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Abstract 

 

The goal of this paper was to introduce some general issues of 

non-stationarity for practitioners, students and beginning 

researchers. Using elementary techniques we examined the 

effect of non-stationary data on the results of regression 

analysis. We further shoved the effect of larger sample sizes on 

the spuriousness of regressions and we also examined the well 

known “rule of thumb” of how to identify spurious regressions. 

We also demonstrated the problem of spurious regression on a 

practical example, using closing prices of stock market indices 

from CEE markets. 
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Introduction 



 

There is a group of papers, started by Granger – Newbold (1974), which cover 

the topics of non-stationarity of time series and when not handled properly, its 

impact on the spuriousness of regressions. Most of these papers are technically 

driven showing how different types of non-stationary data effect regression results. 

However, from the practical point of view, the conclusions are comparable. When 

all (dependent and independent) time series are non-stationary, the regression 

results are simply misleading. This alone underlines the importance of this topic. 

While not being too technical, the goal of this paper was to introduce some 

general issues of non-stationarity for practitioners, students and beginning 

researchers. Using standard methodology of data generating processes (DGP) and 

simulations we demonstrated how diametrically opposing results can be obtained 

when time series are not handled properly. We examined following issues: Is there 

a difference between results when using stationary or non-stationary data? What is 

the effect of the different sample sizes? What is the difference in regressions of 

various types of non-stationary data? Does the common “rule of thumb” of high 

adjusted R
2
 and low Durbin – Watson statistics hold? Further on, by the means of a 

case study, we demonstrated the problem of spurious regression using stock market 

indices. 

This paper is organized as follows. In the first section we define basic terms and 

concepts important for the remainder of the text. The second section is dedicated to 

a short review of tests for stationarity. The third section describes the design of our 

simple experiment and the fourth presents the results. In the last, fifth section we 

analyze stock market indices as stationary and as non-stationary data, thus again 

underlining the interesting differences. 

 

1 Stationarity of time series  

 

We say that stochastic process (which generates the time series) is stationary in 

a weak form when following conditions holds: 

   tyE   (1) 

      222
var tt yEy    (2) 

      kkkttktt yyyy ,cov,cov   (3) 

In other words,  T

tty
1  

is stationary (or more precisely covariance stationary) if 

its mean and variance are constant over time, and the value of the covariance 

between the two time periods depends only on the distance k (lag) between the two 

time periods and not the actual time t itself. The first requirement simply says that 

the expected value of the time series should be constant and finite. If this 

requirement is not met, we regard data generated from this stochastic process to be 

from different population of processes. When these are handled like data from the 

same population, our results are dubious. The same is true if the second 

requirement is not met, where we require having constant variance over time. The 



last requirement says that the relationship between two equidistant observations 

stays the same regardless of whether we compare the first observation with the 

tenth, or the second with eleventh and so on. To sum it up, the very basic idea of 

these restrictions is that one should not analyze time series data with different 

statistical properties, because it makes no sense. 

Unfortunately, most of the economic time series is non-stationary and this fact 

is often neglected by students and beginning researchers. The consequence leads to 

inaccurate results or so called spurious regression problem (first mentioned in 

Granger – Newbold, 1974). A good “rule of thumb” of identifying incorrect 

regression results is a high coefficient of determination and a low Durbin – Watson 

statistic of autocorrelation.  

One way of decomposing the time series is to assume that every time series 

contains three components: 

1. An irregular pattern which is the point of interest in univariate time series 

modeling, e.g. ARMA, (see Figure 1b). For our purpose consider the 

following pattern:  4,0~,5,0 1 NIPIP tttt   .   

2. A seasonal pattern which is typical for economic data, which are reported 

in given period (monthly or quarterly), e.g. macro data such as GDP, 

inflation, unemployment rate, as well as the company financial reports also 

available on quarter base, (see Figure 1c). For our purpose consider the 

following pattern: 









12
sin

t
SPt .  

3. A deterministic trend, in most cases linear or quadratic. We can also deal 

with stochastic trend, but the most convenient approach is to handle it as an 

irregular pattern (see Figure 1d). For our purpose we consider the 

following pattern: tTt 2,03 .    

Taking these three components together, we obtain the following time series, 

which is obviously non-stationary, (see Figure 1a): tttt IPSPTy  .  

 

 

 

 

 

  



Figure 1 

Decomposition of a time series  

 

 
 

We do not want to supplement econometric textbooks by focusing on trends, 

seasonality and irregular patterns. Rather our goal here was to distinguish the 

central point of our interest from other issues, which we do not discuss in as much 

detail. For attentive reader, we recommend e.g. Gujarati (2004), Mills (1999), 

Davidson – MacKinnon (2003) or Kočenda – Černý (2007).   

There is a simple way how to deal with non-stationary processes, using 

differences. In most cases by differencing 1 ttt yyy , where ty  is called the 

first difference, we obtain a stationary process. If a time series becomes stationary, 

we say that it is “integrated of order one”, and denote it as I(1). Sometimes it is 

necessary to make higher differences. In general, if we need p differences to 

produce a stationary time series, it is denoted as I(p), where Np  
by definition. 

Before differencing it is common to take a natural logarithms of the data, to deal 

with possible non linear trends. In some cases logarithmic differences have their 

own reasonable interpretation, e.g. when we are interested in growth rates or assets 

returns. A good example (mentioned in Kočenda – Černý, 2007) of this extra 

benefit is price versus inflation issue. If we are analyzing inflation, then we want to 

transform prices in levels into inflation first, i.e. taking logarithmic differences and 

getting stationary time series by different purpose.  

In this paper we will employ daily closing prices of various stock market 

indices ( tp ). After the logarithmic transformation and taking the first differences, 

we will get returns ( tr ), which should be stationary
1
:  

                                                           
1  This property will be properly tested. 
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where 1tr  are daily returns in time t+1, 1tp  are closing prices in time t+1  and 

tp  are closing prices in time t, 1,,2,1  Tt  , where T  is the number of all 

observations. Daily returns on the close-to-close basis are therefore also a good 

example of transforming the data with some natural interpretation. After such 

transformations, it is always good to ask, whether the analysis of resulting variables 

still accounts for the phenomena of our interest, or whether we can interpret 

possible results. 

 

2 Tests for stationarity 

 

The basic test for stationarity is the Augmented Dickey – Fuller (1979, 1981) 

test which is based on a unit root testing. First, we will discuss a general Dickey – 

Fuller test (DF henceforth). Consider following AR(1) process: 

ttt uyy  1    (5)  

 where tu  is a stationary error process. The time series contains a unit root if 

 1 and it is stationary if 1  . Clearly, one sided t-test could be employed, 

nevertheless under the null hypothesis (  1:0 H ) the t-ratio does not have a t-

distribution (Verbeek, 2008). With respect to these limitations, authors computed 

critical values for the test statistic via Monte Carlo simulation, which is called the 

  statistics. Moreover, they specify three test variations: a) without intercept and 

trend included, b) with intercept, c) with intercept and trend. 

If we subtract 1ty
 

from both sides of equation (5), we will obtain 

ttt uyy  1  , where  1 . Testing for a null hypothesis  1  is 

equivalent to a null 0 .  

Obviously, the assumption of AR(1) generating process is quite simplifying. 

That is why the Augmented Dickey – Fuller test (ADF henceforth) is used broader 

than simple DF test. ADF test allows testing of higher orders of autoregressive 

processes. Autocorrelation of residuals is controlled by m lagged values of 

dependent variable:  




 

m

i

ttitt uyyty

1

1110      (6) 

Similar to simple DF test, its augmented form also allows to test for level 

stationarity or trend stationarity, as it is stated in equation (6). ADF test is easy to 

understand and easy to use, but it is a well known fact, that it has low power and a 

high chance of an error of the second type, i.e. the probability of not rejecting a 

false H0 (for further discussion see Kočenda – Černý, 2007). Thus it is not 

surprising that many variations of ADF have been proposed (e.g. Dickey – Bell – 

Miller, 1986; Dickey – Pantula, 1987; Phillips – Perron, 1988; Hylleberg et al., 



1990; and others). Also as it is stated in Davidson – MacKinnon (2003), some 

advantage over the standard ADF in terms of power may be achieved by using 

ADF-GLS test proposed by Elliott – Rothenberg – Stock (1996).  

It is beyond the scope and range of this paper to deal with these tests precisely. 

Nevertheless, we would like to offer some references for further reading. 

 

      Table 1 

Tests for stationarity – an overview 

 

Reference: Brief description: 

Sargan – Bhargava (1983) based on the Durbin - Watson statistic 

Dickey – Bell – Miller (1986) seasonal unit roots 

Dickey – Pantula (1987) more than one unit root is suspected 

Phillips – Perron (1988) 

 

no IID assumption on disturbances, allows 

autocorrelated residuals  

Perron (1989) structural change; known break point 

Hylleberg et al. (1990) cyclical movements at different frequencies 

Kwiatkowski et al. (1992) 

[KPSS test] 

near unit root times series; higher power 

than ADF; transposition of the null 

hypothesis  

Zivot – Andrews (1992) 
structural change; break estimated at 

unknown point 

Elliott – Rothenberg – Stock (1996) higher power than ADF 

Source: authors 

 

3 Methodology 

 

By the help of a computer and using simple equations for generating non-

stationary data, we can observe some characteristics of spurious regression. Let`s 

assume to have a simple linear regression model: 

ttt uxy     (7) 

where for this case, it is important to note, that tu  is the error term, which is 

assumed to be  20,~ N . If we a priori know, that both, ty  and tx  are 

independent and non-stationary, the estimated regression coefficient ̂  should be 

non-significant and with t  converge to zero. These characteristics can be well 

observed using a simple simulation methodology. We will follow the methodology 

of Noriega – Ventosa-Santaularia (2006) and standard procedures for testing 

spurious regressions. 

The basic idea is to generate time series data, which are known to be non-

stationary and independent, that is not necessarily statistically independent but 

independent by their design. For this purpose, we have used data generating 



equations
2
. For this teaching article, we wanted to analyze two types of time series. 

The pure random walk (PRW): 

ttt uyy  1   (8) 

and random walk with drift   (RWD): 

ttt uyy  1   (9) 

The PRW is a non-stationary process, because with increasing number of 

observations, the variance increases. This is a good example of a case, where the 

second requirement (see section 1) does not hold: ttt uyy  1 , tt uy  , 

     2

ttt yEyEyVAR  ,       2
0 ttt yEyVARyE  . The RWD is a 

special case of PRW, where the time series has a stochastic trend, see Gujarati 

(2004). The PRW is a I(1) process, and RWD a I(1) process with drift. 

The DGP is as follows: the error terms tu  are generated from  20,~ N using 

a random number generator
3
 and initial values of ty  are set to be zero, i.e. 00 y . 

For every spurious regression, we have calculated and recorded the following 

variables: 

 value of the ̂  

 t-statistics for the ̂ , 

 DW statistics, 

 adjusted coefficient of determination 2R , 

 results of Phillips – Perron test for both, ty  and tx . 

Together, we had 18 groups of different types of data, which were formed 

as follows. First, we used various types of regressions (TR): 

 The type 1 - were the cases with ty  and tx  being I(1) processes. 

 The type 2 - were the cases with ty  being I(1) processes and tx  

being I(1) + drift processes. 

 The type 3 - were both ty  and tx  I(1) + drift processes. 

Secondly, because we were interested in the possible dependence of 

recorded variables upon the number of observations, we analyzed samples with 

following sizes: n = 50, 200, 1000. We also replicated these simulations using time 

series with differences. By using level variables and differences, three types of 

sample sizes and three TR, the above mentioned 18 groups were formed. In every 

group, we performed 500 regressions (replication). 

Additionally, in the type 3 regressions, we fixed the drift value in ty  and 

increased the drift value in tx . The question we are trying to answer is, whether 

                                                           
2  Or the so called “data generating process” (DGP henceforth). 
3  Even if we are aware of the limitation of MS Excel`s random number generator, this is a teaching 

article, so we found it sufficient for the purpose given. This fact also implies, that all the results may 

be effected by this. 



there is a systematical effect of increased drift on the recorded variables. Rather 

than answering this question analytically, we incorporated it into the design of type 

3 regressions. 

 

4 Results 

 

The results are presented in the following next two tables. The first table reports 

the type I error of falsely rejecting the null hypothesis  0ˆ:0 H . As can be seen, 

in all types of processes the error of rejecting the null hypothesis is high
4
. For 

example, in the type 3 regressions, where both the dependent and independent 

variables were non-stationary and with drift, we have rejected the null hypothesis 

in 94,4% from 500 cases. Special attention should be addressed to the type 3 

regressions, where independent variables had different drift parameters. Our results 

suggest that this had no effect on the results. The relationship between the 

difference of drifts between independent and dependent variables were not 

significant. 

Table 2 

Results from the simulations 

 

DGP Type 1 regressions Type 2 regressions Type 3 regressions 

Sample n=50 n=200 n=1000 n=50 n=200 n=1000 n=50 n=200 n=1000 

 
Type I Error (rejection rate of H0) 

Rejected 57,6% 79,2% 89,2% 59,6% 79,4% 88,2% 76,0% 90,6% 94,4% 

Rejected * 1,4% 0,6% 0,4% 0,6% 1,0% 0,8% 1,2% 0,8% 1,2% 

 
Adjusted R-squared 

Mean 0,24 0,25 0,24 0,25 0,23 0,26 0,42 0,43 0,48 

St. dev. 0,25 0,23 0,23 0,24 0,22 0,24 0,30 0,30 0,31 

Mean* 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

St. dev.* 0,03 0,01 0,00 0,03 0,01 0,00 0,03 0,01 0,00 

 
Durbin-Watson statistic 

Mean 0,33 0,09 0,02 0,34 0,09 0,02 0,39 0,10 0,02 

St. dev. 0,19 0,06 0,01 0,21 0,05 0,01 0,18 0,06 0,01 

Mean* 2,01 2,00 2,00 1,99 2,01 2,00 1,99 2,00 2,00 

St. dev.* 0,27 0,14 0,07 0,30 0,14 0,06 0,27 0,14 0,06 

Note: symbol * denotes those results, where time series in differences was applied. 

                                                           
4  This is of course not surprising as this was already shown in numerous papers using various 

spurious non-stationary data, e.g. Noriega – Ventosa-Santaularia (2006). 



In contrast to the results of non-stationary data, the regressions with stationary 

data
5
 had a very low rejection rate at about 1% of all the time. This is a good 

example of how spurious regressions can mislead beginning researchers and 

students. A similar result may be observed looking at the adjusted R
2
.  

 

Table 3 

Results from the PP test – rejection rate of H0 in % 

 

DGP Type 1 regressions Type 2 regressions Type 3 regressions 

Sample n=50 n=200 n=1000 n=50 n=200 n=1000 n=50 n=200 n=1000 

y 0,6 1,6 1,6 0,1 2,2 0,1 1,2 0,6 1,0 

x 1,8 1,4 1,4 1,2 1,0 0,0 0,0 0,0 0,2 

y* 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

x* 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

Note: symbol * denotes those results, where time series in differences was applied. 

 

Figure 2 

Scatter plot of R
2
 and DW statistics 

 

 
 

The second phenomenon of our interest was the increasing sample sizes. The 

observed results suggest that the effect is different with regard whether we regress 

stationary or non-stationary data. In the first case it seems, that the rejection rate 

and the adjusted R
2
 are not affected (see Table 2). On the contrary, the reverse 

seems to be true when regressing non-stationary data. With the increase of sample 

sizes the rejection rate increases regardless of the TR used in the regression. There 

can be various statistical explanations for this effect. An intuitive non-statistical 

explanation may be that increasing the number of spurious observations increases 

                                                           
5  The stationary data were obtained after making simple differences, and the stationarity was tested 

using Phillips – Perron test (PP test henceforth), see Table 3.  



the spuriousness of the dataset, thus making the phantom relationships more 

convincing. The more “bad” data are used, the more are we fooled. 

One last and interesting fact had been observed. We were interested whether the 

“rule of thumb” mentioned above was present also in our short study. In the Figure 

2, we compared the ordered pairs of adjusted R
2
 and Durbin-Watson statistics for 

the type 3 regressions with the sample size of 1000. As can be clearly seen, the 

“rule of thumb” holds. In cases where the spurious regression was present (see 

Figure 2 a) where we utilized variables in their levels), we observed much higher 

values of adjusted R
2
 and much lower values of Durbin-Watson statistics (close to 

zero), than in the case of non-spurious regression, where Durbin-Watson statistics 

were close to 2 (see Figure 2 b) where differenced time series was applied). 

 

5 An illustrative example: Stock market indices 

 

By the means of real case studies, our goal in this section is to demonstrate how 

misleading can be handling non-stationary time series as stationary. We will 

employ daily closing prices from several stock market indices covering period 

from 1
st
 September 1999 to 1

st
 September 2009. Our sample contains indices from 

CEE markets (also known as Vysegrad Group, or V4) namely, Hungarian BUX, 

Polish WIG, Czech PX and Slovakian SAX. Instead of descriptive statistics we 

decided to present chosen time series in the following figures. 

 

Figure 3 

Stock market indices in levels and logarithmic differences 

 

 

 

 

 
Source: authors, data retrieved from stooq.com 

 

From the above stated figure it can be seen that closing prices of indices are 

apparently not stationary. However the opposite could be true with their first 

logarithmic differences. Of course we need to run some tests to preserve such 

statement. We have applied standard ADF test with critical values tabulated by 

BUX

WIG

PX

SAX



MacKinnon (1996). To compare the result we decided to choose unit root test 

proposed by Elliott – Rothenberg – Stock (1996), abbreviated as ADF-GLS test. 

Further, Zivot – Andrews (1992) test (ZA henceforth) and Phillips – Perron (1988) 

test (PP henceforth). It is a convention in economic literature to provide results of 

at least two tests. Most frequently ADF, PP test and KPSS test are used, which are 

also incorporated in the most statistical or econometric software. Since KPSS 

includes transposed null hypothesis (claims of stationarity against alternative of a 

unit root), we decided not to apply this test as the results could appear as mixed.  

In the following table we present results from selected tests for stationarity. 

Calculations were made in R software, along with an “urca” package. The level of 

significance is 1 % in the case of rejecting the null hypothesis (no unit root is 

present), but in the not rejecting the null cases we were more benevolent and have 

chosen 10 % significance level. To maintain our results easy to read, following 

table contains only statements “rejected” and “not rejected” (the null hypothesis of 

a unit root). More detailed results are available upon request. 

 

Table 4 

Testing for stationarity 

 

 
LEVELS LOGDIFF 

 
LEVELS LOGDIFF 

 
ADF test 

 
ADF-GLS test 

Index c ct c ct 
 

c ct c ct 

BUX NR NR R R 
 

NR NR R R 

WIG NR NR R R 
 

NR NR R R 

PX NR NR R R 
 

NR NR R R 

SAX NR NR R R 
 

NR NR R R 

 
ZA test 

 
PP test 

Index c ct c ct 
 

c ct c ct 

BUX NR NR R R 
 

NR NR R R 

WIG NR NR R R 
 

NR NR R R 

PX NR NR R R 
 

NR NR R R 

SAX NR NR R R 
 

NR NR R R 

Note: a) “c” stands for constant included, “ct” stands for constant and trend included; b) NR stands 

for „not rejected“ the null hypothesis, R stands for „rejected“ the null. 

 

As we can see, time series are non-stationary in their levels (i.e. closing prices), 

but they are stationary at first logarithmic differences (i.e. returns). So in our case it 

is easy to decide about stationarity of time series, but still remember that all results 

in statistical testing have probabilistic nature. It would be much harder to resolve 

the question about stationary or non-stationary character of time series, when 

applied tests would provide mixed results. In such doubtful cases, it is upon the 

researcher to decide which test to believe.  



Let’s proceed to the problem of a spurious regression. To fulfill our goal, we 

will estimate simple linear regression model again (Eq. (7)). It is estimated using 

closing prices as variables and logarithmic differences afterwards (OLS method 

with HAC applied to deal with autocorrelation problem). Obtained results are 

presented in the following table.   
 

Table 5 

Results from the regressions 

 

 DEPENDENT VARIABLE 

 
 IN LEVELS IN LOGARITHMIC DIFFERENCES 

 
 BUX WIG PX SAX BUX WIG PX SAX 

BUX t-test 

- 

0,0000 0,0000 0,0000 

- 

0,0000 0,0000 0,2867 

 
R

2 
0,9222 0,9835 0,8286 0,3124 0,3411 0,0013 

 
DW 0,0126 0,0643 0,0117 2,0063 2,0578 2,0584 

WIG t-test 0,0000 

- 

0,0000 0,0000 0,0000 

- 

0,0000 0,7280 

 
R

2 
0,9222 0,9293 0,6771 0,3124 0,3446 0,0001 

 
DW 0,0131 0,0115 0,0043 2,0026 1,9879 2,0640 

PX t-test 0,0000 0,0000 

- 

0,0000 0,0000 0,0000 

- 

0,7537 

 
R

2 
0,9835 0,9293 0,8293 0,3411 0,3446 0,0001 

 
DW 0,0646 0,0114 0,0095 2,0158 1,9495 2,0646 

SAX t-test 0,0000 0,0000 0,0000 

- 

0,2927 0,7257 0,7577 

- 
 

R
2 

0,8286 0,6771 0,8293 0,0013 0,0001 0,0001 

 
DW 0,0127 0,0049 0,0102 1,9226 1,932 1,9709 

Note: a) standard t-test is applied to test the significance of regression parameter; b) R2 denotes the 

coefficient of determination; c) DW stands for Durbin-Watson statistic 

 

When analyzing relationships between closing prices of indices, all regression 

parameters are significant at 1 % significance level and moreover, high coefficient 

of determination is observed. Reported Durbin-Watson statistic close to zero 

implies the presence of autocorrelation, but since we applied HAC covariance 

matrix, it has no effect on the significance of regression coefficients 

(asymptotically).  

Nevertheless, we already know that these time series are non-stationary, which 

makes the results misleading. One way to interpret these highly significant spurious 

results is to say, that what we actually measured was the trend of both indices, not 

the relationship between closing prices. As it was stated above, a good “rule of 

thumb” in identifying the spurious regression problem is to look at the high R
2
 and 

low DW statistic. 

Everyone who is aware of a special position of Slovakian stock market (special 

in the way of its inefficiency) would expect very weak relationships with SAX and 



any other stock market indices, even from the same region. Evidence of this is 

observable when time series are analyzed in their logarithmic differences. At this 

point no coefficient is statistically significant (whether SAX is considered as 

dependent or independent variable) and R
2
 is close to zero.  

In other relationships the coefficients remains significant and moreover R
2
 

decreased to more intuitively expected level.  

It is worth to mention, that we do not consider in our analysis (nor in the 

simulations) the presence of cointegration. Various textbooks may be useful for 

further readings about this phenomenon (e.g. Maddala – Kim, 1998 or Gujarati, 

2004).  

 

Conclusion 

 

Our aim was an introductory approach to the issues of stationarity of time 

series. We wanted to cover this topic rather broadly, without much technical depth. 

From our restricted analysis some interesting questions came into attention. We 

have used only two different types of non-stationary data, one generated through 

I(1) DGP, the second with I(1) + drift DGP. From these two types of time series, 

we formed three types of regressions. The error of rejecting the null hypothesis 

 0ˆ:0 H  in a simple linear regression model seemed to be clearly higher in the 

type 3 regressions (dependent is I(1) + drift DGP and independent I(1) + increasing 

drifts). This was probably not due to the increasing drift of the independent 

variable. This raises the question, of whether the more complicated non-stationarity 

(more requirements from section 1 are violated) time series are more “spurious”.  

Further on, as it seemed that the higher samples sizes contributed again to the 

“spuriousness” of the regression results. This is a dangerous issue, because 

generally if one has a larger sample size, one tends to have greater trust in 

statistical results. Apart from other possible topics here, like sampling, this 

confidence is dangerous. 

Finally we were interested in commonly presented “rule of thumb” that spurious 

regressions are accompanied by low values of DW statistics and high adjusted R
2
. 

Using our simulation we can descriptively conclude this to be true and the 

differences to be very significant.  
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