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Abstract 

Drug benefit-risk analysis is based on firm clinical evidence related to various safety 

and efficacy outcomes, such as tolerability, treatment response, and adverse events. In 

this paper, we propose a new approach for constructing a supporting multi-criteria 

model that fully takes into account this evidence. Our approach is based on the 

Stochastic Multicriteria Acceptability Analysis (SMAA) methodology, which allows 

us to compute the typical value judgments that support a decision, to quantify 

uncertainty, and to compute a comprehensive benefit-risk profile. As an example, we 

constructed a multi-criteria model for the therapeutic group of second-generation 

antidepressants. We analyzed Fluoxetine, Paroxetine, Sertraline, and Venlafaxine 

according to relative efficacy and absolute rates of several common adverse drug 

reactions using meta-analytical data from the literature. Our model showed that there 

are clear trade-offs among the four drugs. Based on our experiences from this study, 

SMAA appears to be a suitable approach for quantifying trade-offs and decision 

uncertainty in drug benefit-risk analysis. 

Keywords: clinical pharmacology; decision analysis; simulation methods; meta-

analysis; risk communication
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1 Introduction 

Drug Benefit-Risk (BR) analysis is done daily by health care professionals, such as 

regulators, practicing physicians, and employees of insurance companies, to evaluate 

the safety and efficacy of different medical compounds. Popular indices of therapeutic 

benefit include the treatment effect, generally expressed as either the absolute change 

or the relative change in the rate of events, and the number of patients who need to be 

treated to attain one positive outcome or to prevent one adverse outcome. The harmful 

effects of treatment can be presented in a similar way. Although simple aggregate 

measures such as the numbers needed to treat and the numbers needed to harm seem 

easy to interpret, drug BR analysis generally includes various benefit and risk criteria 

and consequently must include value judgments (1-3). In such a setting, the use of 

Multi-Criteria Decision Analysis (MCDA) may be more appropriate as it provides a 

framework for analyzing complex decision problems involving value trade-offs. 

The use of MCDA in the context of drug BR analysis was first proposed by Mussen et 

al. (4). Their work included a general framework for constructing a multi-criteria 

decision model for BR assessment of new drugs by regulatory authorities. Although 

being an important seminal work in the field, they score alternative drugs on the 

different benefit and risk criteria solely based on point estimates, thereby ignoring the 

sampling variation that is inherent in criteria measurements that are based on clinical 

trials and/or observational studies. In addition, the approach suggested by Mussen et 

al. (4) requires Decision Makers (DMs) to provide exact weights for describing the 

relative importance of the different criteria. In many real-life situations, however, 

DMs are not able to (or do not want to) restrict themselves to one particular set of 
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weights. Felli et al. (5) provided a similar application of MCDA in drug BR analysis. 

However, instead of using continuous measurements, the authors proposed to use 

categorical value scales for all BR attributes included in the model. Although it makes 

the model easier to apply in different contexts, there is a substantial risk of losing 

information by mapping measurements from a continuous scale to ordinal categories. 

To overcome the limitations of the two previous approaches, we propose to use 

Stochastic Multicriteria Acceptability Analysis (SMAA) (6-8) as a new approach to 

drug BR analysis. Our choice of the SMAA methodology is supported by its proven 

applicability in risk assessment (9, 10) and published real-life analyses alike (11-17). 

To demonstrate its applicability in drug BR analysis, we will apply the SMAA-2 

method (7) in the setting of a recently published meta-analysis considering the 

potential benefits and risks of several commonly prescribed second-generation 

antidepressants (18).  

2 Methods 

2.1 Stochastic Multicriteria Acceptability Analysis 

SMAA-2 considers a discrete multi-criteria decision problem consisting of a set of m  

alternatives (such as different types of drugs) that are evaluated in terms of n  criteria 

(such as several efficacy and safety criteria). The vector of criteria measurements 

corresponding to alternative i  is denoted by ),,( 1

i

n

ii
xx K=x , where i

kx  represents the 

performance of alternative i  on criterion k . It is assumed that the DM’s preference 

structure can be represented by a real-valued utility or value function )(xu . The value 

function serves to rank the m  alternatives by mapping their performance on the 

different criteria to a scalar index of preferability or value. It has the property that 
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alternative i  is preferred over alternative j  if and only if )()( ji
uu xx > . Although 

SMAA-2 can be applied with any type of value function, it is generally assumed that 

all criteria are mutually preferentially independent (19), which implies that the value 

function is additive, and the partial value functions )( kk xu  are used to normalize the 

criteria measurements by mapping them on a zero-to-one scale. The partial value 

functions can be obtained from the actual criteria measurements 
m

kk
xx ,,

1
K  through 

linear scaling, so that the worst value is 0 and the best value is 1. The additive value 

function is of form: 

)()()( 111 nnn xuwxuwu ⋅++⋅= Kx , 

where the weights kw  (normalized, so that they sum to one) rescale the values of the 

partial value functions in such a way that the full swing (i.e. increase from the worst 

to the best value) in the scaled function indicates the importance of the criterion (20). 

For example, ji ww >  implies that if the DM had to choose between improving either 

criterion i  or criterion j  from the worst to the best value, he or she would increase 

the performance on criterion i . 

The SMAA methodology has been developed for situations where neither criteria 

measurements nor weights are precisely known. So, instead of using deterministic 

values, probability distributions are specified for all criteria measurements i

kx  that are 

included in the model (in our setting, appropriate shapes for these distributions are 

derived from clinical trials and/or observational studies). Similarly, the DMs’ 

unknown preferences are represented by a uniform weight distribution in the feasible 

weight space }1,0|{
1

=≥∈= ∑
=

n

j

j

n
wwRW w . 
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Instead of using the value function to rank the alternatives for an elicited weight 

vector ),,( 1 nww K=w , which is the traditional approach in MCDA, SMAA computes 

for each alternative the weights a “typical” DM supporting this alternative would 

have. These so-called central weight vectors can be presented to the DM to help him 

or her understand what kind of weights favor a certain alternative, without providing 

any preference information. Mathematically speaking, the central weight vector of an 

alternative is defined as the expected center of gravity of all possible weight vectors 

that rank the alternative at the first place (c.f. (7)). It is expressed as a 

multidimensional integral over the criteria and weight distributions and can therefore 

be numerically computed by using Monte Carlo simulation (21). In each Monte Carlo 

iteration, values for the model parameters (i.e. criteria measurements and weights) are 

drawn from their corresponding distributions, and a ranking of the alternatives is 

obtained by plugging these values into the value function. For the alternative that is 

ranked at the first place, the current sampled weight vector is stored in a table, and the 

simulation proceeds with the next iteration. After all Monte Carlo iterations have been 

completed, an alternative’s central weight vector is computed by averaging over all 

stored weight vectors that are associated with this alternative. 

In addition to the central weight vectors, SMAA-2 defines two other types of 

descriptive measures: rank acceptability indices and confidence factors. The rank 

acceptability index, denoted by ),( rib , describes the share of all possible values of 

the weight vector w  and imprecise criteria measurements mxx ,,1
K  for which 

alternative i  is ranked at place r. Its value can be interpreted as the probability that 

alternative i  is ranked at place r, where 0 indicates that the alternative will never 

obtain rank r and 1 indicates that alternative i  will always obtain rank r. 
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The confidence factor of an alternative is the probability for this alternative to obtain 

the first rank when its central weight vector is used to scale the partial value 

functions. If there is no uncertainty in the criteria measurements, the confidence factor 

of each alternative will be equal to 1. In our setting, however, the criteria 

measurements are considered to be stochastic variables, so we are likely to obtain 

confidence factors of less than 1 for at least some of the alternatives included in the 

model. Just like the central weight vectors, the rank acceptability indices and the 

confidence factors can numerically be computed by using Monte Carlo simulation. In 

practice, the computation of the descriptive indices can be made more efficient than 

described here. For more details on the implementation of SMAA-2 based on Monte 

Carlo simulation, the reader is referred to (21). 

So far, we considered the case when the SMAA analysis is conducted without any 

preference information. In practice, however, it may be possible to elicit some 

preference information from the DMs, such as a partial or complete ranking of the 

criteria. This information can easily be incorporated into the model by restricting the 

feasible weight space accordingly (c.f. (21)). If there is no preference information, the 

decision making is aided mainly through central weight vectors and confidence 

factors. When preference information is incorporated into the model, the rank 

acceptability indices can be used for finding the “best” alternative and for quantifying 

the risks related to uncertainty of outcomes.  

2.2 Model for the therapeutic group of antidepressants 

To demonstrate the application of SMAA in drug BR analysis, we constructed a 

model for the therapeutic group of antidepressants using efficacy and safety data from 

a published meta-analysis (18). We would like to stress that our model is illustrative 
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in nature, meaning that the results should not be interpreted as a full BR assessment of 

the different drugs included in the model. 

2.2.1 Criteria 

In the meta-analysis, the efficacy and safety of ten commonly prescribed second-

generation antidepressants were compared (18). From this study, we selected the four 

antidepressants for which sufficient quantitative data was available: Fluoxetine, 

Paroxetine, Sertraline, and Venlafaxine. The criteria used to evaluate these four drugs 

are summarized in Table 1. We included one benefit criterion (treatment response) 

and five risk criteria, each corresponding to a different adverse event (diarrhea, 

dizziness, headache, insomnia, and nausea). There is a certain overlap between 

efficacy and insomnia, because improved efficacy can lead to less insomnia. For sake 

of simplicity, we disregarded this possible source of double-counting and assumed the 

criteria to be independent. 

Treatment response, defined as an improvement of at least 50% on either the 

Hamilton Rating Scale for Depression (HAM-D) or the Montgomery-Asberg 

Depression Rating Scale from baseline to the end of the follow-up period, was used as 

a measure of efficacy in all clinical trials that were included in the meta-analysis. The 

authors conducted three separate analyses (effects were combined by using a random 

effects model) to estimate the relative efficacy (i.e. the proportion of respondents in 

one treatment group divided by the proportion of respondents in another treatment 

group) of (i) Paroxetine over Fluoxetine, (ii) Sertaline over Fluoxetine, and (iii) 

Venlafaxine over Fluoxetine. The frequency at which a specific adverse event 

occurred was reported in the meta-analysis as the mean incidence across all 

comparative trials and observational studies that included this event. 
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SMAA allows the criteria measurements to be modeled with arbitrary distributions. In 

our setting, the distributions follow directly from the results of the meta-analysis. In 

particular, it follows that the pooled incidences of the adverse events as well as the 

log of the pooled efficacy ratios can be considered as independently and normally 

distributed random variables (22). The means i

kµ of these distributions are taken to be 

equal to the (log of the) pooled effect-size estimates, and the standard deviations i

kσ  

are derived from the corresponding 95% confidence intervals as reported in the meta-

analysis. For example, the pooled incidence of diarrhea for Fluoxetine was found to 

be equal to 11.7 with a 95% confidence interval of [6.8, 16.6] (18). The upper (lower) 

bound of this confidence interval was computed by adding (subtracting) 

Fluoxetine

Diarrheaσ⋅96.1  to (from) the effect-size estimate of 11.7, so the estimated standard 

deviation of the pooled incidence of diarrhea for Fluoxetine will be equal to 

 5.2
96.12

)8.66.16(
=

⋅

−
=

Fluoxetine

Diarrheaσ . 

2.2.2 Preference information 

We performed three analyses: one with missing preference information, and two with 

a criteria ranking elicited from an expert in the field of antidepressants. For the latter, 

we explained the SMAA model and multi-attribute utility theory to the expert and 

asked her to consider a scenario of mild depression and a scenario of severe 

depression. 

For both of these scenarios, we started by asking the expert to identify the criterion 

that she would most like to increase from the worst to the best value, given the range 

of the scales as depicted in Table 1. Then we asked for the second one, etc. This 
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process is similar to swing weighting in multi-attribute utility theory (23). However, 

since no exact “weights” are required, it resembles more the environment of medical 

decision making. 

Let us denote by f  the strict preference relation. The elicitation process resulted in 

the following ranking for mild depression: Diarrhea f  Nausea f  Dizziness f  

Insomnia f  Headache f  Efficacy. For severe depression the ranking was similar 

with the exception of efficacy being the most preferred criterion (i.e. Efficacy 

fDiarrhea f  Nausea f  Dizziness f  Insomnia f  Headache). 

2.3 Software 

All analyses were conducted by using the JSMAA v0.2 software, an open source 

implementation of the SMAA methods in Java that is freely available from: 

http://www.smaa.fi. 

3 Results 

We completed the models with the criteria measurements listed in Table 2. The three 

analyses were executed with 10,000 Monte Carlo iterations, thereby giving the results 

sufficient accuracy (95% confidence error margins of ± 0.01) (21).  

3.1 No preference information 

The rank acceptability indices resulting from the analysis without preference 

information are listed in Table 3 and visualized as a column chart in Figure 1. These 

indices show that all drugs have reasonable BR profiles and should be considered for 

further analysis. In a situation like this, the decision can be aided through the central 

weight vectors (see Table 4). By looking at the central weights, we can see clear 
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trade-offs among the four drugs. For example, if the DM displays an a priori 

preference of Paroxetine, then based on the BR profiles expressed through the central 

weights, apparently nausea has the highest relative importance. If the DM accepts our 

model and is rational, he or she should favor lowering first nausea from the worst 

scale value (34%) to the best one (11.1%). 

By contrasting a DM’s preferences for scale swings (Table 1) with the central weights 

presented in Table 4, the DM can quickly decide which drug is preferable in the 

current situation. For example, if a DM considers the scale swing of efficacy (0.25) 

more important than the scale swing of dizziness (20.0, see Table 1), then he or she 

should prefer the BR profile of the three other drugs over Fluoxetine, because it is the 

only drug for which the central weight of efficacy is considerably lower than the 

central weight of dizziness. In addition, the confidence factors (Table 4) quantify the 

risk associated with the decision. For example, if a DM finds Fluoxetine’s central 

weight vector to correspond with his or her preferences, the confidence factor (0.48) 

shows that the clinical data is too uncertain for making a truly informed decision. 

3.2 Mild and severe depression 

Rank acceptability indices for the scenario of mild (severe) depression are presented 

in Table 5 (Table 6) and illustrated in Figure 2 (Figure 3). Both the mild and severe 

depression scenarios lead to a relatively high first rank acceptability for Paroxetine. It 

had also a good rank profile in the analysis without preference information, and thus 

could be considered to have the “best” (i.e. reasonably high rank acceptabilities for 

the best ranks and low acceptabilities for the worst ranks) overall BR profile if no 

additional information is available. The rank acceptabilities of the other alternatives 

are more sensitive to the preferences. For example, the rank profile of Fluoxetine 
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depends completely on preferences. It achieves a significantly higher first rank 

acceptability (0.30) for the mild depression scenario than for the severe depression 

scenario (0.01). For Venlafaxine, the case is opposite: its first rank acceptability is a 

lot higher for severe depression (0.40) than for mild depression (0.21). 

4 Discussion 

Drug BR analysis has multiple uses, ranging from regulatory decision making to 

supporting decisions of a practicing physician. The MCDA-based approach suggested 

in this paper can be adapted for all contexts. As an example, we constructed a multi-

attribute model for the therapeutic group of antidepressants by using data from a 

published meta-analysis. Despite the fact that the differences among the four 

antidepressants were mostly insignificant from a frequentist perspective, our results 

show that there are clear trade-offs among these drugs when the uncertainty 

surrounding the criteria measurements is taken into account. This could be seen from 

the central weight vectors of the analysis without preference information, and also 

from the rank acceptability indices of the analyses of the mild and severe depression 

scenarios that differed only in preference of the efficacy criterion. 

Instead of having a different model for each therapeutic group, one could also 

consider constructing a more generic model by using the dimensions of an existing 

utility instrument, such as the EQ-5D or the Health Utilities Index. Although such 

instruments are suitable for calculating QALYs in the context of cost-effectiveness 

analysis, there is an important drawback when using them for drug BR analysis: their 

dimensions are defined in terms of generic health attributes—such as physical 

functioning, social functioning, and vitality—and may therefore not be very sensitive 

and responsive to the disease of interest. So, although our results have shown that 
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there are clear trade-offs among the four antidepressants, the relative differences in 

safety and efficacy may not be large enough to significantly change a patient’s health 

status when this is measured in terms of generic health attributes. 

Compared to the MCDA-based approaches proposed by Mussen et al. (4) and Felli et 

al. (5), the use of SMAA has two main advantages. The first advantage of the SMAA 

methodology is the possibility to include the sampling variation that is inherent in 

criteria measurements that are based on clinical trials. Mussen et al. (4) and Felli et al. 

(5), in contrast, do not explicitly include parameter uncertainty into their models: they 

solely rely on point estimates when assessing the performance of each of the 

alternatives against the different BR criteria. The capability of our model to propagate 

uncertainty to the results (in terms of rank acceptability indices and confidence 

factors) allows us to quantify the risks that are associated with any decision that is 

based on the results of the BR analysis. 

The second advantage of the SMAA methodology over the two existing approaches is 

the possibility to characterize typical trade-offs supporting a drug BR profile without 

knowing or eliciting the preferences beforehand. The possibility to use our model 

without any preferences as well as with scenario-based ordinal preferences lowers the 

effort required to apply the model in different situations, and also increases the 

transparency of the decision making process. 

The scenario-based rank acceptabilities can be used in operational support of 

decisions depending on drug BR analysis. If a drug has low (<0.20) rank 

acceptabilities for the first ranks, additional risk management practices should be used 

if that drug is chosen. For example, in our scenario of severe depression, Fluoxetine 

obtained a cumulative acceptability of only 0.06 for the first two ranks. If the BR 
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analysis leads to prescription decision of Fluoxetine due to external constraints (local 

reimbursement policy, patient profile including allergies, etc), the future patient 

consultancy should be sensitive to change of medication as other drugs with "better" 

BR profiles are available. 

To conclude, we presented a new MCDA-based approach to drug BR analysis with an 

example application to the therapeutic group of second-generation antidepressants. In 

contrast to previous models, our model is based on the SMAA methodology, which 

allows us to take into account the sampling variation that is inherent in criteria 

measurements that are based on clinical trials and/or observational studies. In 

addition, by making the trade-offs among the four analyzed drugs explicit, we 

separated clinical data from subjective judgments, thereby increasing the transparency 

of the decision making process. The constructed model is specific to the therapeutic 

group of antidepressants, and future research should analyze the applicability of the 

SMAA methodology to other therapeutic groups. 
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Table 1: Criteria characteristics. 

Name Measurement unit 

Preference 

direction 

Scale range 

Efficacy 

Relative value compared with 

Fluoxetine 

↑ [0.98, 1.23] 

Diarrhea 

ADE’s 

Absolute % ↓ [1, 20.6] 

Dizziness 

ADE’s 

Absolute % ↓ [4.4, 24.4] 

Headache 

ADE’s 

Absolute % ↓ [8, 31.3] 

Insomnia 

ADE’s 

Absolute % ↓ [3.4, 21.3] 

Nausea ADE’s Absolute % ↓ [11.1, 34] 
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Table 2: Criteria measurements. The values are given as mean ±  standard deviation. The 

measurement units are as presented in Table 1. 

Drug Ln(Efficacy) Diarrhea Dizziness Headache Insomnia Nausea 

Fluoxetine 0 ±  0 11.7 ±  2.5 7.2 ±  1.45 16.6 ±  3.27 13.7 ±  1.89 18.6 ±  1.79 

Paroxetine 0.086 ±  0.056 9.2 ±  1.86 10.6 ±  1.58 21.2 ±  5.15 14.3 ±  2.93 18.3 ±  3.7 

Sertraline 0.095 ±  0.044 15.4 ±  2.65 7.5 ±  1.48 20.2 ±  3.78 15 ±  3.21 19.5 ±  2.6 

Venlafaxine 0.113 ±  0.048 5.5 ±  2.32 15.7 ±  4.44 12.8 ±  2.45 11.2 ±  3.98 31 ±  1.68 

 

Table 3: Rank acceptability indices from the analysis without preference information. In 

columns of Rank 2 and 3 also the cumulative indices from Rank 1 are presented. 

Drug Rank 1 

Rank 2 

(cum. 1+2) 

Rank 3 

(cum. 1+2+3) 

Rank 4 

Fluoxetine 0.20 

0.28 

(0.48) 

0.30 

(0.78) 

0.22 

Paroxetine 0.25 

0.29 

(0.54) 

0.27 

(0.81) 

0.19 

Sertraline 0.17 

0.25 

(0.42) 

0.29 

(0.71) 

0.30 

Venlafaxine 0.39 

0.18 

(0.57) 

0.15 

(0.72) 

0.29 
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Table 4: Central weights and corresponding confidence factors from the analysis without 

preference information. 

Central weight vector 

Drug 

Conf. 

factor Efficacy Diarrhea Dizziness Headache Insomnia Nausea 

Fluoxetine 0.48 0.08 0.14 0.23 0.18 0.16 0.22 

Paroxetine 0.45 0.18 0.17 0.15 0.13 0.15 0.22 

Sertraline 0.34 0.21 0.10 0.22 0.13 0.15 0.20 

Venlafaxine 0.74 0.18 0.21 0.12 0.21 0.19 0.09 

 

Table 5: Rank acceptability indices from the scenario of mild depression. 

Drug Rank 1 

Rank 2 

(cum. 1+2) 

Rank 3 

(cum. 1+2+3) 

Rank 4 

Fluoxetine 0.30 

0.35 

(0.65) 

0.26 

(0.91) 

0.08 

Paroxetine 0.45 

0.33 

(0.78) 

0.17 

(0.95) 

0.05 

Sertraline 0.04 

0.10 

(0.14) 

0.26 

(0.40) 

0.60 

Venlafaxine 0.21 

0.23 

(0.44) 

0.30 

(0.74) 

0.26 
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Table 6: Rank acceptability indices from the scenario of severe depression. 

Drug Rank 1 

Rank 2 

(cum. 1+2) 

Rank 3 

(cum. 1+2+3) 

Rank 4 

Fluoxetine 0.01 

0.05 

(0.16) 

0.23 

(0.39) 

0.71 

Paroxetine 0.42 

0.31 

(0.73) 

0.20 

(0.93) 

0.07 

Sertraline 0.18 

0.31 

(0.49) 

0.37 

(0.86) 

0.14 

Venlafaxine 0.40 

0.32 

(0.72) 

0.20 

(0.92) 

0.08 
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Figure 1: Rank acceptability indices for the model without preference information. 
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Figure 2: Rank acceptability indices for the scenario of mild depression. 
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Figure 3: Rank acceptability indices for the scenario of severe depression. 

 

 


