm) , β (qn)] the set of quantities in this grid at least as large as β (qm) and no larger

than β (qn).

Proposition 1 The strategy to buy β (qmin) when confronted with the certification that

the quality is in the range {qmin, . . . , qmax} is also the unique prudent rationalizable strat-

egy for the buyer, and certifying some range {qmin, . . . , qmax} in which qmin = qi constitute

the prudent rationalizable strategies of the seller.

Thus, any profile of prudent rationalizable strategies in this game yields the full rev-

elation outcome indicated by Milgrom and Roberts (1986).

Proof of Proposition 1. When the buyer is confronted with the certificate {qn}, his

unique level-1 (prudent) rationalizable action is to buy β (qn), while when he is confronted

with some range {qm, . . . , qn} all the quantities in the interval [β (qm) , β (qn)] are level-

1 (prudent) rationalizable (because any posterior belief of the buyer about the qualities

with support {qm, . . . , qn} can be derived from a belief of the buyer that the seller provides

the certificate {qm, . . . , qn} with an appropriate probability ri when the seller knows that

the quality is qi ∈ {qm, . . . , qn}.) Consequently, the only level-2 prudent rationalizable

strategies of the seller are those in which she provides the certificate {qn} when the quality

is qn (because any other certificate that she can provide {qm, . . . , qn} will yield an expected

sale strictly smaller than β (qn) with a full support belief about the level-1 prudent

rationalizable strategies of the buyer, that have actions in the range [β (qm) , β (qn)]).

Assume, inductively, that we have already proved that in all the level-(2k − 1) prudent

14



rationalizable strategies of the buyer, for every i = 0, . . . , k − 1 he buys the quantity

β (qn−i) when confronted with a certificate of the form {qn−i, . . . , q`}, and that in all

the level-2k prudent rationalizable strategies of the seller she indeed provides such a

certificate when the quality is qn−i. Then in all the level-(2k + 1) (prudent) rationalizable

strategies of the buyer he buys the quantity β (qn−k) when confronted with a certificate

of the form {qn−k, . . . , q`} (because he believes that such a certificate could only be

presented to him with the quality qn−k, as by the induction hypothesis with each higher

quality all the level-2k prudent rationalizable strategies of the seller present a certificate

where that higher value is the minimal value). Furthermore, when confronted with some

range {qm, . . . , qn−k, . . . , q`} all the quantities in the interval [β (qm) , β (qn−k)] are level-

(2k + 1) (prudent) rationalizable (because any posterior belief of the buyer about the

qualities with support {qm, . . . , qn−k} can be derived from a belief of the buyer on the

level-2k prudent rationalizable strategies of the seller in which the seller provides the

certificate {qm, . . . , q`} with an appropriate probability ri when the seller knows that the

quality is qi ∈ {qm, . . . , qn−k}.)

Consequently, in all the level-(2k + 2) prudent rationalizable strategies of the seller

she provides the certificate {qn−k, ..., q`} when the quality is qn−k (because any other

certificate that she can provide {qm, . . . , qn−k, . . . , q`} will yield an expected sale strictly

smaller than β (qn−k) with a full support belief about the level-(2k + 1) prudent ratio-

nalizable strategies of the buyer, that have actions in the range [β (qm) , β (qn−k)]).

Hence, the inductive claim obtains in particular for k = n − 1, concluding what we

wanted to prove. �

In fact, it is not difficult to see that the above argument does not depend on the

assumption that the available certificates consist of ranges of qualities (containing the

true quality). For the argument to hold it is enough to assume that for each quality level

qi one of the available certificates is the fully revealing certificate {qi}.

Note that the result would not obtain when we employ extensive-form rationalizability

rather than prudent rationalizability. The reason is that when the buyer is presented with

a certificate {qm, . . . , qn}, then the buyer could optimistically believe that the seller’s

quality is qn and buy a larger quantity than with a prudent full support belief.

15



6 The refining power of prudent rationalizability in

generalized extensive-form games with unaware-

ness

We now present two examples demonstrating the refining power of prudent rationalizabil-

ity. The first example was originally analyzed (for the full awareness case) by Milgrom

and Roberts (1986) using sequential equilibrium and in Section 5 using prudent rational-

izability. A second example is due to Ozbay (2007). We will also show a general result

on existence and the refinement power of prudent rationalizability.

Unawareness and mutual unawareness is modeled in a generalized extensive-form

game by a family T of trees (see Heifetz, Meier and Schipper 2011a for the formal

definition and properties). Each tree T ∈ T represents a subjective view of a player (or

a subjective view of a player about another player’s subjective view, etc.) of the feasible

paths; one of the trees represents the modeler’s ‘objective’ view. The set of nodes that

a player i ∈ I considers as possible at a node n of a tree T ∈ T – her information

set hi = πi (n) there – may be a subset of nodes of a different tree T ′ ∈ T, in case T ′

represents the set of feasible paths of which player i is aware at the node n. (In such

case we write T � T ′, and we denote by ↪→ the transitive closure of �). As the game

proceeds, each player’s view of the game may evolve, and the trees T ′ in which in the

information sets are contained may be different at distinct nodes along a path. The

players have perfect recall, and remember their past views and information sets as well

as their respective chosen actions.

Player i’s strategy si ∈ Si defines her choice of action si (hi) ∈ Ahi
for all of her

information sets hi ∈ Hi in all trees T ∈ T. In particular, si (πi (n)) defines i’s action at

the node n ∈ T even when πi (n) is a subset of a different tree T ′ ∈ T. Thus, a profile of

strategies s = (si) defines a path in every tree T ∈ T. Denote by Thi
the tree containing

the information set hi.

For every tree T ∈ T, the T -partial game is the partially ordered set of trees including

T and all trees T ′ satisfying T ↪→ T ′. A T -partial game is a generalized game by itself.

We denote by HT
i the set of i’s information sets in the T -partial game. We denote by

sT
i the strategy in the T -partial game induced by si. If Ri ⊆ Si is a set of strategies of

player i, denote by RT
i the set of strategies induced by Ri in the T -partial game. The set

of i’s strategies in the T -partial game is thus denoted by ST
i .
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A belief system of player i

bi = (bi (hi))hi∈Hi
∈
∏

hi∈Hi

∆
(
S

Thi
−i

)

is a profile of beliefs - a belief bi (hi) ∈ ∆
(
S

Thi
−i

)
about the other players’ strategies in

the Thi
-partial game, for each information set hi ∈ Hi, with the following properties

• bi (hi) reaches hi, i.e. bi (hi) assigns probability 1 to the set of strategy profiles of

the other players that reach hi.

• If hi precedes h′i (hi  h′i) then bi (h′i) is derived from bi (hi) by Bayes rule whenever

possible.

Denote by Bi the set of player i’s belief systems.

For a belief system bi ∈ Bi, a strategy si ∈ Si and an information set hi ∈ Hi, define

player i’s expected payoff at hi to be the expected payoff for player i in Thi
given bi (hi) ,

the actions prescribed by si at hi and its successors, and assuming that hi has been

reached.

We say that with the belief system bi and the strategy si player i is rational at the

information set hi ∈ Hi if there exists no action a′hi
∈ Ahi

such that only replacing the

action si (hi) by a′hi
results in a new strategy s′i which yields player i a higher expected

payoff at hi given the belief bi (hi) on the other players’ strategies S
Thi
−i .

The definition of prudent rationalizability in generalized extensive-form games is al-

most identical to its definition in standard games. The only difference is the fact that a

belief of a player at an information set hi is about the opponents strategies S
Thi
−i in the

Thi
-partial game:

Definition 3 (Prudent rationalizability in generalized extensive-form games)

Let

S̄0
i = Si

17



For k ≥ 1 define inductively

B̄k
i =

bi ∈ Bi :

for every information set hi, if there exists some profile

s−i ∈ S̄k−1
−i =

∏
j 6=i S̄

k−1
j of the other players’ strategies

such that s−i reaches hi in the tree Thi
, then the support

of bi (hi) is the set of strategy profiles s−i ∈ S̄
k−1,Thi
−i that reach hi



S̄k
i =

{
si ∈ S̄k−1

i :
there exists bi ∈ B̄k

i such that for all hi ∈ Hi player i

is rational at hi

}
The set of prudent rationalizable strategies of player i is

S̄∞i =
∞⋂

k=1

S̄k
i

The proof of the next result is contained in the appendix.

Theorem 1 The set of player i’s prudent rationalizable strategies is non-empty.

In Section 4, we showed that prudent rationalizability is not a refinement of extensive-

form rationalizable strategies. However, we can show that it refines the set of extensive-

form rationalizable paths.

Theorem 2 The set of paths induced by profiles of prudent rationalizable strategies is a

subset of the paths induced by profiles of extensive-form rationalizable strategies (or, equiv-

alently, the paths induced by profiles of extensive-form correlated rationalizable strategies).

The proof is contained in the appendix.

6.1 Milgrom-Roberts (1986) with unawareness

Assume now that there are several dimensions of quality along which such certifications

could be provided. To fix ideas, consider two dimensions L,H and 0,∗. The four combi-

nations are

L0, H0, L∗, H∗.
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So, for instance, in the state L0 the available certificates are {L,H}×{0,∗ }, {L}×{0,∗ },
{L,H} × {0} and {L} × {0}.

Assume further that

β (L∗) < β
(
L0
)
< β

(
H0
)
< β (H∗)

Since the singleton certificates

{L} × {∗} , {L} ×
{

0
}
, {H} ×

{
0
}
, {H} × {∗}

are available, the above argument obtains and full revelation takes place in any profile of

prudent rationalizable strategies of the players.

Assume, however, that the buyer is initially aware only of the {L,H} dimension and

is unaware of the {0,∗ } dimension; he evaluates the merchandize as having the default

quality L0 when confronted with the certificate {L}, and similarly, with the certificate

{H} he evaluates the merchandize as having the default quality H0. Assume further that

the seller knows this, and that by presenting the certificates {∗}, {0} or {0,∗ } the seller

inter alia makes the buyer aware of the {0,∗ } dimension.

Intuitively, it is clear that the seller will want to make the buyer aware of this extra

dimension when the quality is H∗, because this will lead the buyer to demand the high

quantity β (H∗). In contrast, when the actual quality is L∗, the seller will prefer not

to present any certificate at all along the dimension {0,∗ }: This way the buyer will

remain unaware of this extra dimension, and will demand the quantity β (L0) (because

unraveling and full revelation will occur only along the {L,H} dimension); if the seller

were to make the buyer aware of this extra dimension, the buyer would have demanded

only β (L∗) < β (L0).

This strategic interaction is represented in the following generalized game form (Fig-

ure 5). Initially, nature, c, selects a state out of {L0, L∗, H0, H∗}. The seller observes

the state of nature and chooses a certificate. Unless the seller presents a certificate in-

volving the dimension {0,∗ }, the buyer remains unaware of it. This is indicated by the

intermitted arrows from nodes in the upper tree to nodes in the lower tree. E.g., if the

seller selects the certificate {L}, then the buyer remains unaware of the {0,∗ } dimension

and views the game as represented by the lower tree. In particular, his information set

is a singleton containing the node after nature selects L and the seller reports {L} in

the lower tree. If the seller presents a certificate involving the {0,∗ }-dimension, then the
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Figure 5:
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buyer becomes aware of it and he conceives of the entire generalized game. For instance,

if the seller selects the certificate {L,H}×{0,∗ }, then the buyer’s information set is given

by the upmost information set drawn as an intermitted line connecting four nodes.

We summarize the discussion in the following proposition.

Proposition 2 In the verifiable information model in which the buyer is unaware of

some dimension of the the good’s quality, the seller may not fully reveal the quality in

any prudent rationalizable outcome.

This is in sharp contrast to the case with full awareness discussed in Section 5.

6.2 An example by Ozbay (2007)

To demonstrate the extra power of prudent rationalizability, consider the following ex-

ample of dynamic interaction with unawareness, which is a variant of example 3 in Ozbay

(2007). There are 3 states of nature, ω1, ω2, ω3. A chance move chooses one out of four

potential distributions over the states of nature:

δ1 = (1, 0, 0)

δ2 = (0, 1, 0)

δ3 = (0, 0, 1)

δ4 =

(
1

3
,
1

3
,
1

3

)
An Announcer gets to know the distribution (but not the realization of the state of

nature). A Decision Maker (DM) is initially aware only of the state ω1 (and hence the

DM is certain that ω1 will be realized with certainty). However, before the DM chooses

what to do, the Announcer can choose to make the DM aware of either ω2, ω3, none of

them or both of them. Increased awareness makes the DM aware of the relevant marginals

of the distributions. For instance, if the Announcer makes the DM aware of ω2, the DM

becomes aware of the set of distributions

δ1|{ω1,ω2}
= (1, 0)

δ2|{ω1,ω2}
= (0, 1)

δ4|{ω1,ω2}
=

(
1

2
,
1

2

)
21



and also becomes certain that the Announcer knows which of these is the true distribu-

tion.4

Subsequently, the DM should choose one out of three possible actions – left, middle

or right. The payoffs to the players as a function of the chosen action and the state of

nature appear in the following table:

left middle right

ω1 3, 3 0, 0 2, 2

ω2 0, 0 5, 5 2, 2

ω3 2, 2 0, 0 2, 2

The game is thus described in Figure 6 in the following page.

It is obvious that if the Announcer announces nothing, and hence the DM is certain

that ω1 prevails, the DM will choose ‘left’.

What happens if the Announcer makes the DM aware of ω2? The information set of

the DM becomes {
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
The DM may then assign a high probability to δ1|{ω1,ω2}

,5 and this will lead the DM

to choose ‘left’. Hence, assuming such a belief by the DM, it is rationalizable for the

Announcer to make the DM aware of ω2 when the Announcer knows that the true dis-

tribution is δ1 (i.e. when the Announcer knows that ω1 will be realized with probability

1).

This is not very sensible, though. After all, the Announcer can ensure that the

DM chooses ‘left’ by not announcing any new state. When the Announcer likes the

DM to choose ‘left’, it makes no sense on the Announcer’s part to announce ω2 and

4In Ozbay’s example and in what follows the DM’s beliefs about these marginal distributions will not
be necessarily related to the prior probabilities with which the distributions were chosen by the chance
move. That’s why we do not even bother to specify the probabilities with which the chance move chooses
the different distributions.

Put differently, instead of describing this game by a partially ordered set of trees, one for each level of
awareness as in Figure 6, we could have replaced each tree with an arborescence in which the initial chance
move is erased. Allowing for arborescences instead of trees in the framework for dynamic unawareness
is straightforward, but for the sake of clarity of the exposition we avoid this explicit generalization in
the body of the paper.

5That is, the DM may assign a high probability to strategies of the Announcer by which the Announcer
announces ω2 (and cause the DM’s information set to become

{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
) when

the Announcer has learned that the true distribution is δ1.
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Figure 6:
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thus face the risk that the DM assigns a low probability to δ1|{ω1,ω2}
and consequently

choose ‘middle’. This idea is captured by Ozbay’s reasoning refinement to his awareness

equilibrium notion6, as well as by prudent rationalizability:

Proposition 3 The DM has a unique prudent rationalizable strategy. With this strat-

egy the DM chooses ‘left’ when no new state is announced, ‘middle’ when only ω2 is

announced, ‘left’ when only ω3 is announced, and ‘right’ when both ω2, ω3 are announced.

Proof. B̄1
DM contains belief systems in which in the information set

{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
(which follows the announcement of only ω2 by the Announcer) the DM’s belief assigns

high probabilities to δ2|{ω1,ω2}
, δ4|{ω1,ω2}

. The strategies in S̄1
DM corresponding to these be-

lief systems prescribe ‘middle’ to the DM in the information set
{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
.

The crucial point is that B̄2
Announcer contains only belief systems that assign strictly

positive probabilities to these strategies of the DM. Thus, with any belief system in

B̄2
Announcer, it is sub-optimal for the Announcer to announce ω2 in the announcer’s in-

formation set {δ1} , in which the Announcer is certain of ω1.
7 Hence, S̄2

Announcer does

not contain strategies in which the Announcer announces just ω2 when the announcer’s

information set is {δ1}. We conclude that B̄3
DM contains only belief systems in which

the belief at the information set
{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
assigns probability zero to

δ1|{ω1,ω2}
. Hence, S̄3

DM contains only strategies with which the DM chooses ‘middle’ at

the information set
{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
.

Furthermore, already S̄1
DM contains only strategies with which the DM chooses ‘left’

at the information set
{
δ1|{ω1,ω3}

, δ3|{ω1,ω3}
, δ4|{ω1,ω3}

}
(i.e. when the Announcer announces

just the new state ω3). This is because prudent rationalizability implies that all the belief

systems in B̄1
DM assign a positive probability to strategies of the Announcer with which

the Announcer announces the new state ω3 even when the Announcer’s information set

(from the point of view of the DM!) is
{
δ1|{ω1,ω3}

}
or
{
δ4|{ω1,ω3}

}
.

Also, B̄1
DM contains belief systems in which the DM’s belief in the information set

{δ1, δ2, δ3, δ4} (when the Announcer announces both new states ω2, ω3) assigns high proba-

bility to δ2. The strategies in S̄1
DM corresponding to these belief systems prescribe ‘middle’

to the DM in the information set {δ1, δ2, δ3, δ4} . Hence, B̄2
Announcer contains only belief

systems that assign strictly positive probabilities to these strategies of the DM. Thus,

6We believe that equilibrium notions are somewhat questionable in the context of unawareness, and
hence our focus on rationalizability. See Heifetz, Meier and Schipper (2011a) for further discussions.

7Because according to every belief system in B̄2
Announcer, announcing just ω2 will lead the DM with

a positive probability to choose ‘middle’.
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with any belief system in B̄2
Announcer, it is sub-optimal for the Announcer to announce

both ω2 and ω3 in the announcer’s information sets {δ1} and {δ3}. Similarly, B̄1
DM con-

tains belief systems in which the DM’s belief in the information set {δ1, δ2, δ3, δ4} assigns

high probability to δ1. The strategies in S̄1
DM corresponding to these belief systems pre-

scribe ‘left’ to the DM in the information set {δ1, δ2, δ3, δ4} . Hence, B̄2
Announcer contains

only belief systems that assign strictly positive probabilities to these strategies of the

DM. Thus, with any belief system in B̄2
Announcer, it is sub-optimal for the Announcer to

announce both ω2 and ω3 in the Announcer’s information sets {δ1} , {δ2} or {δ3} . We

conclude that B̄3
DM contains only belief systems in which the belief at the information

set {δ1, δ2, δ3, δ4} assigns probability zero to δ1, δ2, δ3. That is, B̄3
DM contains only be-

lief systems that assign probability 1 to δ4 at the information set {δ1, δ2, δ3, δ4}. Hence,

S̄3
DM contains only strategies with which the DM chooses ‘right’ at the information set

{δ1, δ2, δ3, δ4}.

We thus conclude that S̄3
DM contains a unique strategy s∗DM . This strategy pre-

scribes the DM to choose ‘left’ in the information set
{
δ1|{ω1}

}
(i.e. when the An-

nouncer does not announce any new state), to choose ‘middle’ in the information set{
δ1|{ω1,ω2}

, δ2|{ω1,ω2}
, δ4|{ω1,ω2}

}
(i.e. when the Announcer announces just the new state

ω2), to choose ‘left’ in the information set
{
δ1|{ω1,ω3}

, δ3|{ω1,ω3}
, δ4|{ω1,ω3}

}
(i.e. when the

Announcer announces just the new state ω3) and to choose ‘right’ in the information set

{δ1, δ2, δ3, δ4} (i.e. when the Announcer announces both new states ω2, ω3).
8 �

A Proofs

A.1 Proof of Theorem 1

First, observe that B̄k
i 6= ∅ for every k ≥ 1, because if an information set hi ∈ Hi is

reached by some s−i ∈ S̄k−1
−i , then s−i reaches also all of i’s information sets that precede

hi in the tree Thi
.

We proceed by induction. S̄0
i = Si and hence non-empty. Notice also that for every

bi ∈ B̄1
i , a standard backward induction procedure on the arborescence of information

sets Hi yields a strategy si ∈S̄1
i with which player i would be rational ∀hi ∈ Hi given bi.

Suppose, inductively, we have already shown that ∀i ∈ I S̄k−1
i 6= 0 (and hence that

8This is also the unique strategy of the DM which is part of an awareness equilibrium satisfying
reasoning refinement in Ozbay (2007).
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S̄k−1
−i 6= 0), and also that for every bi ∈ B̄k−1

i there exists a strategy si ∈ S̄k−1
i with which

player i would be rational ∀hi ∈ Hi given bi.

Let bi ∈ B̄k
i . Let Ḣi ⊆ Hi be the set of i’s information sets not reached by any profile

s−i ∈ S̄k−1
−i but reached by some profile s−i ∈ S̄k−2

−i . If Ḣi 6= ∅, for every hi ∈ Ḣi with no

predecessor in Ḣi, modify (if necessary) bi (hi) so as to have full support on the profiles in

S̄k−2
−i that reach hi, and in succeeding information sets modify bi by Bayes rule whenever

possible. Denote the modified belief system by ḃi. Then by construction also ḃi ∈ B̄k
i .

Consider a sequence of belief systems bi,n ∈ B̄k−1
i such that

ḃi =
(
ḃi (h′i)

)
h′i∈Hi

≡
(

lim
n→∞

bi,n (h′i)
)

h′i∈Hi

and given this sequence9 bi,n ∈ B̄k−1
i let si,n ∈ S̄k−1

i be a corresponding sequence of

strategies with the property that given bi,n, it is the case that with the strategy si,n

player i would be rational at every hi ∈ Hi. Since player i has finitely many strategies,

some strategy si appears infinitely often in the sequence si,n. Since expected utility is

linear in beliefs and hence continuous, also given ḃi it is the case that with the strategy

si player i would be rational at every hi ∈ Hi. Hence si ∈ S̄k
i as well.

Now, since player i’s set of strategies Si is finite and by definition S̄k+1
i ⊆ S̄k

i for every

k ≥ 1, for some ` we eventually get S̄`
i = S̄`+1

i ∀i ∈ I and hence B̄`+1
i = B̄`+2

i ∀i ∈ I.

Inductively,

∅ 6= S̄`
i = S̄`+1

i = S̄`+2
i = ...

and therefore

S̄∞i =
∞⋂

k=1

S̄k
i = S̄`

i 6= ∅

as required. �

9To construct such a sequence bi,n ∈ B̄k−1
i , for every information set h′i ∈ Hi not reached by any

s−i ∈ S̄k−1
−i define bi,n (h′i) = ḃi (h′i) for every n ≥ 1; and for every h′i ∈ Hi with no predecessors but

reached by some profile s−i ∈ S̄k−1
−i define bi,n (h′i) ∈ ∆

(
S̄k−1
−i

)
to be any converging sequence of beliefs

such that for every n ≥ 1 the support of bi,n (h′i) is the subset of profiles in S̄k−2
−i that reach h′i, while

limn→∞ bi,n (h′i) = ḃi (h′i). In succeeding information sets reached by some si ∈ S̄k−1
−i define bi,n (h′i) by

Bayes rule whenever possible.
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A.2 Proof of Theorem 2

Denote by (ai, hi) the copy of the action ai of player i ∈ I whenever it appears in the

information set hi. For the purpose of this proof the word “action” will refer to a copy

(ai, hi) of an action at a given information set.

Define a menu of a player to be a (possibly empty) subset of (the union of) her actions

in her information sets.

Define a menu profile to be a profile of menus, one for each player, with the following

property: For each information set hi of player i, her menu in the menu profile contains

at least one action in hi if and only if that information set is reached by a sequence of

actions of the players in the menu profile.

For a menu profile M , denote by Mi the menu of player i in M .

For a menu profile M , denote by P T (M) all the paths from the roots to leaves in the

trees of the T -partial game that one can compose from actions in M and moves of nature

(if there are any). Denote also by P (M) the set of paths from roots to leaves in all the

trees of the generalized games that one can compose from actions in M and moves of

nature.

Now, every product of sets of strategies R =
∏

i∈I Ri (where Ri is a subset of i’s

strategies) induces a menu profile, in which player i’s menu is defined as follows. For

each information set of the player:

1) If the information set is reached by some strategy profile in the set R, the player’s

menu contains all the actions ascribed in that information set by i’s strategies in Ri that

reach the information set.

2) If the information set is not reached by any strategy profile in R, then player i’s

menu contains no action of hers in that information set.

Intuitively, player i’s menu is mute about an information set if and only if that

information set is excluded by the set of strategy profiles R (case 2); otherwise (case 1)

the menu contains all the actions in that information set that appear in some strategy

of hers in Ri that reaches that information set.

If M is the menu profile induced by R, then every strategy in Ri together with a

belief about R−i induce a belief βT about the paths of actions in P T (M) for every tree

T of the generalized game.

Next, denote by Mk the menu profile induced by Sk =
∏

i∈I S
k
i , the set of level
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k extensive-form rationalizable strategy profiles; and denote by M̄k the menu profile

induced by S̄k =
∏

i∈I S̄
k
i , the set of level k prudent rationalizable strategy profiles.

Proposition 2 is implied by the following lemma:

Lemma 1 For all ` ≥ 0, M̄ ` ⊆M `. In particular M̄∞ ⊆M∞.

Proof. The proof is by induction.

For ` = 0 we have M0 = M̄0, the menu profile which includes all actions at all the

information sets of all the players.

Suppose the claim holds for ` ≤ k.

By the induction hypothesis P (M̄ `) ⊆ P (M `) for every ` ≤ k.

We will now prove the claim for ` = k + 1, i.e. that M̄k+1
i ⊆ Mk+1

i for every player

i ∈ I.

To this end we have to show that for every player i ∈ I, every s̄k+1
i ∈ S̄k+1

i , every

information set hi ∈ Hi which is reached both by s̄k+1
i and by some strategy profile in

S̄k+1
−i (meaning that s̄k+1

i (hi) ∈ M̄k+1
i ), it is the case that

a) hi is also reached by Sk+1, and

b) s̄k+1
i (hi) ∈ Mk+1

i as well.

In fact, it is enough to show that b) holds. To see this, proceed inductively along

each feasible path of the generalized game (in each of its trees). If player i is the first to

play in this path (apart from nature, if there are nature moves in the path), and if hi is

the information set in which she makes this initial move, then condition a) automatically

obtains for hi, and we only need to prove b). Inductively, if we reach a node in the

path which is not in P
(
M̄k+1

)
, we have nothing to prove for this node’s information set

when considering this path.10 If all the nodes n1 . . . nm in an initial segment of the path

are on a path in P
(
M̄k+1

)
and we have already proved conditions a) and b) for all the

information sets of these nodes, then it already follows that a) holds for the information

set of the next node nm+1 in the path [because b) holds for the previous node nm for the

player (or players) active in nm]. It thus remains to show b) for such an information set.

So we now proceed to prove b).

Suppose hi is reached by S̄k+1
−i and by s̄k+1

i ∈ S̄k+1
i . Since by definition S̄k+1

−i ⊆ S̄k
−i,

10We may have to consider this information set again when we analyze another path passing through
it.
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we have s̄k+1
i ∈ S̄k

i and hence mk+1
i (hi) = k. Consider a belief system bi ∈ B̄k+1

i with a

full-support belief bi (hi) on the strategy profiles S̄k
−i that reach hi, and with which s̄k+1

i

would be rational at hi (i.e. player i cannot improve her expected payoff by changing

s̄k+1
i only at hi, from s̄k+1

i (hi) to some other action a′hi
available there).

The strategy s̄k+1
i together with the belief bi (hi) on the other players’ strategies induce

a full support belief β on the paths of actions in P (M̄k) reaching hi and along which

player i uses the strategy s̄k+1
i . Since by the induction hypothesis P (M̄k) ⊆ P (Mk), it

follows that β is a belief on the paths of actions in P (Mk) reaching hi and along which

player i uses the strategy s̄k+1
i .

Denote by s̄k+1
i |a′hi

the strategy one gets from s̄k+1
i by altering the action at the

information set hi from s̄k+1
i (hi) to a′hi

. The altered strategy s̄k+1
i |a′hi

together with the

belief bi (hi) on the other players’ strategies induce a full support belief β′ on the paths

of actions in P (M̄k) reaching hi and along which player i uses the strategy s̄k+1
i |a′hi

.

The fact that s̄k+1
i extensive-form rational given the belief system bi means that in

particular at the information set hi, with the belief bi (hi) on the other players’ strategies,

the expected payoff to player i given β is not smaller than the expected payoff to player

i given β′.

This yields the conclusion b) that we wanted, namely that s̄k+1
i (hi) ∈ Mk+1

i . �
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