Volume 31, Issue 1

Direct proofs of order independence

Krzysztof R. Apt
Centrum Wiskunde \& Informatica (CWI) and University of Amsterdam

Abstract

We establish a generic result concerning order independence of a dominance relation on finite games. It allows us to draw conclusions about order independence of various dominance relations in a direct and simple way.

1 Introduction

In the literature on strategic games several dominance relations have been considered and for various of them order independence was established. Just to mention two well-known results. In Gilboa, Kalai and Zemel [1990] order independence of strict dominance by a pure strategy in finite games was established. In turn, in Osborne and Rubinstein [1994] order independence of strict dominance by a mixed strategy was proved.

A number of other order independence results have been proved. In Apt [2004] we provided a uniform exposition based on so-called abstract reduction systems, notably Newman's Lemma, and established some new order independence results. However, for each considered dominance relation some supplementary lemmas were needed.

The purpose of this paper is to provide a generic order independence result for finite games that allows us to prove order independence of each relevant dominance relation in a direct and simple way. The exposition still relies on Newman's Lemma, but is now directly linked with the dominance relations through a crucial notion of hereditarity. To check for order independence it suffices to show that the dominance relation is hereditary, a simple condition referring to a single reduction step. We show that in each case this is straightforward. In the conclusions we clarify what makes this approach simpler than the ones used in the literature.

2 Dominance relations

We assume the customary notions of a strategic game, of strict dominance and weak dominance by a pure, respectively mixed strategy, see, e.g., Osborne and Rubinstein [1994]. We also use the standard notation. In particular, ΔS is the set of probabilities over the finite non-empty set S and for a joint strategy s, s_{i} is the strategy of player i and s_{-i} is the joint strategy of the opponents of player i. All considered games are assumed to be finite.

We assume an initial (finite) strategic game

$$
G:=\left(G_{1}, \ldots, G_{n}, p_{1}, \ldots, p_{n}\right)
$$

where G_{i} is a non-empty set of strategies of player i and p_{i} his payoff function. Given non-empty sets of strategies R_{1}, \ldots, R_{n} such that for all $i, R_{i} \subseteq G_{i}$ we say that $R:=$ $\left(R_{1}, \ldots, R_{n}, p_{1}, \ldots, p_{n}\right)$ is a restriction (of $\left.G\right)$. Here of course we view each p_{i} as a function on the subset $R_{1} \times \ldots \times R_{n}$ of $G_{1} \times \ldots \times G_{n}$.

In what follows, given a restriction R we denote by R_{i} the set of strategies of player i in R. Further, given two restrictions R and R^{\prime} we write $R^{\prime} \subseteq R$ when for all $i, R_{i}^{\prime} \subseteq R_{i}$.

When reasoning about never best responses we want to carry out the argument for a number of alternatives in a uniform way. To this end by a set of beliefs of player i in a restriction R we mean one of the following sets
(i) $\mathcal{B}_{i}:=R_{-i}$,
i.e., a belief is a joint pure strategy of the opponents,
(ii) $\mathcal{B}_{i}:=\Pi_{j \neq i} \Delta R_{j}$, i.e., a belief is a joint mixed strategy of the opponents,
(iii) $\mathcal{B}_{i}:=\Delta R_{-i}$,
i.e., a belief is a probability distribution over the set of joint pure strategies of the opponents (so called correlated mixed strategy).

In the second and third case the payoff function p_{i} is extended in a standard way to the expected payoff function $p_{i}: R_{i} \times \mathcal{B}_{i} \rightarrow \mathcal{R}$.

Consider now a restriction $R:=\left(R_{1}, \ldots, R_{n}, p_{1}, \ldots, p_{n}\right)$ with for each player i a set of beliefs $\mathcal{B}_{i}(R)$. We say then that a strategy s_{i} in R is a never best response if

$$
\forall \mu_{i} \in \mathcal{B}_{i}(R) \exists s_{i}^{\prime} \in R_{i} p_{i}\left(s_{i}^{\prime}, \mu_{i}\right)>p_{i}\left(s_{i}, \mu_{i}\right)
$$

By a dominance relation D we mean a function that assigns to each restriction R a subset D_{R} of $\bigcup_{i=1}^{n} R_{i}$. Instead of writing $s_{i} \in D_{R}$ we say that s_{i} is D-dominated in R. To avoid unnecessary complications we assume that for each restriction R and player i the set of his D-undominated strategies in R is non-empty, i.e., that for each i, $R_{i} \backslash D_{R} \neq \emptyset$. This natural assumption is satisfied by all considered dominance relations.

Given two restrictions R and R^{\prime} we write $R \rightarrow_{D} R^{\prime}$ when $R \neq R^{\prime}, R^{\prime} \subseteq R$ and each strategy $s_{i} \in\left(\bigcup_{j=1}^{n} R_{j}\right) \backslash\left(\bigcup_{j=1}^{n} R_{j}^{\prime}\right)$ is D-dominated in R.

An outcome of an iteration of \rightarrow_{D} starting in a game G is a restriction R that can be reached from G using \rightarrow_{D} in finitely many steps and such that for no $R^{\prime}, R \rightarrow_{D} R^{\prime}$ holds.

We call a dominance relation D

- order independent if for all initial games G all iterations of \rightarrow_{D} starting in G yield the same final outcome,
- hereditary if for all initial games G, all restrictions R and R^{\prime} such that $R \rightarrow_{D} R^{\prime}$ and a strategy s_{i} in R^{\prime}

$$
s_{i} \text { is } D \text {-dominated in } R \text { implies that } s_{i} \text { is } D \text {-dominated in } R^{\prime} \text {, }
$$

- monotonic if for all initial games G, all restrictions R and R^{\prime} such that $R^{\prime} \subseteq R$ and a strategy s_{i} in R^{\prime}

$$
s_{i} \text { is } D \text {-dominated in } R \text { implies that } s_{i} \text { is } D \text {-dominated in } R^{\prime} \text {. }
$$

Clearly every monotonic dominance relation is hereditary, but the converse does not need to hold.

3 Proofs of order independence

We shall establish the following result.
Theorem 1 Every hereditary dominance relation D is order independent.
We relegate the proof in the appendix. This theorem can be used to prove in a straightforward way order independence of various dominance relations. We illustrate it now by means of various examples.

3.1 Strict dominance

Recall that a strategy s_{i} is strictly dominated in a restriction $\left(R_{1}, \ldots, R_{n}, p_{1}, \ldots, p_{n}\right)$ if for some strategy $s_{i}^{\prime} \in R_{i}$

$$
\forall s_{-i} \in R_{-i} p_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p_{i}\left(s_{i}, s_{-i}\right) .
$$

Denote the reduction relation corresponding to strict dominance by a pure strategy by \rightarrow_{S}. To see that strict dominance by a pure strategy is hereditary suppose that $R \rightarrow_{S} R^{\prime}$ and that a strategy s_{i} in R^{\prime} is strictly dominated in R. The initial game is finite, so there exists in R a strategy s_{i}^{\prime} that strictly dominates s_{i} in R and is not strictly dominated in R. Then s_{i}^{\prime} is not eliminated in the step $R \rightarrow_{S} R^{\prime}$ and hence is a strategy in R^{\prime}. But $R^{\prime} \subseteq R$, so s_{i}^{\prime} also strictly dominates s_{i} in R^{\prime}.

In contrast, strict dominance is not monotonic for the simple reason that no strategy is strictly dominated in a game in which each player has exactly one strategy. Order independence of strict dominance for finite games was originally proved in Gilboa, Kalai and Zemel [1990], by relying on the notion of monotonicity (called there hereditarity) used for binary dominance relations. This approach works since a slightly different reduction relation is used there, according to which every eliminated strategy is strictly dominated in the original restriction by a strategy that is not eliminated. It is straightforward to check that this reduction relation coincides with \rightarrow_{S}.

3.2 Global strict dominance

We say that a strategy s_{i} is globally strictly dominated in a restriction $\left(R_{1}, \ldots, R_{n}\right.$, p_{1}, \ldots, p_{n}) if for some strategy $s_{i}^{\prime} \in G_{i}$ (so not $s_{i}^{\prime} \in R_{i}$)

$$
\forall s_{-i} \in R_{-i} p_{i}\left(s_{i}^{\prime}, s_{-i}\right)>p_{i}\left(s_{i}, s_{-i}\right) .
$$

This notion of dominance was originally considered in Milgrom and Roberts [1990, pages 1264-1265]. Its order independence for finite games is a consequence of a more general result proved in Ritzberger [2002, pages 200-201] and also Chen, Long and Luo [2007], where this dominance relation was analyzed for arbitrary games.

Global strict dominance is clearly monotonic, so it is hereditary.

3.3 Never best response

Suppose that each player i in the initial game G has a set of beliefs \mathcal{B}_{i}. Then in each restriction R we choose the corresponding set of beliefs $\mathcal{B}_{i}(R)$ of player i. For instance, if $\mathcal{B}_{i}=\Pi_{j \neq i} \Delta G_{j}$ then we set $\mathcal{B}_{i}(R):=\Pi_{j \neq i} \Delta R_{j}$.

Note that if $R^{\prime} \subseteq R$, then we can identify $\Pi_{j \neq i} \Delta R_{j}^{\prime}$ with a subset of $\Pi_{j \neq i} \Delta R_{j}$ and ΔR_{-i}^{\prime} with a subset of ΔR_{-i}. So we can assume that $R^{\prime} \subseteq R$ implies that $\mathcal{B}_{i}\left(R^{\prime}\right) \subseteq \mathcal{B}_{i}(R)$.

To prove that being a never best response is a hereditary dominance relation consider the corresponding reduction relation between restrictions that we denote by \rightarrow_{N}. Suppose that $R \rightarrow_{N} R^{\prime}$ and that a strategy s_{i} in R^{\prime} is a never best response in R. Assume by contradiction that for some $\mu_{i} \in \mathcal{B}_{i}\left(R^{\prime}\right), s_{i}$ is a best response to μ_{i} in R^{\prime}, i.e.,

$$
\forall s_{i}^{\prime} \in R_{i}^{\prime} p_{i}\left(s_{i}, \mu_{i}\right) \geq p_{i}\left(s_{i}^{\prime}, \mu_{i}\right)
$$

We have $\mu_{i} \in \mathcal{B}_{i}(R)$ since $\mathcal{B}_{i}\left(R^{\prime}\right) \subseteq \mathcal{B}_{i}(R)$. Take a best response s_{i}^{\prime} to μ_{i} in R. Then s_{i}^{\prime} is not eliminated in the step $R \rightarrow_{N} R^{\prime}$ and hence is a strategy in R^{\prime}. But by the choice of s_{i} and s_{i}^{\prime}

$$
p_{i}\left(s_{i}^{\prime}, \mu_{i}\right)>p_{i}\left(s_{i}, \mu_{i}\right)
$$

so we reached a contradiction.
Order independence of iterated elimination of never best responses was originally proved in Apt [2005] by comparing it with the iterated elimination of global never best responses, a notion we discuss next.

3.4 Global never best response

Suppose again that each player i in the initial game G has a set of beliefs \mathcal{B}_{i}. Choose in each restriction R the corresponding set of beliefs $\mathcal{B}_{i}(R)$ of player i.

We say that a strategy s_{i} in a restriction R is a global never best response if

$$
\forall \mu_{i} \in \mathcal{B}_{i}(R) \exists s_{i}^{\prime} \in G_{i} p_{i}\left(s_{i}^{\prime}, \mu_{i}\right)>p_{i}\left(s_{i}, \mu_{i}\right)
$$

So in defining a global never best response we compare the given strategy with all strategies in the initial game and not the current restriction. Note that iterated elimination of global never best responses, when performed 'at full speed' yields the set of rationalizable strategies as defined in Bernheim [1984].

The property of being a global never best response is clearly monotonic, so it is hereditary. Order independence of this dominance relation was originally proved in Apt [2005] for arbitrary, so possibly infinite, games.

3.5 Strict dominance by a mixed strategy

Denote the corresponding reduction relation between restrictions by $\rightarrow_{S M}$. Given two mixed strategies m_{i}, m_{i}^{\prime} and a strategy s_{i} we denote by $m_{i}\left[s_{i} / m_{i}^{\prime}\right]$ the mixed strategy obtained from m_{i} by substituting the strategy s_{i} by m_{i}^{\prime} and by 'normalizing' the resulting sum. First, we establish the following auxiliary lemma.

Lemma 1 (Persistence) Assume that $R \rightarrow_{S M} R^{\prime}$ and that a strategy s_{i} in R is strictly dominated in R by a mixed strategy from R. Then s_{i} is strictly dominated in R by a mixed strategy from R^{\prime}.

Proof. We shall use the following obvious properties of strict dominance by a mixed strategy in a given restriction:
(a) for all $\alpha \in(0,1]$, if s_{i} is strictly dominated by $(1-\alpha) s_{i}+\alpha m_{i}$, then s_{i} is strictly dominated by m_{i},
(b) if s_{i} is strictly dominated by m_{i} and s_{i}^{\prime} is strictly dominated by m_{i}^{\prime}, then s_{i} is strictly dominated by $m_{i}\left[s_{i}^{\prime} / m_{i}^{\prime}\right]$.
Suppose that $R_{i} \backslash R_{i}^{\prime}=\left\{t_{i}^{1}, \ldots, t_{i}^{k}\right\}$. By definition for all $j \in\{1, \ldots, k\}$ there exists in R a mixed strategy m_{i}^{j} such that t_{i}^{j} is strictly dominated in R by m_{i}^{j}. We first prove by complete induction that for all $j \in\{1, \ldots, k\}$ there exists in R a mixed strategy n_{i}^{j} such that

$$
\begin{equation*}
t_{i}^{j} \text { is strictly dominated in } R \text { by } n_{i}^{j} \text { and } \operatorname{support}\left(n_{i}^{j}\right) \cap\left\{t_{i}^{1}, \ldots, t_{i}^{j}\right\}=\emptyset . \tag{1}
\end{equation*}
$$

For some $\alpha \in(0,1]$ and a mixed strategy n_{i}^{1} with $t_{i}^{1} \notin \operatorname{support}\left(n_{i}^{1}\right)$ we have

$$
m_{i}^{1}=(1-\alpha) t_{i}^{1}+\alpha n_{i}^{1} .
$$

By assumption t_{i}^{1} is strictly dominated in R by m_{i}^{1}, so by property (a) t_{i}^{1} is strictly dominated in R by n_{i}^{1}, which proves (1) for $j=1$.

Assume now that $\ell<k$ and that (1) holds for all $j \in\{1, \ldots, \ell\}$. By assumption $t_{i}^{\ell+1}$ is strictly dominated in R by $m_{i}^{\ell+1}$.

Let

$$
m_{i}^{\prime \prime}:=m_{i}^{\ell+1}\left[t_{i}^{1} / n_{i}^{1}\right] \ldots\left[t_{i}^{\ell} / n_{i}^{\ell}\right] .
$$

By the induction hypothesis and property (b) $t_{i}^{\ell+1}$ is strictly dominated in R by $m_{i}^{\prime \prime}$ and $\operatorname{support}\left(m_{i}^{\prime \prime}\right) \cap\left\{t_{i}^{1}, \ldots, t_{i}^{\ell}\right\}=\emptyset$.

For some $\alpha \in(0,1]$ and a mixed strategy $n_{i}^{\ell+1}$ with $t_{i}^{\ell+1} \notin \operatorname{support}\left(n_{i}^{\ell+1}\right)$ we have

$$
m_{i}^{\prime \prime}=(1-\alpha) t_{i}^{\ell+1}+\alpha n_{i}^{\ell+1}
$$

By (a) $t_{i}^{\ell+1}$ is strictly dominated in R by $n_{i}^{\ell+1}$. Also support $\left(n_{i}^{\ell+1}\right) \cap\left\{t_{i}^{1}, \ldots, t_{i}^{\ell+1}\right\}=\emptyset$, which proves (1) for $j=\ell+1$.

Suppose now that the strategy s_{i} is strictly dominated in R by a mixed strategy m_{i} from R. Define

$$
m_{i}^{\prime}:=m_{i}\left[t_{i}^{1} / n_{i}^{1}\right] \ldots\left[t_{i}^{k} / n_{i}^{k}\right] .
$$

Then by property (b) and (1) s_{i} is strictly dominated in R by m_{i}^{\prime} and $\operatorname{support}\left(m_{i}^{\prime}\right) \subseteq R_{i}^{\prime}$, i.e., m_{i}^{\prime} is a mixed strategy in R^{\prime}.

Hereditarity of $\rightarrow_{S M}$ is now an immediate consequence of the Persistence Lemma 1. Indeed, suppose that $R \rightarrow_{S M} R^{\prime}$ and that $s_{i} \in R_{i}^{\prime}$ is strictly dominated in R by a mixed strategy in R. By the Persistence Lemma $1 s_{i}$ is strictly dominated in R by a mixed strategy in R^{\prime}. So s_{i} is also strictly dominated in R^{\prime} by a mixed strategy in R^{\prime}.

The proof of order independence of strict dominance by a mixed strategy due to Osborne and Rubinstein [1994, pages 61-62] relied on the existence of Nash equilibrium in strictly competitive games.

3.6 Global strict dominance by a mixed strategy

We say that a strategy s_{i} is globally strictly dominated by a mixed strategy in a restriction $\left(R_{1}, \ldots, R_{n}, p_{1}, \ldots, p_{n}\right)$ if for some mixed strategy m_{i}^{\prime} in G_{i} (so not m_{i}^{\prime} in R_{i})

$$
\forall s_{-i} \in R_{-i} p_{i}\left(m_{i}^{\prime}, s_{-i}\right)>p_{i}\left(s_{i}, s_{-i}\right)
$$

This notion of dominance was studied in Brandenburger, Friedenberg and Keisler [2006] (it is their operator Φ) and in Apt [2007]. It is obviously monotonic and hence hereditary.

The proof of order independence of this relation is implicit in Apt [2007]. Dominance relations are viewed there as operators on the set of all restrictions. Its Theorem 1 states that monotonic operators are order independent. Monotonicity property of the operator corresponding to global strict dominance by a mixed strategy is noted there in Section 10.

3.7 Inherent dominance

Consider a restriction $\left(R_{1}, \ldots, R_{n}, p_{1}, \ldots, p_{n}\right)$. We say that a strategy s_{i} is dominated given $\tilde{R}_{-i} \subseteq R_{-i}$, where \tilde{R}_{-i} is non-empty, if s_{i} is weakly dominated in the restriction $\left(R_{i}, \tilde{R}_{-i}, p_{1}, \ldots, p_{n}\right)$. Then we say that a strategy s_{i} is inherently dominated if for every non-empty subset \tilde{R}_{-i} of R_{-i} it is weakly dominated given \tilde{R}_{-i}.

This notion of dominance was introduced in Börgers [1990], where its order independence was proved by establishing a connection between inherent dominance and rationalizability. In Börgers [1993] parts of Börgers [1990] were published, but not the proof of order independence. Denote by \rightarrow_{I} the corresponding reduction relation.

To prove that inherent dominance is hereditary suppose that $R \rightarrow_{I} R^{\prime}$ and that a strategy s_{i} in R^{\prime} is inherently dominated in R. Fix a non-empty subset \tilde{R}_{-i} of R_{-i}^{\prime}.

The initial game is finite, so there exists in R_{i} a strategy s_{i}^{\prime} that weakly dominates s_{i} in $\left(R_{i}, \tilde{R}_{-i}, p_{1}, \ldots, p_{n}\right)$ and is not weakly dominated in the restriction $\left(R_{i}, \tilde{R}_{-i}, p_{1}, \ldots, p_{n}\right)$. Then s_{i}^{\prime} is not eliminated in the step $R \rightarrow_{I} R^{\prime}$ and hence is a strategy in R_{i}^{\prime}. So s_{i} is weakly dominated in $\left(R_{i}^{\prime}, \tilde{R}_{-i}, p_{1}, \ldots, p_{n}\right)$ by s_{i}^{\prime}. This proves hereditarity.

4 Conclusions

We established here several order independence results. They were all proved by just checking a single property of the dominance relation, namely hereditarity. This approach works because of a combination of factors. First, as in Apt [2004], we used abstract reduction systems. This allowed us to decouple one part of the argument from the study of the actual dominance relations.

Second, we viewed the dominance relations as unary relations, whereas the common approach in the literature is to view them as binary relations. Finally, we relied on the notion of hereditarity that is weaker than monotonicity. These changes allowed us to treat various forms of strict dominance and of being a never response, and inherent dominance in a uniform way.

We conclude by offering the following observation. It is clear how to define the intersection of dominance relations. The intersection of order independent dominance relations does not need to be order independent. On the other hand, the intersection of hereditary dominance relations is clearly hereditary. So our approach also allows us to draw conclusions about order independence of intersections of the discussed dominance relations.

References

K. R. Apt

[2004] Uniform proofs of order independence for various strategy elimination procedures, The B.E. Journal of Theoretical Economics, 4(1). (Contributions), Article 5, 48 pages. Available from http://xxx.lanl.gov/abs/cs.GT/0403024.
[2005] Order independence and rationalizability, in: Proceedings 10th Conference on Theoretical Aspects of Reasoning about Knowledge (TARK '05), The ACM Digital Library, pp. 22-38. Available from http://portal.acm.org.
[2007] The many faces of rationalizability, The B.E. Journal of Theoretical Economics, 7(1). (Topics), Article 18, 39 pages. Available from http://arxiv.org/abs/cs.GT/0608011.
B. D. Bernheim
[1984] Rationalizable strategic behavior, Econometrica, 52, pp. 1007-1028.
T. BÖrgers
[1990] Ordinal versus Cardinal Notions of Dominance, tech. rep., University of Basel.
[1993] Pure strategy dominance, Econometrica, 61, pp. 423-430.
A. Brandenburger, A. Friedenberg, and H. Keisler
[2006] Fixed points for strong and weak dominance. Working paper. Available from http://pages.stern.nyu.edu/~abranden/.
Y.-C. Chen, N. V. Long, and X. Luo
[2007] Iterated strict dominance in general games, Games and Economic Behavior, 61, pp. $299-315$.
I. Gilboa, E. Kalai, and E. Zemel
[1990] On the order of eliminating dominated strategies, Operation Research Letters, 9, pp. 85-89.

P. Milgrom and J. Roberts

[1990] Rationalizability, learning, and equilibrium in games with strategic complementarities, Econometrica, 58, pp. 1255-1278.
M. H. A. Newman
[1942] On theories with a combinatorial definition of "equivalence", Annals of Math., 43, pp. 223-243.
M. J. Osborne and A. Rubinstein
[1994] A Course in Game Theory, The MIT Press, Cambridge, Massachusetts.
K. Ritzberger
[2002] Foundations of Non-cooperative Game Theory, Oxford University Press, Oxford.
Terese
[2003] Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science 55, Cambridge University Press.

Appendix

We present here the proof of Theorem 1. As in Apt [2004] we shall use the notion of an abstract reduction system, extensively studied in Terese [2003]. It is simply a pair (A, \rightarrow) where A is a set and \rightarrow is a binary relation on A. Let \rightarrow^{*} denote the transitive reflexive closure of \rightarrow. So in particular, if $a=b$, then $a \rightarrow^{*} b$.

We say that b is a \rightarrow-normal form of a if $a \rightarrow^{*} b$ and no c exists such that $b \rightarrow c$, and omit the reference to \rightarrow if it is clear from the context. If every element of A has a unique normal form, we say that (A, \rightarrow) (or just \rightarrow if A is clear from the context) satisfies the unique normal form property.

We say that \rightarrow is weakly confluent if for all $a, b, c \in A$

implies that for some $d \in A$

The following crucial lemma is due to Newman [1942].
Lemma 2 (Newman) Consider an abstract reduction $\operatorname{system}(A, \rightarrow)$ such that

- no infinite \rightarrow sequences exist,
- \rightarrow is weakly confluent.

Then \rightarrow satisfies the unique normal form property.
Proof. By the first assumption every element of A has a normal form. To prove uniqueness call an element a ambiguous if it has at least two different normal forms. We show that for every ambiguous a some ambiguous b exists such that $a \rightarrow b$. This proves absence of ambiguous elements by the first assumption.

So suppose that some element a has two distinct normal forms n_{1} and n_{2}. Then for some b, c we have $a \rightarrow b \rightarrow^{*} n_{1}$ and $a \rightarrow c \rightarrow^{*} n_{2}$. By weak confluence some d exists such that $b \rightarrow^{*} d$ and $c \rightarrow^{*} d$. Let n_{3} be a normal form of d. It is also a normal form of b and of c. Moreover $n_{3} \neq n_{1}$ or $n_{3} \neq n_{2}$. If $n_{3} \neq n_{1}$, then b is ambiguous and $a \rightarrow b$. And if $n_{3} \neq n_{2}$, then c is ambiguous and $a \rightarrow c$.

Clearly, order independence of a dominance relation D is equivalent to the statement that for all initial games G the reduction relation \rightarrow_{D} satisfies the unique normal form property on the set of all restrictions.

Proof of Theorem 1.

Consider a restriction R. Suppose that $R \rightarrow_{D} R^{\prime}$ for some restriction R^{\prime}. Let $R^{\prime \prime}$ be the restriction of R obtained by removing all strategies that are D-dominated in R.

We have $R^{\prime \prime} \subseteq R^{\prime}$. Assume that $R^{\prime} \neq R^{\prime \prime}$. Choose an arbitrary strategy s_{i} such that $s_{i} \in R_{i}^{\prime} \backslash R_{i}^{\prime \prime}$. So s_{i} is D-dominated in R. By the hereditarity of D, s_{i} is also D-dominated in R^{\prime}. This shows that $R^{\prime} \rightarrow_{D} R^{\prime \prime}$.

So we proved that either $R^{\prime}=R^{\prime \prime}$ or $R^{\prime} \rightarrow_{D} R^{\prime \prime}$, i.e., that $R^{\prime} \rightarrow_{D}^{*} R^{\prime \prime}$. This implies that \rightarrow_{D} is weakly confluent. It suffices now to apply Newman's Lemma 2.

